On the Ubiquity of the Sine Wave
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Lincar wave propagation is usually analyzed
in terms of harmonie waves, characterized by a
time faetor exp{—iwf). Texthooks on wave
physics always stress the importance of such har-
monic waves, but the reason for their importance
is not stated in any elementary text of which
we are aware. It is ohvious enough that harmonie
analysis is often mathematically convenient, but
any other set of expansion functions may be used
with equal validitv. The harmonic wave takeson a
special significance when dispersion is present;
dispersion can be deteeted by the change in shape
of a pulsc as it propagates (by ‘“‘shape’” we mean
the time dependence of the wave function at a
fixed position, not the spatial dependence at an
instant—this would vary in an inhomogencous
nondispersive medium). The shape of the pulse
used to detect dispersion may be quite arbitrary,
except that it must not be sinusoidal, because
the sinusord is the only wave that travels without
change of shape.

What iz the basic physical reason for this
remarkable property? We feel that the following
elementary explanation could usefully be pre-
sented to undergraduates. Consider a dispersive
medium {e.g., 5 water surface or a dielectric)
which is in cquilibrium when no wave is passing
through it. The advancing wave acts on the matter
in the medium and the resulting foreed miotion
determines the subsequent propagation (the
motion may either constitute the wave itself—
mechanical waves, or else provide a source of
“secondary wavelets”—electromagnetic waves).
The wave will not disperse if the time dependence
z(f)- of the forced motion is in some sense the
same as the time dependence f(¢) of the exeiting
wave. To find the pulse shape f(¢) for which this
holds, we realize that the medium in equilibrium
is in a configuration of minmimum potential
energy, so that any small motion £(f} must veeur
in a quadratic potential well. Thus the matter
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satisfies the equation for a forced harmonic oscil-
lator, namely

dz/diP+wdz=f(1), (1)

where wp i a resonant frequency {(more generally,
z is one of the “Lagrangian normal coordinates”
and wy is the frequency of the corresponding nor-
mal mode). For propagation without dispersion,
the simplest assumption is

z(8) = Af(6), (2)

where A is a constant. Inserting this into Eq. (1),
we find that the only solutions arc

J{B) =B exp(iwt), A =(wl—w?)"1, (3)
where B and o are arbitrary. But these “un-
dispersed waves'" are harmonic, which is what we
wanted to show. [More generally, the assumed
relation between z(f) and f({) could invelve a
time delay, or z(tf) might keep in step with a
derivative of (1), so that instead of Fqg. (2) we
would have

2(t) = A(d*/di™)f(1—7).

A slightly less elementary mathematical argu-

‘ment shows that in this case also f(¢) must be

harmonie, although 4 is no longer given by Eq.
(3).]

The fundamental physieal reason for the im-
portance of sinusvidal waves therefore lies in the
behavior of matter executing small motions near
equilibrium. (It is also worth pointing out that
nonsinusoidal linear waves in a dispersive medium
usually satisfy not a simple “wave equation,”
but a complicated set of coupled equations;
surface waves on water provide a good example.)
We do not claim that our argument is original; it
was certainly known to Lord Rayleigh, from
whose Theory of Sound (Macmillan, London,
1877), Vol. 1, p. 17, we quote:

...1t is & eonsequence of the general theory of
vibration that the particular type, now sug-
gested as corresponding to a simple tone, is
the only one capalde of preserving its in-
tegrity among the viecissitudes which it may
have to undergo.
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