A NEW INTERPRETATION OF BEND CONTOURS IN TERMS OF SEMICLASSICAL MECHANICS

M V Berry and B F Buxton

H H Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, U.K.

Exact Bloch wave calculations of the bend contour intensity $|A_G|^2$ for the mth diffracted beam are fairly easy (Steed 1970) in many-beam cases, but these do not lead to a transparent qualitative picture of the origin of the shape of the contours as a function of thickness z and direction of incidence K_o.

We propose an alternative explanation of the bend contours, based on the classical paths of the electrons through the one-dimensionally periodic lattice potential $U(x)$ (fig. 1a) whose Fourier components U_m constitute the initial data for Bloch wave calculations. According to the principles of semiclassical mechanics (Berry & Mount 1972) the amplitude $A_G(z, K_o)$ is approximately

$$A_G(z, K_o) = \sum_m \rho_m(z, K_o) \exp (iW_m(z, K_o)) \tag{1}$$

where m labels the different possible classical paths for which electrons incident at K_o emerge at K_G after traversing a thickness z, W_m is the phase along the mth path, and ρ_m is the density along the path (which measures the divergence and focussing of a small bundle of paths). The analytical theory deriving (1) from the Bloch wave series may be found in sec. 5 of Berry 1971 (hereafter called 1). From eq. (1) we expect two main types of feature in the image plane z, K: (a) caustics, which are lines along which ρ_m is infinite, corresponding to an envelope of the family of paths m (as at the focus of a lens, or the light from a water-drop in a rainbow), (b) interference fringes, which are lines along which the phase difference $W_m - W_n$ is constant for two paths m and n which coexist in a region free from caustics (e.g. the set of hyperboloids locating Young's fringes from two coherent sources).

For the periodic potential of fig. 1a, the classical paths fall into two classes:

(i) **Quasi-free paths** (fig. 1b), where the electron may travel between cells by crossing the interatomic planes.

(ii) **Bound paths** (fig. 1c), where the electron winds back and forth within a single cell.

Both classes of paths may be further specified by an index m corresponding to the number of crossings of atomic planes, as detailed in 1 (sec. 5, figs. 12-14). We have calculated W_m and ρ_m for the bright field in the case of a potential parabolic inside each cell of width a, with a maximum depth U_{max} on the atomic planes. We find that the quasi-free path structure is dominated by a series of caustics for each m, resembling hyperbolas, satisfying the equation

$$K_o = \sqrt{\frac{U_{max}}{U_{max}} \cosh \left(\frac{z}{\sqrt{\frac{U_{max}}{kam}}} \right)} \quad m = 1, 2, \ldots \tag{2}$$

454
where \(k \) is the wave number of the incident electrons. The bound paths have no caustics, and we expect to see interference fringes roughly parallel to the \(K_0 \)-axis out to the 'critical direction' \(K_0^c = \int U_{\text{max}} \) (I, eq. 75). The fringe spacing at \(K_0 = 0 \) is predicted to be

\[
\Delta z = \frac{4\pi k}{U_{\text{max}}}
\]

(3)

These bright-field bend contours predicted by semiclassical mechanics are sketched in fig. 2: They are obviously qualitatively similar to experimental and computer-simulated micrographs, and a preliminary comparison for Gold (600 KV (111) Steeds 1970, 650 KV (200) Richards & Steeds 1971) gives quantitative agreement within a factor 2. If more detailed analysis confirms these results, the way will be opened for new methods of understanding images of defects in many-beam situations, simply by calculating the classical paths in their neighbourhood.

References

Berry M V 1971 J Phys C 4 697
Berry M V & Mount K E 1972 Reps Prog Phys to be published
(Institute of Physics, London), 128
Steeds J W 1970 Phys Stat Sol 38 293