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TOWARDS A MANAGEABLE THEORY FOR CROSS-GRATING HEED
M V Berry and A M Ozorio de Almeida
HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, U.K.

Under cross-grating conditions only a plane of reciprocal latiice points
with vectors G contributes significantly to the observed diffraction. Thus
the electrons move in an effective two-dimensionally-varying 'projected’
potential U{R), with Fourier coefficients UG (Berry 1971 - hereafter called I).
The vector R (=R, §} lies in real space in — the plane G. Diffraction
contrast arises irom the beating of the different Bloch waves b (r) as the
specimen thickness z varies, the periodicities depending on the
eigenvalues sj, defined by

bj(g) = 'C’j(li) exp (-1 sj2/2k) (1
(k is the wave vector of the incident beam).
In conventional many-wave theory (Howie 1970), the condition for s,

arises from a Fourier analysis of T (R), which leads to the followin
determinantal equation over the set “of G's:

det ., ., “ 2] )
-(K + - =
aG s-(K_+G ) ng Ug.gt 0 (2)
(IEO is the component of k in the plane G, so that the angle of incidence 8 is
1SN} /|k| ). This procedure, which works well for the systematic case,

runs into difficulties for cross-grating situations involving high energies
and heavy atoms, because very large mairices arise.

We avoid this problem by using the KKR method of band-siructure theory
(Ziman 1971) in two dimensions, in which T .(R) is expanded within a single

cell in angular momentium components TJ (R) exp (i1f). Instead of (2}, the
can dition for sj is

cletlll H (cot‘lh(s)—i) Sll' + Bl—l‘(s’léo)l

where ! T(s) is the l-wave phase shift for scattering from UR) (assumed to
be a wgylindrically symmetrical potential well within a single cell) at
'energy's, while Bl-l' is a 'structure constant’, defined in terms of the

lattice sites Iij by

Bm(s.,g‘:I )= ifZO exp (iIEO. lii + im;bl_ii) Hn(11) ( j—? Ri)‘ (4)

HHEU being the Hankel function of the first kind.

This formalism brings out the separation between 'bound' (s.<£ 0) and
free’ (sj> 0) bands, which is known (I, p708) to simplify analysis of the

systematic cage. The bound bands, where Bm is very small, are cenired
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on the energy levels of U(R), for which
cot r| 1(s) =1, i.e. r]l(s) —_  .i00 (5)

these bands correspond to almost flat branches of the dispersion surface,
The nearly-free bands associated with each G - value satisfy
2 4 Z 2
= - +
5 =GR - & 2 nn (G s KL, (6)

where a is the lattice spacing.

Ag ip the systematic case, we expect the bound bands to dominate the
chserved diffraction (I, fig. 10ff}). The total number of these is n, roughly-
given by

o0

n= [ R|Um | ar/s, (7)
o]

which are distributed over the angular momenta 0to 1 max’ say. TForl> lmax

there are no bound states and the T‘, ) are negligible, even for s»0. Thus

the matrix in our eq.{3) has about ]rnax important elements, while the .
usual eq. (2) bag at least n¢ important elements {many more are often
required to ensure convergence). Now, n greatly exceeds lmax’ so that

(3) is likely to be more useful in practice. As a numerical example, for
Tungsten at 700kV, n is 18 while lmax is only 5.
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