MoLecuLAR Prysics, 1977, VoL, 34, No, 3, 649-664

The statistical mechanics of wetting

by G. NAVASCUESt and M. V. BERRY

H. H. Wills Physics Laboratory, Tyndall Avenue,
Bristol BSS 1TL, U.K.

{(Recetved 17 November 1976 ; revision received 5 April 1977)

The wetting of a rigid solid by a simple fluid is studied. Using the
metheds of statistical mechanics an exact expression is obtained for the work
of adhesion W4 (and hence the contact angle). It is found that ¥4 consists
of two terms Wa(l) and Wa(2). Wa(l) depends directly on the solid-fluid
interaction potential and the fluid one-particle distribution function, and
corresponds to the direct interaction between fluid and solid. W (2) depends
directly on the fluid—fluid interaction potential and the fluid two-particle
distribution function, and corresponds to the relaxation of the fluid density
profile to its free surface form when the liquid is pulled away from the solid.
The existence of Wa(2} is the novel feature of this theory. Comparisons
with existing theories are made. _

Calculations based on the theory are presented for the case of Lennard-
Jones interactions and a flat smooth solid, using parameters corresponding to
liquid methane on a variety of solids, The main result is that the new term
Wa(2) is comparable in magnitude to the term W a(1) to which previous studies
have been confined.

1. INTRODUCTION

Wetting is a large subject; it includes phenomena (adhesion, lubrication,
immersion, flotation, . ..) in different branches of science ranging from biology
to metallurgy [1-3]. Over the years much experimental work has been re-
ported in the literature. In spite of this, and its practical importance, little
progress has been made from the theoretical point of view. The theories
available to date are those of Girifalco and Good [4], Fowkes [5], and Berry [6]
(hereafter called GGT, FT and BT respectively).

The first two, GGT and FT, can be classified as semi-empirical, since they
are not based on a rigorous fundamental analysis of the interfacial tension. In
spite of their simplicity, however, these theories are able to correlate an impressive
variety of properties [4, 7-10]. The basic result of these theories is the following
expression for the solid-liquid interfacial tension :

YsL=¥st¥YLv—7YD (1)

where yg and ypy are the surface tension of solid~vacuum and liquid-vapour
respectively and y; is a term taking account of the interaction between the liquid
and the solid. The work of adhesion (see equation (40)) in these theories is
simply the interaction term yy, so that the thermodynamic equilibrium equation
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for wetting becomes (see equation (41))

cos? g =71, @
2 2ywy
where 8 is the contact angle. Extensions of these theories have been made [11],
but the fundamental philosophy is the same.
The more recent BT, on the other hand, is firmly based on statistical
mechanics ; however, only with certain approximations can BT obtain an explicit
expression for the contact angle ; this is

B [=e)
cos? 2= (g —mny) ZI dz W(2)[2y5 ; ¥(zp)=0, @)

where ny and ny, are the vapour and liquid bulk densities, ¥(z) is the interaction
potential between 2 liquid molecule and the whole solid and yp is the Fowler
approximation for the liquid-vapour surface tension [12]. In BT, as in GGT
and F'T, the work of adhesion is given by a single solid-liquid interactive term.

In this paper we present a general theory for the solid-fluid interfacial tension
which not only gives the exact form of the interactive term but also a new term
associated with the relaxation of the fluid when it is separated from the solid.
This theory is developed in § 2 from the microscopic statistical point of view,
and in §3 by the mechanical method ; the identity of the results obtained by
both methods shows the consistency of the theory. In doing this we have
followed the procedure adopted by Evans [13] in developing a theory for the
surface tension of liquid metals.

The interpretation of the theoretical results and a preliminary comparative
study with previous theories are made in §§ 4 and 5 respectively. In § 6 a model
calculation is made in order to understand the predictions of the theory over a
wide range of conditions. The principal result is the discovery that the new
term arising in the theory is often as large as the interactive term to which
attention has previously been restricted.

2. MICROSCOPIC STATISTICAL THEORY

‘The exact statistical theory of the surface tension for a multicomponent fluid
system was developed by Kirkwood and Buff {14] (see also Ono and Kondo [15]).
Here we present a complementary theory for the interfacial tension of a fluid
near a solid surface. :

Consider a large two-phase solid-liquid system of Ny molecules in a total
volume V at temperature T, both phases being separated by a plane surface of
area 4 in the interface region. Let the number of molecules of the solid phase
and fluid phase be N, and N respectively (N,+ N=N;). The solid will be
supposed to he completely rigid ; this restriction should be 2 good approximation
in most cases.

The thermodynamic properties of such a system are given by the canonical
partition function of the system

QT, V, A, N,, Ny=A.Z(T, V, 4, N, N), (4)
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where Z is the configurational partition function, Uy the total potential energy
and A the kinetic part of the partition function. It should be noted that because
of the rigidity of the solid the Gibbs factor for molecules in the solid does not
appear in Z and the position variables {r} refer only to molecules in the fluid.
It is possible, in principle, to derive the thermodynamic properties of the
system from the partition function Q. In particular, the thermodynamic
potential of the canonical ensembie, namely the Helmholtz free energy F, is
related to O by
F=~kTIn Q. (6)

On the other hand, the solid—fluid interfacial tension ygy is given by the thermo-

dynamic relation
oF
=[ = . 7
ver (BA)T.V.N,N, 2

From equations (4) to (7) we can express ygr as a function of Z (the only part of Q
that depends on 4) :
1 /8Z

== —-kT— el * 8
YsF Z (OA)V,T.N.N. Y

Before differentiating Z with respect to 4 we shall show that this con-
figurational partition function can be factorized. Split the total potential energy
U into three terms :

U=Ugs+ Ugp+ Upyps {9

corresponding to the solid—solid, solid—fluid and fluid—fluid interactions. For
convenience we denote by X* that part of the physical property X which does not
contain the solid—solid interactions ; then equation (9) becomes

and Z becomes

i .
Z='N1'!'5--'Id{"'}exp[“ﬁn(Uss"'UT*):l' (11)

Because the position vectors for molecules in the solid do not appear in the
integration, equation (11) can be written as

Z= ZSS . Z*, (12)

where

1
Zgg=exp ["ﬁ Uss:| (13)
and
1 1
. —— — *

A i j .o Jdfr}exp l: T U :| (14)

Equation (12) expresses the factorization property of the configurational
partition function ; the initial system is thus equivalent to two separate systems :
the solid, which only depends on the solid properties, and the fluid, which consists
of the fluid in interaction with an external potential Ugp. This result depends on
the rigidity of the solid. Use of this property in equation (8) gives

Ysr=Ys+Ysr's (15)
2x2
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where

1 /87 1
s ZSS 04 T ¥, Na 04 T, V.N, ( )

and
1 [ozZ*
*_ —_ o —_—
78F kTZaB ( aA )T,V,,\" (17)

We see that, 2s a consequence of the factorization of Z, the interfacial tension
splits into two terms ; the first comes just from the solid and the second is the
surface tension of the fluid interacting with an external potential.

As we shall show later yg does not appear in the work of adhesion, which is the
easily observable quantity ; therefore from now on we limit our attention to
YsE -
In the present paper we suppose that the fluid is simple, i.e. that the total
fluid—fluid interaction potential can be expressed as

N
Upp= fZJ_’ %¢LL(I"«"‘";'I), (18)

in which ¢p;(r) denotes the intermolecular potential between molecules in the
fluid and the prime restricts the summation to /< j. Similarly the solid—fluid
potential is supposed to be given by

N, N
Ugp= ; ;9{’51.(["'1'8"'"5”: {19)

where ¢gr, (|rS—r]) is the interaction potential between molecules in the solid and
fluid at rS and r respectively.,
Because of the rigidity of the solid equation (19) can be written as follows :

N
Ugp= ;T’("f)’ (20)
with
Ny
()= . dsa(Irrl), 21)

in which ¥ is the interaction of a single molecule in the fluid with the whole
solid. (Equation (20) is actually more general than (19), and could be used for
any kind of solid in interaction with a simple fluid.) The interaction U*
becomes

N
U*= ;’ Thrnlri) + ;lF("j)- (22)

We now have all the ingredients required to obtain an expression for ygg*.
However, as we need the derivative of Z* with respect to the area in equation (17),
the explicit function Z*(4) must be found. Bogoliubov [10] and Green [17]
developed a convenient technique for this, consisting of a simple change of
variables :

r=(%, 3, 2)= («/(A)x', V(A)y, - ) (23)
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transforms Z* into

yN 1 ! U*({r'}, A)
o ’ R AP L i
VA w nI d{r'} exp l: 5T ], (24)
and these two relations follow :
or’ r* xy
e e[ _

ad-a’ " ‘(2’ 7 z)’ (25)
arij' _x!'jz'i‘yﬁ'a"zzi '2
94~ 24ry, (268)

Using equations (22), (24), (25) and {26) in (17) the final expression for pgg*
is obtained :

dr. , Xp5% — 21,7
Ysr =% .[ j I 71 I II dry ngp'?(ry, ra)dry(r12) "—1272;"1"2"

+TI S g V¥ @)

where the doublet and singlet distribution functions #'®(r, v’} and a(r) have been
introduced. The first term of thix expression will be denoted by ygp*(2) (it
depends directly on the two-particle distribution function) and the second by
yart(l) (it depends directly on the one-particle distribution function). The
total interfacial tension (15) can now be written as

Ysr="Ys+¥sr (2} +ysr (1} {28)

The first two terms correspond to the surface excess of self-free energy of the
solid and the liquid, yg depends only on the properties of molecules in the solid.
ysr*, on the other hand, while depending explicitly on the fluid—fluid potential
$y,1, also depends implicitly on the fluid-solid potential ¥ via ngp®. The third
term ygp*(1) in (28) represents the direct interaction between solid and fluid,
but depends indirectly on the fluid—fluid potential ¢, via ngp.

It should be noted that in the absence of the solid (i.e. ¥'=0) v5 and ygp*(1)
vanish and ygy reduces to the well-known equation for the surface tension (e.g.
Ono and Kondo [15]) of a fluid in equilibrium with its vapour.

3. MECHANICAL THEORY

The mechanical method of deriving expressions for surface tension has been
widely used in the literature since the original paper of Kirkwood and Buff [14].
Here we show that the fundamental result of our statistical analysis, equation (27),
can also be deduced from the mechanical point of view. The agreement between
the two methods strongly indicates the consistency of the theory.

To simplify the analysis we assume a flat smooth solid, so that by symmetry
all properties will depend only on z, the normal distance from the interface. We
shall also restrict ourselves to deriving the expression for ygp*; therefore the
system considered is fluid in interaction with the external potential ¥(z).

The mechanical definition of the surface tension [18] is

g
Yspt = _IL: dz (01(2) —04p) (29)
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with
Tup=01~6(2)) + o,0(z), (30)

where 8(z) is the unit step function, oy is the tangential component of the fluid
stress tensor and o, and g, its isotropic values inside the two bulk phases, i.e. for
z < —1, (solid bulk) and z > I, (fluid bulk) respectively. In the present case the
bulk of the solid has no fluid, so that 6, =0 ; however, we shall retain it formally
in order to have more symmetric expressions.
The fluid must satisfy the hydrostatic equilibrium equation ; in the present

geometry this is

doy(2)
T
where oy(2) is the normal component of the stress tensor, #(z) the fluid local

density and —'¥"(z) the external force per molecule. Integrating equation (31)
gives

n{z)¥"(2) =0, (31)

oy(z)—0o,= J: dz n(z)¥'(z) {(32)

and

on{%) —og= lj? dz n(z)¥'(z). (33)

Using equations (32) and (33) in (29) some elementary steps give the microscopic
expression for the fluid in an external potential :

yept = _jai dz [oqp(z)—oy(2)] - j: dz zn(2)¥(2). (34)

Equation (34) reduces to the more familiar expression for a free liquid interface
when the external potential ¥ is zero.

The second term on the right hand side of equation (34) is precisely the term
ysr*(1) (equation (28)) found by statistical mechanics if the flat smooth solid
approximation is used. The first term can be identified as yg*(2) with the
help of the relations [19), [15]

x 2 , f
an(z)= “an(z)+%jjf dry, _r% b1 (712) 6[ dy ”(2)(3—7)3’121 r)  (35)
and
Z1g°

on(z)= —kTn(z) +‘%.”.‘. dri; — dry,(710) {! dn nm(z"ﬁzles 12} (36)

712
Using equations (35) and (36) in (34) the isotropic parts of the stress tensor
components cancel and we obtain

#_1 T d d 2 ' X19” — Z1p"
vart =% § dz I f § drig n'®(zy,r)é11, (712) T
- 12

- }odz w{x)¥'(2), (37)

which is identical to equation (27) for a flat smooth solid with interaction
potential ¥'(z). As pointed out by Evans [13] the consistency of the results
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obtained by the statistical and mechanical methods shows that a system in
thermodynamic equilibrium is also in hydrostatic equilibrium.

The hydrostatic equation (31) shows that because of the presence of the
external potential ¥ the normal component of the stress tensor changes with
position z; we can deduce the consequent modification of the first equation
of the BBGKY hierarchy by differentiating the expression for ay(z) (equation
(36)) and using (31). After some algebra this gives the following relation
between 7 and n‘®

RTn'(z) +n(2)¥'(2) + [ [ f dryy n'P(zy,1y) ::i—: ¢z (712) =0. (38)

4, WORK OF ADHESION AND CONTACT ANGLE

Now we consider the system consisting of solid, liquid and vapour. At
constant temperature thermal equilibrium is determined by minimizing the
Helmholtz free energy F with respect to the solid-liquid interfacial area 4.
This gives the well-known Young equation relating the three interfacial tensions
of the solid~liquid-vapour system with the contact angle 8 (figure 1), namely

¥sL+ YLy €08 0= ygy, (39)

where ygy is the solid-vapour surface tension.

VAPQUR

SOLID

Figure 1. Three phase contact with contact angle 4.

The contact angle can be related to the work of adhesion W,, defined as the
work required to separate unit area of liquid from the solid. It is not difficult
to see that W, can be expressed as (figure 2)

Wa=vyrv +vev—ysL- (40}
Y, Y
7807
WY W, fov
§ —
st VAPOUR
Ysu
D

Figure 2. Separation process defining work of adhesion Wa.
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Combining equations (39) and (40) gives the Young-Dupré equation
Wa

VLV.

cos? —= (41)
From now on our attention will be primarily focused on W,.

The result (15) can be applied whether the fluid is vapour or liquid, and
transforms equation (40) into

Wa=yLy+ysv* —vaL® (42)

i.e. the terms yg have cancelled (as a result of the rigidity of the solid). Now
we proceed on the assumption that the vapour density is negligible compared
with the liquid density ; this will be an excellent approximation far from the
fluid critical point. Then, observing that yg*(2) and ysr*(1) (cquation (27))
depend on the square of the density and the density respectively, the following
approximations can be made

lys*(2)| > [ysv*2) and [y *(1)] > ysv*(1)]. (43)
With the earlier fundamental result (28), W, now becomes
Wa=Wa(l)+ Wa(2), (44)
where
Wa(l)= —yg (1) (45)
and
Wa2)= vy —ysu*(2)- (46)

We have deliberately divided W, into two terms with clear physical interpreta-
tions, which will now be explained. The first term —vs.¥(1) is the work
necessary to remove the liquid from the solid without modifying its density
profile (equation (27) and figure 3). (It should be noted that this work cor-
responds to free energy and not to total energy.) The second term Wa(2) is the

W
¥ss"dst > Wy(1)= -y 1)

|

*
¥ss  da(2) ) Wal2)= Yv-8d(2)

XSS XLV

a11os

al1cs

1708

Figure 3. The two stages of separation, illustrating the physical meaning of the contribu-
tions Wa(l) and Wa(2).
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difference yry — ys . *(2); this is the work of relaxation of the liquid from the
density profile corresponding to that near the solid into the equilibrium density
profile of the liquid with free surface. ypv and yg; *(2) are identical in form but
the density profiles correspond to two different situations. W ,{(2) is really the
difference between the two surface tensions : the ordinary surface tension of the
liquid, y;,v, and the surface tension of the same liquid in an unstable state with
density profile distorted by the force from the solid.

Similar interpretations can be given of the terms in W, that were dropped
as a result of neglecting the vapour density (equation (43)), with two slight
differences : first, the dropped terms have opposite signs because the solid-
liquid interface is destroyed, whereas the solid—vapour interface is created
(figure 2) in the process whose energy defines W, ; second, the term analogous
to WV, (2) consists only of y4¢*(2), since obviously y¢y =0 (‘ vapour-vapour
interfacial tension ’).

5. COMPARATIVE STUDY OF THE THEORIES

Two of the three previous theories of contact angle, GGT and FT, establish
a theoretical expression for the solid-liquid interface tension, namely equation
(1). The interaction term vy has the following explicit form on each theory :

yi{GGT)=20+/(ysyLy) (47)

yiFT)=2v/(vs" vi.v')- (48)

In these expressions, v is the molar volume, © is defined by

and

4pgtis g 18

P=—o8 L
(081!3 + ﬂLIIS )2

(49)

and ¥’ is that part of y which contributes to the solid-liquid interaction. (It is
assumed in writing y’ that if different kinds of forces—dispersion, polar, etc.—
act between molecules, the surface tension can be expressed as a sum of terms
separately taking account of these forces: y=yd+92+ .. )

Comparing equations (47) and (48) and (1) with our result, equation (28),
we notice that there is a correspondence between the three terms of each theory.
However, only the term yg (which does not contribute to the work of adhesion) is
identical in the three equations. The interaction terms in GGT and FT are
approximations to our term ygr*(1) in equation (28), but the degree of ap-
proximation is difficult to assess. It is harder to justify the second terms y, v in
equation (1), since the exact form of these terms, namely yg;,*(2), shows that
although the formal expression is the same, the density profile is different. In
GGT and FT this profile results from the free surface equilibrium while on our
theory it is influenced by the forces from the solid.  If the drastic approximation
is made of using the step function for the density profile of the liquid near the
solid, and the Fowler approximation for y;,y, these differences disappear and the
same numerical value is obtained from the three theories.

These approximate theories also give approximate expressions for the work
of adhesion, namely :

Wi(GGT) =20 (ysyLy) (30)
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and
WiFT)=2/(ys" yi.v')- (51)

In BT, W, is given by the numerator of equation (3). Comparison of these
approximate expressions with our exact result (44) shows the lack of the relaxation
term W,(2) in all three of them. If the step function is used for the density
profile everywhere in the equations of the present theory, W,(2) vanishes and the
work of adhesion reduces to the interactive term W (1), which becomes

0
Wy=ny | dzz9'(z), {(52)
ZSTEP
where zgrpp is the position of the step in the density profile. This distance,
however, is not determined by the theory (which would give the exact density
profile as the solution of the integro-differential equation (38)). It seems that
the essential approximation made implicitly or explicitly in previous theories
amounts to this oversimplification of the liquid density profile near the solid.
It should be noticed that equation (52) can be rewritten as

x
Wi=nyzsrep¥t(zgrep)—ny | dz V() (33)
TSTEP

which if ny <ny, and 2gpgp =2, becomes identical to ¥, on the BT (equation
(3)). However, this identification is rather dangerous ; the free energy should
be minimized in order to get zgrgp in equations (52) or (53), and this would give
a value different from z, which corresponds to minimizing W, in the numerator of
equation (3), a quantity that looks more like the total interactive energy than the
free energy. Itis not surprising that such ‘ paradoxes ’ arise when the essentially
unstable step density profile is analysed in equilibrivm terms.

6. NUMERICAL CALCULATIONS FOR A MODEL OF LIQUID METHANE

Experimental data on contact angles of simple liquids have not been reported
in the literature, probably because rather sophisticated experimental techniques
would be needed in order to measure 8 at the low temperatures where simple
liquids are stable. In the absence of such data we are obliged to introduce a
model for the solid-liquid interface in order to understand the quantitative
implications of the theory developed here.

The model consists of a simple liquid and a solid, both having interactions of
the Lennard-Jones type :

pLi(r)=4erp, [(U_:E)m - (%E)G:I (54)
gestr) = s | (22)"- (222)']. (55)

The same type of interaction is supposed to occur between molecules in the
solid and liquid, with parameters

and

=f§% (56 a)

IsL,
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and

esr, = V/(esgeLL)- (56 5)

To simplify the calculation we shall suppose that the solid is in fact a continuum
with a constant density equal to ogg~® molecules/A3. This assumption gives a
flat smooth external potential, namely

et e N o N

between a liquid molecule and the semi-infinite solid.

The contact angle ¢ depends on yy and W, (equation (41)) and hence on
ysu¥ (equations (42) and (43)) ; yg * is given by equation (37). 'This involves
¥(z), which is given by equation (57). It also involves the liquid two-particle
distribution function in the inhomogeneous liquid-vapour and liquid-solid
interfaces. 'This function would be very difficult to calculate, and we employ
the following approximation due to Green [20] in terms of the bulk liquid radial
distribution function g(r) :

nB(ry, ry)=n(r)n(ry) g(ry,). (58)

The next ingredients of the calculation are the density profiles of the liquid
in the solid-liquid and liquid-vapour interfaces. For the latter we use the
exponential approximation [21] given by

ny | 1-% exp (*"“’”) 223,
OLL

nyv(s)= (5%)
wion(S2). ecn

OL1,

where we have supposed that the interface thickness is of the order or,;. It has
been shown [6] that, when the approximation (58) is assumed, the density
profile of the liquid near a solid is the solution of the following integral equation,
arising from the BBGKY equation (38):

ngy(2) =ny, exp { —\1;(;) + § 1§ 4R S(R)[ny, +n(z+ Z)]}, (60)

‘where
S(R)=~ { dp g(p)é'(p)-
We shall employ the first iteration of this equation for ng;(2), using the liquid-

vapour density profile nyy(2) (equation (59)) as zeroth approximation. The
advantages of this procedure are that the result obtained, namely

reale)= st exp { 5001, (61)

is very simple and moreover has the correct limit when the solid disappears.
However, equation (61) does not define ng, (%) completely : a further condition
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is necessary in order to determine the relative position s, of the zeroth approxima-
tion nyy{2) relative to the solid surface. The obvious condition is that mass is
conserved during the iteration, i.e.

ji dz ng (=)= j:o dz npy(z). {62)

To make the model as realistic as possible we have used methane data to
describe the liquid. Calculations were performed at three temperatures (96 K,
121 K and 168 K) for which g data for methane are available [22]. The
Lennard-Jones parameters for methane at these temperatures were calculated by
Shoemaker et al. [25] using the g data in the bulk expressions for the pressure and
internal energy whose experimental values are known. The table shows oy -
and e1/k obtained at the three temperatures, along with other relevant values

TEK) oun(A)(1) en/k(K) (1) yavlexp) 2)  yiv(3) yLv (4) L&) (5)

96 3:579 181-25 16-0 15:83 10-81 1-20
121 3-325 236-85 113 1462 9-69 2-45
168 3-464 175-01 — 797 524 —_

(1) Lennard-Jones parameters for methane [25].

(2) Experimental values of methane surface tension in erg/em? [26].

{(3) Methane surface tension in ergfem?® calculated assuming a step function as density
profile.

(4} Methane surface tension in ergfem? calculated assuming the exponential form for
nrv{z) with an interface thickness of o1z, (see equation (59) in text).

(5} Thickness of the liquid-vapour interface calculated by Berry et al. [21] assuming the
parameterized exponential form for n1v(z).

10-0 1

50

N . \ A N Y A hY
o2 o4 \\ o-s\\ o8 \\ 10\
k \ ' €, /KT
Tet21k, — ¥evlmdoo \ ' g
e LT B .
0-1 0.2 03 04 05
€ JxT
41

Figure 4. Contribution ysi.*(2) to ys1. plotted against ess/kT (and esp/2T) at T=121 K for
several ogs values, Continuous and dashed lines correspond to the exponential
(equation (59)) and step function approximations respectively for #iv(z).
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connected with the present calculations. The calculations at 121 K were
repeated using the step function for the density profile in the liquid-vapour
interface.

We present calculations of yg4; *(2) (figure 4), W,(2) and W (1) (figure 5) and
cos® 82 (figures 6 and 7) for different values of the two solid parameters 44 and
egg. For clarity we have used eqp /AT as abscissa in these figures, but the values
of eggfkT are also shown. The bold portions of each curve (full or dashed) cor-
respond to the range of parameters egg and ogg for which the contact angle is
defined, ie. for which 0 gcos? (0/2) 1. (When the attraction between solid
and liquid is sufficiently strong the right-hand member of the Young-Dupré
equation (41) exceeds unity, and spreading occurs ; in the other extreme this
quantity is negative, the work of adhesion is negative, indicating that the solid
would repel the liquid which would presumably form spherical drops.)

The two families of curves in figure 4 correspond to the exponential and step
function forms for the profile n; (%), and T=121 K. Berry et al. [21] fitted the
Kirkwood—Buff theoretical value of y_y to its experimental value using the
exponential density model with the interface thickness as parameter. The
thickness was found to be 245 A (see table). The thickness we have chosen for
this density model (equation (59)), is orp, (=3-325 A), so the curves on figure 4
correspond to the extremes of reasonable density profiles #;y. The curves show
that the physically important quantity yg; *(2) behaves similarly on both models.

0;s= 2-5A 'GSS:4A,
er‘gicm2 //
10-0
— &v{(—")
5:0F
o Eg IKT
27 10
0.0 -
o5
Cgsl/kT
“3-0F
T= 121K — W23
XLV(-_/-) '--‘W(1)

...... WA=W(2)+W{1J

Figure 5. Wa, Wa(l) and Wa(2) plotted against ess/AT (and ese/2T) at T'=121 K for
two values of oss. The exponential approximation (equation (59)) has been used
for nrv{z).

In figure 5 we compare the two terms in W, (equation (44)) using the
exponential model for .y and T'=121 K. The two groups of curves correspond
to ogg =25 A and ogg=4 A, It is clear that a considerable error could be made
by omitting the relaxation term W, (2}; in fact for the parameter ranges
considered here this term that we have introduced is just as important as the
previously studied interactive term W,(1).
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Figure 6. Wa/2yLv and cos® 6/2 plotted apainst ess/ET (and estfhT) at T=121 K for
several oss values, Continuous and dashed lines correspond to the exponential
(equation (59)) and step function approximations respectively for nrv(z).
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Figure 7. Waf2yLv and cos® 8f2 plotted against ess/AT for two vaiues of oss at T=96 K
(continuous line), T=121 K (dashed line) and T=168 K (dotted line). The
exponential approximation {equation (59)) has been used for nv(z).



Statistical mechanics of wetting 663

The variation of cos® 8/2 with the solid parameters egg and ogg is shown in
figure 6 for the exponential and step profiles. As expected increasing interaction
energy (i.e. increasing egg and ogg™!) gives increased wetting (smaller 8). Again
we observe that the two models for ny¢(z) give close agreement, particularly
around the point (§=90°) which separates wetting from non-wetting.

Finally the effect of temperature on @ is shown in figure 7 for the exponential
density profile. The obvious consequence of increasing 7 is that the liquid has
more thermal energy so that effect of the attraction from the solid diminishes
and the contact angle increases.

7. CoNCLUSION

The new feature that emerges from the statistical-mechanical theory of
wetting presented here is the existence of the term W,(2) (equation (46)) in the
work of adhesion W,. This term gives the contribution to I¥/, of the relaxation
of the liquid density profile to its free surface form, and is comparable in magni-
tude with the term WW,(1) that corresponds to the direct interaction between
liquid and solid.

Nevertheless the theory is far from complete and should be extended in
several directions. Most important from a practical point of view would be a
removal of the restriction to simple liquids to enable polar liquids such as water
to be studied. ' There is every reason to believe that the term W,(2) would retain
its importance on such an extended theory.

Next the restriction to rigid solids should be removed, to allow for the con-
sequences of wetting on ‘soft’ (i.e. deformable) solids to be understood (see
Lester {23]).

Finally, while the numerical calculations of § 6 are based on the flat smooth
solid approximation, the fundamental theory of §§2 and 4 is not. Therefore
a detailed study of wetting on macroscopically and microscopically rough
surfaces becomes possible. We have already made some progress in this
direction : for macroscopic roughness both terms W,(1) and Wa(2) contain
contributions from the increase in surface area due to the undulations, and when
these are carefully evaluated the well-known equation of Wenzel results.

It would be most desirable to test the theory, as it now stands, by experi-
ment. This would involve the difficult problem of measuring contact angles
at the low temperatures for which simple liquids exist. However, that effort
now has theoretical motivation.
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