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In the regular spectrum of an f-dimensional system each energy level can
be labelled with f quantum numbers originating in f constants of the
classical motion. Levels with very different quantum numbers can have
similar energies. We study the classical limit of the distribution P(S)
of spacings between adjacent levels, using a scaling transformation to
remove the irrelevant effects of the varying local mean level density.
For generic regular systems P(S) = e~S, characteristic of a Poisson
process with levels distributed at random. But for systems of harmonic
oscillators, which possess the non-generic property that the ‘energy
contours’ in action space are flat, P(S) does not exist if the oscillator
frequencies are commensurable, and is peaked about a non-zero value of
S if the frequencies are incommensurable, indicating some regularity in
the level distribution ; the precise form of P(8) depends on the arithmetic
nature of the irrational frequency ratios. Numerical experiments on
simple two-dimensional systems support these theoretical conclusions.

1. INTRODUCTION

Percival (1973) has conjectured that there are two kinds of spectrum for a bound
system which is almost classical and which has more than one degree of freedom.
The regular spectrum occurs when the classical motion is integrable, that is there
exists as many constants of motion as the number f of degrees of freedom; then each
energy level is labelled by f quantum numbers {m,...m;} = m. The irregular
spectrum occurs when there do not exist f constants of motion (e.g. in an ergodic
system where only the energy is conserved); it is then impossible to label levels by
f quantum numbers. It would be possible to distinguish the two sorts of levels by
their different behaviour under perturbation, i.e. by their matrix elements.

The work reported here began with the thought that a simpler characterization
of the difference between the regular and irregular spectra might be obtained by
studying the probability distribution P(S) of the spacing S between adjacent levels.
The argument proceeds by analogy with the ‘statistical theory of spectra’ (Porter
1965), where the level structure of complex nuclei and atoms (in which f is large
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and which are far from being classical) is modelled by the eigenvalue structure of
random matrices. If the levels are uncorrelated, P(S) will simply be the negative
exponential characteristic of Poisson processes such as radioactive decay, whose
maximum value occurs at § = 0, indicating strong level clustering. This behaviour
is indeed found experimentally if level sequences with different values of funda-
mental quantum numbers (total angular momentum and parity) are superposed.
If, however, the levels with given values of these quantum numbers are considered
in isolation, strong correlations are observed, in the form of ‘repulsion’ between
adjacent levels (i.e. P(0) = 0); this repulsion occurs also for eigenvalues of random
matrices.

On this basis it seemed possible that the levels of the irregular spectrum might
repel one another, and that the levels of the regular spectrum might be uncorrelated.
The first possibility has not been investigated. This paper is concerned with the
second, that is, with a study of level spacing distributions for the regular spectrum.
The astonishing result emerges that for the simplest regular systems, which are
f-dimensional harmonic oscillators, the levels are correlated and the correlation
consists of a repulsion between adjacent levels. Moreover, the behaviour of the
spacings depends on the arithmetic nature of the frequency ratios of the oscillators,
i.e. on whether these ratios are rational or irrational and, if irrational, whether the
irrationalities are algebraic or transcendental. For all other classically integrable
systems the levels are not correlated; this was expected but hard to prove. This
theory is confirmed by numerical experiments on two-dimensional systems involving
up to 10000 levels, presented in §§4 and 6. Casual readers should concentrate on
these results, and skip the theory in §§ 3 and 5.

The regular spectrum is perfectly deterministic: for each set of quantum numbers
m the energy level E,, can be obtained from an explicit formula (equation 2.1).
Probability distributions arise in the classical limit as Planck’s constant % vanishes
and the number of levels in any range of energy increases limitlessly.

2. SCALING THE LEVELS

In an integrable classical system the constants of motion can be combined into
f ‘actions’ I = {/ ... I} which can be the new momenta in a canonical trans-
formation from the original coordinates and momenta. The transformed Hamil-
tonian H depends only on I. In terms of H(I), the level m in the regular spectrum
has energy
E,=H(I=(m+}a)h). (2.1)
The vector a consists of f integers related to caustics of the classical trajectories
with actions I; for the matters discussed here, « is irrelevant and will be set equal
to zero (this corresponds to a shift in the origin of I space). The result (2.1) is a semi-
classical approximation which was obtained (with increasing sophistication and
rigour) by Einstein (1917), Brillouin (1926), Keller (1958) and Maslov (1972); a
careful discussion of its meaning and application is given by Percival (1976).
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For the systems studied here (oscillators, particles in boxes, and combinations
of these) all components of I are non-negative, so that only the positive ‘ quadrant’
(really 27 ant)in I space is physically meaningful. According to (2.1) this ‘quadrant’
is quantized into a ‘square’ lattice whose unit cells have side %. As E increases
from zero (taken as corresponding to I = 0), the ‘energy contour’ H(I) = E expands
into I space from its origin. Levels occur whenever this contour crosses a lattice
point. We wish to study the statistics of such crossings.

Now E is an unsuitable parameter to describe the levels, for two reasons. The
first is that the mean level density n(E) depends on energy. In fact n(E) is given by
the ‘Thomas—Fermi’ formula

n(E) = (1/h7) d (phase space ‘volume’ for which H < E)/dE
= (1/&1) f d’I8(E — H(I)) (2.2)

positive
‘quadrant’

(for derivations see, for example, Berry & Mount 1972; Berry & Tabor 1976). The
second reason is that the statistics of the levels might themselves depend on the
region of energy being studied.

The simplest solution to this problem (and one that emphasizes its semi-classical
nature) is to work at fixed ¥, and think of (2.1) as quantizing # to values #,, implicitly
defined by

E = H(mf#,,). (2.3)

(This amounts to thinking of a level m as a trajectory in the X, # plane, and finding

where this trajectory intersects a line with fixed E, instead of the customary fixed

fi). However, the density of levels in 7 is still non-uniform, and we scale # by defining

a new variable U as the total number of states below energy E for given #; from (2.2)
this is

U= (1/%”)[ d’IOH(I) - E), (2.4)

positive
‘quadrant’

where O is the unit step function. The scaled levels U(m) are obtained by solving
(2.3) for #,, and substituting the value thus found into (2.4). The scaled level density

is defined as
p(U) = Z8(U ~ U(m)). (2.5)

The sum here is over all integer lattice points in and on the boundary of the positive
‘quadrant’ in m space; however U(m) is also defined through equations (2.3) and
(2.4) as a continuous function of m.

The following equivalent properties follow from the definition of U(m): First,
the mean level density p(U) is unity, which was one of the purposes behind the
scaling. This implies that the ‘area’ of the positive quadrant of m space cut off by
the contour U(m) = U, is U, itself, i.e.

f d'mOU, - U(m)) = T, (2.6)
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Secondly, U(m) is a homogeneous function of m of degree f, i.e.
U(pm) = p1U(m). (2.7)

Therefore the form of any contour U(m) = U is obtained from the contour
U(m) = 1 by expanding each radius vector by U. As U increases, the contours
expand into m space from its origin, crossing lattice points at unit mean rate;
we wish to study the statistics of these crossings as U—oo (which from (2.4)
corresponds to the semi-classical limit % — 0).

The action Hamiltonian H(I) determines U(m) but the converse is not true since
the homogeneous functions (2.7) form a smaller set than the possible Hamiltonians —
in plain terms the introduction of U(m) normalizes away the information contained
in H(I) about the mean level spacing. Here are some specific forms for U(m) that
will be employed later:

Case I. Harmonic oscillator with frequencies w = {w; ... &;}. The Hamiltonian is

H(I) =w-1 (2.8)
(0-m)f
UY(m) = .
and £ If] 0, (2.9)
i=1

Case I1. Particle of mass x in f-dimensional box with sides {a,...a;}. The
Hamiltonian is

HY(Y) = w220 3, T¥ad (2.10)
i=1
(ln)%f If] a; 1
and Utim) — i1 I[ézn_grf (2.11)
T+ |2 @

Case I11. Particle in a two-dimensional potential well with hard walls in one
direction and harmonic binding in the other. The Hamiltonian is

HY() = al, + BI3 (2.12)

and UM (m) = J(4E y/o2)} m3[ (m3 + (4B 5)o2) m3)t — m, ]2, (2.13)
Case IV. Perturbed two-dimensional oscillator. The Hamiltonian is

HYV(I) = (0, I, + w, L) +€l3 (2.14)

and U (m) = [(wymy +2¢2)227;?)2 +em?] arcsin < [w%«: e]%) . (2.15)

(As €0, UV (m) — Ul(m) with f = 2.)

From these examples the peculiar property of the harmonic oscillator (case I)
is clear: only for this system are the contours of U(m) flat—they are hyperplanes
in m space (equation 2.9). This will turn out to be of crucial importance. In the
generic case the contours U(m) = constant are curved, and we restrict ourselves
here to cases where these contours are convex away from m = 0, as in cases II-IV
if all parameters are positive.
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3. THE GENERIC CASE: THEORY

It is not convenient to study the scaled level density in the form (2.5); for large
U the contours of U(m) are large and lattice points m may cross at widely separated
points, and it is not obvious how these crossings are correlated (intuition suggests
that they are not correlated—this turns out to be true generically but false for
oscillators). T'o get a more transparent form, p(U) is first transformed by the Poisson
sum formula into a series of integrals over the positive ‘quadrant’ of m space:

p(U) = ZfdfmS(U— U(m)) e*"iM.m (3.1)
M

M is an f dimensional lattice of positive and negative integers. The term M = 0
is the mean scaled level density, namely unity, and the terms M + 0 give the
fluctuations Ap(U) in which we are interested. The scaling law (2.7) gives

Ap(U)=pU)-1= X fdmé‘(l— U(m))exp (2niM - mU) (3.2)
M*0
= ¥ pu(U).
M*0

The delta function confines the m integrals to the contour U(m) = 1, which will
henceforth be called . With the use of f— 1 curvilinear coordinates p = {s, ... ;_;}
on % (figure 1), the ‘partial fluctuations’ p,, become

= -1, €Xp (2niM -m(u) UW)

For large U (semi-classical case), the integrand oscillates rapidly as u changes,
and the dominant contributions come from points u = p,, where the phase is
stationary, i.e. where

M-dmfop; =0 (1<i<f—1). (3.5)

Now each 0m/[ou; is a tangent vector on €, so that (3.5) has the geometric inter-
pretation that the contributions p,, come from places ), where M is perpendicular
to € (figure 1). In m space such places lie at m(u,,) which shall be denoted by
m,,. For the convex contours considered here such stationary points can exist
only for M in and on the boundary of the positive ‘quadrant’ and in and on the
opposite quadrant, and moreover the signature of the matrix of second derivatives
of the exponent of (3.4) is — (f— 1). Moreover, some geometry based on (2.7) gives
(appendix A) N
|VU(@my)| = f[(mp - M), (3.6)
where carats "~ will denote unit vectors. The method of stationary phase applied
to (3.4) now gives, for M in or on the positive ‘quadrant’,

|my, - M| expi[2nM -my, UY — In(f—1)]
FUG-DI2T | M|3-D A/ ot (sz. M) :
Ope; Op;

m=mM
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The f—1 dimensional determinant is a scalar measure of the curvature of € at
my,,. If M is in or on the opposite ‘quadrant’, p is simply given by the complex
conjugate of (3.7) for the corresponding point in the positive quadrant. For all
other M, p,, is zero in this approximation.

my
M

Hm

mpy

\

)%

m () \

Ficure 1. Contour (U = 1) in m space, coordinates p on € and the point tm,,, where
M | %, that contributes to the density fluctuation component p,,.

In this section so far we have closely followed our earlier study (Berry & Tabor
1976) of the contributions of closed classical orbits to the density of energy levels.
Now the argument takes a different turn. Considered as a function of U, p,,(U)
(equation 3.7) is an oscillation that decays as U increases. This does not mean that
P can be neglected for large U, because the level density which involves the sum
of the p,, over all M (equation 3.3), always consists of a sequence of delta functions
and never tends to its average value of unity no matter how large U becomes.

For very large U the oscillations in p,, have almost constant amplitude and wave
number over large ranges of U. Thus if

U=0+V (> 1,V <) (3.8)

(conditions which permit V to be large compared with unity), (3.7) can be expanded
to give the form of the oscillations near U, as

Pu(Uy+ V) = Ap(U,) exp i(Kp (Uy) V + ¢ (L)), (3.9)
where Ap(Uy) = [y, M| 5 ,
" pUgIRe| MY / ldet (M)
oM N alula/uy m=mp, (3_10)
™M-m
Kp(Uy) = WA—I,

$u(Uy) = 2nM -1y, U — fm(f~1).

Two things are clear from these expressions: first, a given wavenumber K of
the variations of p(U) comes from larger terms M as U increases. Secondly, while
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K,,and A4,, change smoothly as each component of M jumps by unity in the sum
(8.3) when U, is large, the phase ¢, jumps by many times 27. Therefore Ap has the
character of a random function (Rice 1944, 1945), with a power spectrum

I(K) = I‘EIA%I(UO)‘?(K"KM(UO))~ (3.11)

Elementary methods confirm that 77(K) defined this way is identical to the Fourier
transform of the autocorrelation function of Ap, i.e.

1K) = %Jf AW iKW AG([To+ V) Ap(Tp + V + W), (3.12)

where the average is over V.

The statistical function of interest is not I7(K) but the probability distribution
P(S) that adjacent levels have spacing 8. To relate P and I, define g(4) d4 as the
probability of finding a level in the range U + 4 to U + 4 + d4 given that there is a
level at U. Then g(4) is given in terms of the level positions by

g(4) = average over all U(m) of 3, §(4—(U(m')— U(m))). (3.13)
m'+m
It is shown in appendix B that g and IT are related by
g(d) = 1+ f ® dK eEA(IT(K) - (1/21)). (3.14)

Finally, the required level spacing distribution is given in terms of g by (Porter
1965) ;
P(S) = g(8) exp (—f g(A)dA) . (3.15)
0

It remains only to evaluate II(K) from (3.11), using the forms (3.10) for 4,,(0;)
and K,,(U,). As U,— oo these become smooth functions of M, so that the sum in
(3.11) can be replaced by an integral over M. When this is done three remarkable
things happen. The first is that a simple scaling of M removes the dependence on
U,; this shows what is not at all obvious, that the level statistics settle down to a
stationary distribution in the classical limit (cf. the beginning of §5). The second
thing is that the same scaling also removes the dependence on K, so that JI(K)

is a constant, given by
A

1 df M (my.- M)? .

K)=4 (azM A) 8(1—21thmM),
| M| det( m'M)

a:u"i a:uj m=mp,
where the integration is over the positive ‘quadrant’ only. The third remarkable
thing is that this constant is always 1/2m, whatever the shape of the contour
U(m) = 1; this is proved in appendix C.

In conjunction with (3.14) these results imply that g(4) is unity, whence (3.15)

gives

(3.16)

P(S) = e, (3.17)
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For the generic cases to which these methods apply, then, the levels U, really do
arrive at random, and the most probable spacing is zero, indicating strong clustering.
This simple-looking result is actually far from trivial in view of the very different
behaviour of harmonic oscillators, to be discussed in §§5 and 6, and it would not
seem likely that (3.17) can be derived in a more elementary way. It is relevant in
this connection to remark that in the theory of geometric probability (Kendall &
Moran 1963; Hardy & Landau 1924; Hardy 1925), reasoning somewhat similar to
ours (i.e. based on the Poisson summation formula) is used to answer questions
about the number of lattice points enclosed by circles and ellipses of large radius.

4. THE GENERIC CASE: NUMERICAL EXPERIMENTS

Given any ‘Hamiltonian’ U(m), it is an easy matter to compute all levels m
for which U(m) is less than some large number U,,,, arrange them in order of in-
creasing U, compute the differences S between the U-values of adjacent levels and
plot the spacing distribution P(S) as a histogram. In our experiments we first took
Uyax = 5000 and then repeated the calculations with U,, = 10000, to check that
the distributions P(S) were stable (they were, in every case except one which will
be mentioned in § 6).

The first experiments were with two-dimensional boxes (case II of § 2) with sides
a; and a,; setting a?/a? = afb equation (2.11) gives

U™ (m) = In(m/(bja)+m3/(alb)). (4.1)
Figure 2a shows P(S) for a/b = ,/2. The exponential distribution (3.17) is clearly a
good fit. Calculations for a/b = /3, /5, \/7 and }(,/5— 1) show essentially the same
behaviour and will not be presented here.

If a and b are integers such that the fraction a/b is in its lowest terms, (4.1) shows
that all levels and therefore all level spacings S must be integer multiples of
X = n/4,/(ab). This means that (3.17) cannot be correct as it stands, but could still
hold if interpreted to mean that the probability of spacing nX is

P(n) = (1—eX)emX, (4.2)

The experiments do seem to confirm this: figure 2b shows P(S) for a/b = £, and
it can be seen that again the exponential gives a good fit. This applies also to the
case a/b = 1 (not shown), while a/b = 1.01 gives a smooth exponential distribution
like that on figure 2a.

The physical difference between a/b rational and irrational is that in the former
case the classical orbits picked out by the quantum condition are all closed and in
the latter case never closed; this is not a generic property of the regular spectrum.

In the second set of experiments, the ‘boxed oscillator’ (case III of §2) was
studied. UU/(m) is given by equation (2.13) and depends on the energy ¥ through the

parameter K = 4Eﬂ/oc2. (4.3)

P(8S) was computed for K = 0.002, 2 and 2000. In all cases the description was
closely exponential as shown by figure 3, which is drawn for the case K = 2.
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Ficure 2. Distributions of spacings of lowest 5000 levels for particles in two-dimensional
boxes with side ratio a2[b* where (a) afb = 4/2 (b) a[b = 5. The dotted lines show the
exponential distribution.

A P(S)

1.0 r

0.5

0

Ficure 3. Distribution of spacings of lowest 50000 levels for two dimensional ¢ boxed oscillator
(equations 2.13 and 4.3) with K = 2. The dotted line shows the exponential distribution.
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5. HARMONIC OSCILLATORS: THEORY

For these systems (case I of § 2) the contours U'(m) = constant are flat (equation
2.9). To show what a dramatic effect this has on the level spacings, consider first
the case when the frequencies w are rationally related. Then o, considered as a
vector in m space, has a rational direction, and may be written

o = No,, (5.1)

where N is a vector of relatively prime non-negative integers. In m space all lattice
points lie on lattice planes which can be chosen normal to N. But the contours
U = constant are planes normal to @ (equation 2.9) and therefore pass through
these lattice planes as U increases. Therefore these rational oscillator levels are
degenerate, the degeneracy at each passage of a U contour through a lattice plane
being equal to the number of lattice points on the part of the plane lying in and on
the positive ‘quadrant’ in m space. This number is greater for lattice planes
farther from m = 0, so that the degeneracy of the levels increases with U. Of course,
the average level density p has to remain unity, so that the spacing of these in-
creasingly degenerate levels gets larger as U increases.

This behaviour is quite complicated for general N, but can be understood in
detail for the simplest case N = {1,1,...,1}. Then the /th degenerate level lies at
U =U/f! and has a degeneracy a, equal to the number of permutations of f non-
negative integers whose sum is /. Therefore the level density is

p(U) = 3 a8(U - (V[f1)). (5.2)

@ is also the number of points in the I/th lattice plane normal to {1,1, ..., 1}; the
leading term for large I, which underestimates the contribution from lattice points
on the boundary of the positive ‘quadrant’, is

q—>U1(f-1)! as I->oc0, (5.3)

from which it is clear that p is indeed unity for (5.2).

The important point here is that this behaviour is in no way stochastic: the levels
arrive ever more pathologically in the classical limit, and no spacing distribution
P(8) exists. This is in marked contrast with the generic case discussed in § 3, where
levels arrived at random in the classical limit. In fact the argument given there
cannot be applied to harmonic oscillators. Of course the Poisson summation formula
can still be employed, and the quantities p,,(U) (equation 3.4) introduced; it is
the method of stationary phase that is inapplicable. The reason is that for flat
contours U = constant, the stationary phase condition (3.5) (M normal to contour)
is satisfied either at all points on the contour (rationally related components of
) or at no point on the contour (irrationally related components of w). Isolated
stationary points never occur.

Ignoring the case of partial commensurability of the frequencies w, which can
occur when f > 2, we still have to consider the totally irrational oscillators, where
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no two components of & are commensurable. Then the vector @ never intersects
a lattice point m (except the origin) even when extended to infinity, so that none
of the contours of U (normal to w) are lattice planes. Therefore no degeneracies
can occur in this case. However, it is possible to choose lattice planes whose normals
N are arbitrarily close ‘rational approximations’ to @, and this leads us to expect
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Fi1Gure 4. Irrational frequency vector @ and close rational approximation N = {3,2}. The
dotted lines | N are the lattice planes containing 2, 3 and 4 points and the full lines A and
B are the contours for which U = U(3N,,0) and U = U/(0, 3N,).

that when the U contour passes through such a plane, all of its points will be
intersected in quick succession, giving a near-degeneracy, a dense cluster of levels
so that the spacing distribution P(S) might have a large value at § = 0, as in the
generic cases previously discussed. It was a surprise to discover that this is not the
case: for large U there is no level clustering for irrational oscillators !

To explain this we restrict ourselves to the two-dimensional case, where the
lattice ‘planes’ are lines and the irrational ratio is

wylw; = o = tand, (5.4)

and without loss of generality we can take o < 1. Then w makes an angle 6 with
the m, axis (figure 4). Now choose N, the normal to a set of lattice lines approxi-
mately parallel to o, i.e.

N[N, = a. (5.5)

14-2
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Then the lattice line that intersects the axes m, and m, at points (vV,, 0) and
(0,vN;) (figure 4), will contain v+ 1 points m. The level position corresponding
to each such point is, from (2.9)
U(m) = (m, cos 0 +my sin 0)2[sin 20 = (m,[\Ja +mgy/a)? (5.6)
and the mean spacing in this group of v + 1 levels is
AU = [(1/v+1)[U(0,vN}) = U(v NNy, 0)]]

_[vA&(N3sin? 6 — NE cos?0)

- (v+1)sin 260

~ VINE oo — N[V, |, (5.7)
the approximate equality being obtained by use of (5.5).

But because AU increases with v this calculation shows that the increase in the
number v + 1 of levels in each group as U increases is not a source of level clustering —
its effect is outweighed by the ‘slowing down in the rate of recession’ of the contours
of U from the origin as U increases (this ‘rate’ is proportional to U¥/~1). The only
remaining possibility of clustering lies in taking v = 1 (groups of just two levels)
and seeking ever closer rational approximations N,/N, to c.

Now the best sequence of rational approximations to « is obtained in terms of
the successive convergents of its simple continued fraction. This is

a=1 = [a,a5a,4...],
a;+1

a,+1
g+ . (5.8)
where the quantities a, are positive integers, uniquely defined by the integral parts
of the successive reciprocals of the non-integral parts of a. The successive con-

vergents are the rational fractions
Piltr = [010505.... ay]. (5.9)
They are best approximations to o in the sense that no rational fraction p/q with
q < ¢; lies closer to o than p,/q;. This is proved in all texts on arithmetic, e.g. the
classic by Khinchin (1964) or the more modern presentation by Drobot (1964). A
physical interpretation of this result is given by Klein (1932): if pegs are attached
to each lattice point m and the vector o replaced by a taut infinite string with one
end fixed at infinity and the other end free at m = 0, then the pegs snagged by the
string as the free end is moved first to one side and then to the other have coordinates

m = (qx Pr)-

It follows that in our search for level clustering we can do no better than study
those lattice planes whose normals N are (g, p;). It is an algebraic consequence of

(5.8) and (5.9) that |0 = Pe/ail < 145 G- (5.10)

Therefore the level spacing AU (5.7 with v = 1) satisfies
AU < qifqyi1 = C (5.11)
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as k increases and o is ever more closely approximated. The bounds C}, must be
less than unity, because the denominators of the convergents increase with k (It
is worth pointing out that if the ‘decimal’ expansion of « to base b is employed
instead of the continued fraction, G is of order b¥, so that ‘decimal’ approximations
are quite hopeless as a means of generating level clustering.)

For any a whatever, it is shown in the works cited that the smallest value of C,
for which (5.11) is guaranteed to hold for an infinite number of convergents « is
1/,/5. This implies that in general clustering does not occur as o is better and better
approximated. If certain classes of ‘more irrational’ a are excluded, however, C,
can be reduced. For example, if the ‘most irrational number’, namely

a=[1,1,1,1,...] = }(/6—1) = ‘golden number’ (5.12)

is excluded, as well as all numbers for which the sequence of integers (5.8) ends in
an infinite sequence of 1s, C, can be reduced from 1/,/5 to 1/,/8. If all quadratic
irrationals (i.e. those « satisfying a quadratic equation with integer coefficients) are
excluded C), comes down to }, while the exclusion of all algebraic irrationals reduces
C, further, to a quantity which however is still a constant of order unity.

This still fails to give clustering, which requires C;, to be a decreasing function of
k (e.g. e7%, or g;*). For any such function C;,, however, it is known that a class of «
can always be found which satisfies (5.11) for an infinite number of ks. Such numbers
are transcendental and lie closer to rationals than algebraic irrationals. Harmonic
oscillators with these frequency ratios might at last show clustering. It is not
possible to be more precise, because it is still not known what function C,, corre-
sponds to any given transcendental number such as e or n. But it is possible to
conjecture an answer to the following question: will a ‘generic’ harmonic oscillator
system exhibit clustering? The generic oscillator will of course have irrational «,
since the rationals are infinitely sparse among the reals, and it will also have trans-
cendental «, since the algebraic irrationals, being countable, are also infinitely
sparse among the reals. This does not imply clustering, since nof all transcendentals
have decreasing Cs. Indeed it was shown by Lévy (see Khinchin 1964) that for
‘almost all’ « (in the sense of measure theory), the denominators g, increase as

k—

(qr)— (€™M 2y, (5.13)

This astonishing result suggests that in the typical case the bound C in (5.11)
has the limit

k—o

C,—> e~™N2In2 5 (.305. (5.14)

Since this is a constant, it seems that there is no level clustering for generic oscillators.
In view of the inevitable inaccuracy of physical measurements and the consequent
impossibility of ascertaining the arithmetic nature of the frequency ratio for any
real oscillator, it is perhaps this result about the ‘typical’ oscillator that is of most
physical significance.

In the theory of geometric probability (Kendall & Moran 1963; Hardy & Little-
wood 1922) the number of lattice points enclosed by a large right triangle with
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angle 0 is studied; continued fractions are employed in this work, and it is found
that the results depend crucially on the arithmetic nature of tan 6, but the problems
of clustering that are our particular concern here are not considered.

We have not been able to prove for any irrational oscillator that the level spacings
settle into a stable distribution P(S) as U — co. If they do (as the numerical experi-
ments of § 6 seem to indicate) then our arguments about the absence of clustering
for generic oscillators suggest that P(S) should reach its maximum away from
S = 0, in sharp contrast with the behaviour of fully generic regular systems.

In physical terms, the levels will be distributed more regularly for irrational
oscillators than for the systems considered in §§3 and 4. It is likely that P(S) for
some transcendental oscillators (which may have a greater propensity towards
clustering) will be less concentrated about the mean value of unity than P(S) for
oscillators with merely algebraic irrationality.

The arguments of this section and §3 lead to an interesting question of limits.
Suppose that a generic regular system (curved U contours), depends on two para-
meters ¢ and ¢ in such a way that as § > 0 the system degenerates into an irrational
oscillator and that if then ¢— 0 the system degenerates further into a rational
oscillator. It would seem that as § 0 P(S) should change discontinuously from
an exponential to a peaked distribution and then, as ¢ - 0, to no distribution at all!
This is not the case. For small but finite ¢ and ¢ the lowest levels consist of tight
clusters whose spacings and populations increase with U. For larger U these
clusters open up (cf. the factor v in 5.7) and the levels adopt the relatively regular
distribution characteristic of irrational oscillators. Finally, at even greater values
of U the regularity gradually gets replaced by the random distribution char-
acteristic of generic systems; this will be demonstrated numerically in the next
section. (In mathematical terms the slightest curvature of the contour U = 1 will,
for sufficiently large U, cause the integrand in (3.4) to oscillate rapidly enough to
justify the method of stationary phase.)

6. HARMONIC OSCILLATORS: NUMERICAL EXPERIMENTS

Values of U(m) were calculated for irrational values of « from equation (5.6)
and histograms constructed for the spacing distribution P(S). Figure 5a shows
P(S) for & = 1,/2. The distribution is tightly peaked about S = 1 showing the
expected absence of clustering in comparison with the generic cases of figures 2
and 3. The other quadratic irrationals o = 1/,/3, 1/,/7 and §(,/5— 1) show essentially
the same behaviour. The case o = 1/,/5 (figure 5b) seemed exceptional at first in
that the spacings of the lowest 5000 levels were distributed bimodally; however,
when the lowest 10000 levels were taken P(S) settled into a form similar to that
for the other quadratic irrationals. None of these distributions is well fitted by the

Wigner distribution Prgnex(S) = 38 =475, (6.1)

which gives such an accurate description of the spacings of levels of complex
nuclei (Porter 1965).
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Next P(S) was computed for the transcendental frequency ratio & = n~. This
time the distribution was bimodal with a strong tight peak near § = } and a weak
broad peak near § = 4.3; this distribution was already fully evident in the lowest
5000 levels, and hardly changed when 10000 levels were taken (figure 6a). In view
of the arguments of the last section this is not too surprising. © is rather ‘close’
to many rational numbers; for example the third convergent, namely

approximates © with a fractional error of order 10~7. Therefore the bounds C
(equation 5.11) decrease rapidly with k, at least for small k£, and some degree of
clustering is to be expected.

P(S) (a) A P(S) (b)

1 L | Ly

2 4 0

F16URE 5. Level spacing distributions for two-dimensional harmonic oscillators with frequency

ratio . (@) a = 1/4/2, lowest 5000 levels (b) o = 1/,/5, lowest 5000 levels (dotted line),
lowest 10000 levels (full line).

However, not all transcendental oscillators behave in this way. Figure 6b shows
P(8) for the lowest 10000 levels of the oscillator with o = e~1. The distribution is
tightly peaked about S = 1, just as in the case of quadratic irrationals, the only
difference being a hint of a large-S tail with some spacings of § = 2.4, a value not
attained by any quadratically irrational oscillator. This absence of clustering accords
with our conjecture based on (5.4) about the behaviour of generic irrational
oscillators.

The final series of computations illustrates the transition discussed at the end
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of § 5, from a peaked to an exponential distribution P(S) as U increases for a system
whose contours U(m) = constant are almost flat. The system is the ‘perturbed
oscillator’ (case IV of §2) whose ‘Hamiltonian’ is given by (2.15). Figures 7a—d
show the distributions, as increasing numbers of levels are taken into account,
for the oscillator with frequency ratio w,/w, = 1/,/2 and perturbation ¢ = 0.005.

P(s) | P(S)

[ (o

S
n ﬁ 1 L L .
2 4 0 2 4
Ficure 6. Distribution of spacings of lowest 10000 levels for two-dimensional
harmonic oscillators with frequency ratio (a) & = n~1, (b) & = e~1.

For U = 1000 (figure 7a) the maximum of P(S) is still near S = 1 as for typical
irrational oscillators, but there is already some clustering, revealed by the fact
that P(0) # 0. This shows the extreme sensitivity of oscillator systems, since the
perturbation ¢ is so small that the curvature of any contour U = constant amounts
only to a change in direction of about £° along its whole length. Including the lowest
2000 levels (figure 7b) has almost eliminated the peak in P(S). By U = 5000 (figure
7¢) the peak hds gone completely, and by U = 7500 P(S) closely approximates the
exponential form characteristic of generic regular spectra. The same limiting
distribution was obtained by perturbing the rational oscillator with o, /w, = 1.
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P(S) (a) A P(S) (b)

0.5

A P(S) AP(s)
1.0 fc) - (d)

1 1 { L 1 S 1 s e S

1 ) B 1y

2 4 0 2 4
F1cURE 7. Level spacing distributions for perturbed oscillator system (equation 2.15), with
wyjw, = 1//2 and € = 0.005, including the lowest U, levels, where (a) U, = 1000,

() Uy = 2000, (¢) Uyax = 5000, (d) U,y = 7500. On (d) the exponential distribution is
shown as a dotted line.

7. CONCLUSIONS

Using a combination of theory, conjecture and numerical experiment we have
explored the correlations between neighbouring energy levelsin theregular spectrum,
with the following surprising result: although in the generic case where the energy
contours in action space are curved, the level spacing distribution has the expo-
nential form characteristic of a purely random process, in the case of harmonic
oscillators with incommensurable frequencies, P(S) is sharply peaked, indicating
a more regular distribution of levels, the precise nature of which depends on the
arithmetic nature of the frequency ratios. If the oscillators have commensurable
frequencies, P(S) does not exist.

What is the experimental significance of these results? At present there is none,
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because the correspondence principle implies (Percival 1973) that in the semi-
classical limit each regular level is coupled by (non-pathological) perturbations
only to those with neighbouring vector quantum numbers m and not to those with
similar energy and very different m. This rules out any attempt to measure P(S)
by exciting a given level and observing the spectrum produced by its decay.

This situation will change if Percival’s irregular spectrum is discovered. Then
P(8) would be a measurable function, because each irregular level is expected to be
weakly coupled to all other irregular levels with similar energy, and the low
frequency part of the spectrum produced when a single irregular level is excited
(e.g. by a laser if the system is an asymmetrical vibrating molecule) would depend
strongly on P(S) (more precisely the spectrum would depend on g(4) defined in
3.13).

Of course the distributions P(S) for irregular systems need not be any of those
discussed here, which apply to regular systems. However, it is now known (Arnold
& Avez 1968) that generic classical systems are neither purely integrable (regular)
nor ergodic (irregular), but exhibit a most intricate combination of these two
forms of behaviour, with some orbits being confined to f-dimensional manifolds in
the 2f-dimensional phase space (i.e. acting as though f constants of motion existed)
and other orbits with infinitesimally different initial conditions not being so
confined. The semi-classical quantum theory of these systems has not been developed.
Any such theory must be capable of predicting energy level spacing distributions.
It is obviously necessary to begin by studying such distributions for the simplest
cases, namely regular systems, and that is what we have tried to do in this paper.

We thank Dr B. L. Gyorfty for introducing us to the statistical theory of spectra,
and Dr B. F. Buxton, Professor F. C. Frank and Professor J. C. Shepherdson for
helpful discussions. One of us (M. V. B. ) wishes to thank Professor K. P. Sinha for
the hospitality of the Indian Institute of Science where this paper was written.
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APPENDIX A

This is the proof of (3.6). [VU| has to be evaluated at m,, on the contour U = 1.
At the point (1 +€)m,,, the scaling (2.7) gives, for the change in U when ¢— 0,

AU = U((1+e)my)—1 = (1+€e)/ x1—1 ~ ¢f. (A1)
The normal distance dl between the contours U =1 and U = 1+dU is
dl = emy,- M, (A 2)
so that the gradient of U is
dU €
v =Y - 4 - QD) (A 3)
GmM'M

ArPPENDIX B

This is the proof that g(A) (3.13) and II(K) (3.12) are related by (3.14). Sub-
stitution of (3.12) into (3.14) gives

g(4) = 1—6(4)+ Ap(Uy+ V) Ap(Uy+ V + 4). (B1)
From (3.2) and (2.5)

Ap(U)=§8(U—U(m))—1 (B 2)
substitution into B 1 and use of the fact that p = 1 gives
g(4) = —6(A)+§:2; MUpy+V—=U(my))o(Uy+V+4—U(my)). (B 3)
The term —d&(4) is cancelleé by the terms m, = m,, leaving
g9(4) = Ea(U(ﬁ' V- U(ml))m2§m13(ﬂ — (U(my) — U(my))). (B 4)

The average, taken over some great range L of V containing N = L levels, can be

written as
1

1 (3L
20U+ V-Uimy)) =5 lLdVE (Up+ V—U(m,))
my -3 my
= 1 3 = average over all U(m), (B.5)

N m for which
Uop—3L<U(m)<Uo+ %L

so that (B 4) becomes identical with (3.13) (Q.E.D.).
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ArrENDIX C

This is the proof that the R.H.S. of (3.16) equals }r. Denote |M| by M and M
by 2. Then the integral over M in (3.16) removes the delta function, to give

H(K):—l— d/-1Q|my,- 2|
2nf det (a2m-s2) (€ 1)
aluialuj m=mp

Now denote |m,,| by m and 7, by @. As M varies, m,, will vary too (figure 1)
so that it is possible to change variables from 2 to @ in C 1 to give an integral over
the contour U = 1 whose polar equation is m = m(w):

1 [d10|02/0n|mo - Q
= o 7 2
2nf ’det(ﬂ- 0 mw)
Op; Ope
If now local cartesians # = {»,...7;,} are introduced in the tangent hyperplane
to the contour at w, instead of the curvilinear coordinates g, then

I(K) ©2)

PPmao 00, R
det(ﬂ-————) - et(———’) - |2 03
TR o, = | on ©¥
Thus (C 2) becomes
1 dy
= -1 . -
II(K) 2nffd wm(w Q)ldw . (C4)

Now prejecting along @ the element of tangential hyperarea dy, whose normal lies
along 2,\gives an area element normal to e, i.e.

|dn|w - 2 = m/1|de|, (C5)
11
— |2 lartwms
so that I(K) o [f fd wm (w)], (C 6)
But the quantity in square brackets is just the hypervolume of the positive

‘quadrant’ enclosed by the contour U =1, and this is just unity. Therefore
II(K) = {n (Q.E.D.).





