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1. Introduction

This is an account of two recent contributions to the theory of intensity fluctu-
ations in random waves. Detailed treatments have been published elsewhere [1,2];
my purpose here is to give simplified outlines of the rather subtle arguments in-
volved, and bring out the sharp contrasts between the two régimes considered.

Waves often acquire randomness in their wave functions ¢ and intensities I(z]y|?)
by encounter with a random structure S. Familiar examples are starlight passing
through turbulent atmosphere, sunlight reflected and refracted by water waves, and
sound, radio and radar reflected by landscapes. The randomness of ¥ is not related
to that of § in any simple manner. In particular, if S is a spatially fluctuating
refractive index with Gaussian randomness, ¥ will not usually be a Gaussian random
function of position. The most interesting statistics are those describing the in-
tensity fluctuations. These are the moments In of the probability distribution of
[%{2, namely

I,z <IN = <l¢izn>, {1)

where <> denotes averaging over the ensemble of 5. (If ¢ were a Gaussian random
wave, I, would be given by Ijn! for all problems to be considered here.)

In this paper I shall consider two random wave régimes where the effect of S on
¥ cannot be approximated by perturbation theory. The régimes are distinguished by
the absence or presence in S of detail on length scales close to the wavelength A
of w.

If S does not possess such detail, i.e. if it appears smooth on the wavelength
scale, then methods based on geometrical optics can be employed. It is well known
[3,4,5]1 that these lead to waves dominated by caustics (envelopes of the rays)
which generically take the form of the catastrophes classified by Professor THOM [6].
In this 'diffraction catastrophe® régime, to be discussed in Section 2, ¢ is charac-
terised by violent fluctuations whose statistics are highly non-Gaussian and for
which the moments I. scale with A according to 'critical exponents' that depend on
the hierarchy of catastrophes.

If S does possess detail over a wide range of scales that includes », methods
based on geometrical optics cannot be used. Instead, $ can be modelled by a 'frac-
tal' [71, that is, by a hierarchical structurewith no ‘length scaleat ail, whose Haus-
dorff-Besicovitch measure dimension D is not an integer. I cail the corresponding
waves 'diffractals' and discuss this régime in Section 3. The statistics of diffrac-
tals obey scaling laws very different frem those for diffraction catastrophes, and
involve integrals and asymptotic behaviour unfamiliar in wave theory.

Mathematically, it will be useful to think of the difference between these régimes
in terms of the shortwave limit » -+ 0. If S is smooth on fine scales, then geome-
trical optics becomes valid as ) - 0. But if S is a fractal, then as » gets smaller,
ever-finer levels of structure are exposed and the geometrical aptics 1imit is never
attained. 23



2. Random Diffraction Catastrophes

When A is small enough, waves @ diffracted by a smooth structure S can be described
in terms of the rays of geometrical optics. The rays envelop caustics (focal mani-
folds) on which the jntensity I rises to large values., On wavelength scales, the
caustics are decorated with 'diffraction catastrophes' [8] characteristic of their
topological type. In the language of catastrophe theory, the rays, waves, and
caustics exist in the 'control space' C, MNow, it is crucial to the argument that
when S is random C has many dimensions, corresponding not just to the spacetime
point r,t where ¢ is measured but to the random variables V specifying the members
of the ensemble of 5. Therefore we can write the wave as ¥(r,t; V), and the en-
semble averages in (1) as -7

In = [oo.f 4V P [u(r.es V)27, (2)

where r,t is fixed and where P(V¥) is the density of realisations of S over its en-
semble, The high dimensionality of V means that generically the caustics contain
catastrophes of high codimension.

Consider first the case » = 0. Then there is no diffracticn at ail, and I is
infinity on the caustics. It follows from the conservation of energy, and can also
be shown directly, that the infinities of I are integrable, so that the first moment
I; = <I> exists, But higher powers of I cause the integrals in (2), and hence the
moments I, to diverge. Therefore this simple argument based on geometrical optics
confirms what has Tong been known [9,101, that the non-Gaussian strong fluctuations
in ¢ originate in focusing, However, it is too crude to account for the finite
moments actually measured [11].

In practice several factors prevent I, being infinite. Two examples are spatial
and temporal incoherence of the source, as with the finite angular size and poly-
chromaticity of the sun, which blur caustics refracted onto the sea bed [12,13].
Most fundamental, however, is the finite value of A, which causes the divergences
of In (as in, say, twinkling starlight) to be softened by diffraction.

A measure of this effect is the set of 'critical exponents' vy, defined by
d(log I =y
- 1in 2008 Tn) L o=, (3)
a0 d(log ¥/2)

which shows just how the I, divergs as » + 0. Now I shall determine v, in terms of
the catastrophes, using a simplified version of the argument in {17,

vn

The main result will be that as n increases the exponents depend on catastrophes
of ever higher codimension. Here is a simple physical argument to show why this
must be so in the most familiar case where the randomness of S is stationary and
averages are measured experimentally by time-averaging the intensity at fixed posi-
tion r: over long times, diffraction catstrophes of arbitrarily high codimension can
pass arbitrarily close to r., The higher-order catastrophes are rare but give rise
to large localised fluctuations in the intensity. However, large rare fluctuations
in I are precisely what dominate high moments I, which therefore depend on high-
order catastrophes, as stated.

To calculate the exponents v, a scaling argument is employed. Consider the inte-
gral (2) for I,. For small A it will be dominated by th?s? values of V Tying on
caustics. The integral will split into contributions I,\J) from the different cata-
strophes, here Tabelled j. Each contribution scales differently with » and can be
written

Ip(3) « a7"nj, *)
where “nj is thus the exponent governing the contribution of the j'th catastrophe
to the n'th moment.
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What determines Vpj are two aspects of the architecture of the j'th diffraction
catastrophe. Firstly, there is the 'singularity index' 8. which describes how the
wave amplitude || on the caustic singularity diverges as“x +0:

-B.

| « J
HJ'on the caustic oo (3)

B. is a measure of the strength of the diffraction catastrophe. And secondly, there
iz an index Tj which describes how the diffraction pattern shrinks onto the caustic
as A > 0:

hypervolume of maximum of Y
the diffraction catastrophe « A (6)
in centrol space

v: is a measure of the extent of the diffraction catastrophe. The index 3. has been
kiiown for some time {14,151, but y. is a new gquantity, introduced in [1] dnd recently
shown [16] to be an invariant of tde j'th catastrophe (related to the Jacobian of

a diffeomorphism of conirol space).

In {11 the indices v, and B, were determined from the diffraction integral repre-
senting ¢ for the j'th éatastraphe. Here the general procedure is jllustrated in
the simplest case of the 'fold' diffraction catstrophe where ¢ is an Airy function:

Gl ire3
w(\]) - coni‘;gntf ds 92111(5 /3 +VS)/)\‘ (7)
A -e

The factor in brackets in the exponent is Thom's standard 'potential function' for
the fold, where ¥ is the single control parameter and S the 'state variable’ (which
usually represents postion on some initial wavefront from which the wave diffracts
to r, t). An obvious change of variables gives

o - 13 _2_112/3 ]
s{V) = EE%%%%EE J g5t ol (8773 + V(SIS (8)
This shows that in terms of the standard Airy diffraction function, namely
- . redd
T y (ST VSYY) | g
YstandardY') = 77 J_mds e = Ai(V"), (9)

0} and the width of the first bright

Jw] rises to 0&3-1/6) on the caustic itself (V =
= 2/3 for the fold diffraction catastrophe.

fringe is 0(3%/3). Therefore g = 1/6 and y
Knowing B and v., the corresponding contribution In(j) is estimated from the
integral (2)"as foldows:

control space extent of
diffraction maximum

3. .
i3, (10)

In(J) « [maximum value of |¢|1%"  x
-2
= A

whence (4) gives

= 2B, - v,
Yoy = 2nBg - g (11)

It is thus established how each catastrophe contributes to each moment. Summing
the contributions gives, for the n'th mement:

o
> Ly N oas o, (12)

where the sum is over all catastrophes j. The dominant term is clearly the one with
the largest Unj’ so that from (3) the critical exponents are given by

\Jn = max (\)nj). {13}
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This 1s the main result. To actually work out the v _., and hence the v , is a
tedious exercise which I claim to be the most elaborate™dimensional analysts {scal-
ing) ever performed. What emerges are sets of rational numbers v_ that depend only
on the dimensionality d of the physical space in which ¢ propagat€s. The reason for
this is that although the codimension of the contributing catastrophes can be arbi-
trarily large the 'corank,' i.e. the number of state variables, cannot exceed d-1
since this is the dimensionality of wavefronts. Therefore for waves in two space
dimensions only the corank-one 'cuspoid' catastrophes can contribute, and in three
space dimensions only corank-one and corank-twoe catastrophes contribute; the extra
singularities make v_ larger in the latter case. Apart from this dimension-depend-
ence the v_ are univirsal: they do not depend on the details of S, only on the fact
that it is 'smooth and its randomness is described by many variables y.

Table 1 shows the first few v for d = 2 and d = 3, together with symbols repre-
senting the dominant catastrophes; in more familiar terms {31, A, is the fold, A
the cusp, Dy the elliptic and hyperbolic umbilics, and Eg the sy%bo]ic umbilic. ~The
value Vg = 3 does not mean that the second moment I is not singular as » -+ 0, only
that its divergence is slower than any power of A1 In fact, I« log(x-l}, as
explicit {and elaborate) analysis [17,18,19] reveals,

Table 1 Critical exponents v, » and contributing catastrophes, for 2 <n <5

n 2 3 4 5

vn(Z space dimensions} 0 1/3 3/4 574
dominant catastrophe Ay Ag Aq Ag

vn(3 space dimensions) 0 1/3 1 5/3
dominant catastrophe Ay Apand Dy Dy  Dg and Eg

These values of w_ constitute testable predictions about the wavelength-depend-
ence of the moments 1 of such random waves. Uswally I, is measured as a function
of other parameters, Buch as distance from a turbulent medium or strength of turbul-
ence (see Section 3}, but I am trying to arrange for direct measurements of Vh to
be made on the basis of the definition (3).

In this exposition [ have not mentioned the serious problems [1] that arise in
three space dimensions when n > 5, from the appearance of singularities with 'modal-
ity.' These singularities, which iie beyond Thom's classification, are discussed
by ARNOL'D [151. Making plausible assumptions it was possible to calculate the cri-
tical exponents up to Vi3

This theory has tantalising analogies with the study of critical phenomena in
statistical mechanics [20]. Here, critical behaviour ("T » T_") emerges as 1 - O.
Our analogue of the incorrect 'mean field theory' is geometri5a1 optics. Like mean
field theory, geometrical optics can be generated by a quadratic approximation in
the exponent of an integrand {of a diffraction integral rather than a functional
integral). And, just as in statistical mechanics, the correct behaviour is embodied
in a series of ‘universal’ exponents. However, there is a serious difference: in
the random waves problem the real work of calculating the exponents is made possible
not by the 'renormalisation group' technique but by the Thom-Arnol'd c¢lassification
of stable singularities of gradient maps.

Nevertheless, the anaiogies are sufficiently close to prompt the following
question: is there a 'critical space dimensionaiity' dg. analogous to (4) in sta-
tistical mechanics, beyond which all (or perhaps only some) v are infinite, so
that geometrical optics ('mean field theory') is valid? This"would mean that cata-
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strophes j of corank > d.-1 and very high codimension would give contributions v_.
that increase indefinite?y with j (instead of reaching a maximum and then decreald
ing, as in cases so far studied), so that the dominant catastrophes are those of
infinite codimension and I, increases faster than any power of »lasa+0. At
present singularity theory is not sufficiently developed to enable this question
to be answered.

3. Random Diffractals

If the diffracting structure S is a fractal, ¢ is a diffractal. Virtually nothing is
known about diffractals. They constitute a new régime in wave physics, with poten-
tial to describe a wide range of phenomena from the sighing of the forest througn
the reflection of radio waves by landscapes to the propagation of 1ight in fluids
near their critical points.

In [2] I set up and solve what must be the simplest diffractal problem: free-
space propagation of an initially-plane wave on which S has imposed a random fractal
deformation of the wavefront at z = 0, Only propagation in two space dimensions x,z
is considered. The initial wavefront is the fractal curve z = h(x), so that to a
good approximation the diffraction problem has boundary condition

o(x,0) = e-2n1h(x)/l
Using diffraction theary, the propagation of ¢ in the z direction can be studied,

and the development of intensity fluctuations as a function of z can be followed by
averaging over the ensemble of random wavefronts h(x).

(14}

To carry out this programme, h must be specified more precisely. It is here taken
to be a Gaussian random function whose graph has fractal dimension D lying between 1
and 2 and whose correlations are described by the r.m.s. increment of h over distance
X by

'{<[h(x+x) - n{x)1% = R ‘XIZ-—D. (15)

The distance L (calied the 'topothesy' of the wavefront) is the separation of points
on the graph of h whose connecting chord has r.m.s. slope unity; L is a measure of
the strength of the wavefront deformation. Both the variances <h?> and <{3h/3x)2>
are infinite, but the existence of the average [151 is all that is required for
diffracted statistics to be weil defined. Fig, 1 shows a computed random function
with D = 1.5. These graphs have the property of being self-similar under magnifi-
cation [7] provided x and h are scaled in suitable ratio.

Diffraction theory shows that the intensity moments I, (Eq. (1)) depend an D and

also on one other parameter ¢ which incorporates z, X and L as follows:
(D-1¥(2-D}, 1/(4-2D)
- g

Tnis is the most important of several diffractal scaling laws derived in {21, It
turns out that even for this apparently simple problem it is prohibitively difficult
to calculate moments higher than the second (the first moment Ij is unity for all g,
as follows easily from {14)). Ip is given by the following doué]e integral:

@ 4-2D 4-20 4-2D
- A suv o[ }
Ip(s) = = Iodu J:dv cos7- e

(16}

4-2D

+2v {v+u) ~ (v=-u) 1. an

This integral has been studied by other authors (although not with diffractal
interpretation) in connection with the propagation of laser beams [21] and radio
[22] through turbulence; my results in [2]1 complement and extend theirs, The beha-
viour of the second-moment curves Ip(c) as D varies from 2 (extreme fractal with
the graph of h just area-filling)} to 1 (marginal fractal with the graph of h almost
smooth} is summarised on Fig. 2.
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h(x)

Fig. 1 Random fractal wavefront h(x) with D = 1.5 (computed by Z, V. Lewis)

In all cases I»{0) = 1 (no intensity fluctuations near the initial wavefront
where {14} shows %hat y is purely phase-modulated), and Io(=) = 2 (Gaussian inten-
sity Tluctuations far from the initial wavefront). For intermediate values of ¢ there
may or may not be a maximum where I» > 2. In the case of the 'rougher' fractals

D > 1.5 there is no maximum. For the 'less rough' fractals D < 1.5, however, there
is & weak maximum in In{z}, This can be regarded as an anticipation of the very
strong maximum {I5 = log A‘l) that occurs when the initial wavefront is smooth and
which arises from diffraction catastrophes as explained in Section 25 this highly
non-Gaussian second moment is illustrated in the bottom curve on Fig. 2.

The fractal and ordinary régimes are separated by the marginal case D - 1. As
shown on Fig. 2 the decay to Gaussian fluctuations is extremely weak for this case
and takes the form of a term (log c)'l. This asymptotic behaviour emerges from the
analysis [2] as the result of an accumuiation of power-law decays which is unpre-
cedented in wave theory as far as I am aware.

4. Discussion

In this work I have tried to extend the boundaries of conventional random wave the-
ory by studying two extreme régimes. In both cases the form of the intensity prob-
ability distribution is unknown and certainly not Gaussian. A1l we have is some
information about the moments I,. In the 'diffraction catastrophe’ case of waves
encountering smooth random structures S it was shown in Sec. 2 that the I, obey
universal scaling Taws {3) as A - 0. However, this is very far from being a complete
description of the statistics. For a start, each power » “n is muitiplied by a
coefficient that depends on the measure of the dominant catastrophe in the space ¥

of random variables of the ensemble of 5, and this in turn depends on the nature of
S--it is not universal. And then there is the question of the intensity correlations
between different points rather than the fluctuations at a single point; it seems
[17 - 191 that these correlations are characterised by several Tength scales, but
there has been no analysis of the limit A + 0,

For diffractals the situation is just as bad. We know nothing about higher
moments I ». And we do not know whether there is any 'universality' about the
behaviour of I, summarised on Fig, 2. It is probably a reasonable approximation
to consider a random fractal S as imposing a random fractal deformation on a wave-
front, but the randomness need not be Gaussian and the deformation need not be of
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Fig. 2 Development of intensity fluctuations I, as a function of propagation
distance for three diffractals (top three curves) from initial wavefronis with
different fractal dimensions [, and one wave (bottom curve) that develops from
a smooth initial wavefront (cf. Sec. 2)
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a plane or of a straight 1ine as assumed in Sec. 2. Moreover, we know 1ittle about
waves within fractals (sound inside a tree, radio waves in the midst of turbulence,
high-order modes of oscillation of an inland lake with random fractal boundary, etc.)
although a conjecture on this subject is presented in [23].

In conclusion, it appears that the geometrical concepts of catastrophes and
fractals can be fruitfully applied to wave physics. This is particularly the case
in statistical problems where averaging over an ensemble of different realisations
of a system implies that its properties will dominated by those morphologies that
are structurally stable, as emphasised by Professor Thom.
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