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INTRODUCTION

This article is a briel review of simple models exploring different aspects of the
classical limit of quantum mechanics. More detailed treatments have either already
been published' or are being prepared for publication. The reasan for choosing simple
modefs rather than accurate simulations of physical systems of current experimentaf
interest is that such systems often lie in parameter ranges that do not correspond to
well-defined semiclassical regimes.”™

The differentsemiclassical regimes correspond to statienary and nonstationary
states and to classical motion that may be either regular (integrable) or irregular
{chaotic).” The case of stationary quantum states for regular underlying classical
motion is now well understood:® classical orbits wind round tori in phase space, and
:nergies for which the action integrals, f p - dq/ 2, around the irreducible cyeles of &
jorus are equal 1o a half-integer multiple of A are asymptotic approximations to the
sigenvalues of the Hamiltonian. The other regimes are not well undersiood. 1t is
remarkable that they can be modeled by classical systems with just one coordinate, g,

" 50 that motion may be studied in the phase plane g. p.

An evalving state can be associated with a curve in the phase plane, at least uniil
the curve gets very complicated. This association is explained in the next section, and
its application and breakdown are illustrated for a generic system possessing both
regular and irregular trajectories in the third section and, in the antepenultimate
section, for a purely regular system. The penultimate section is devoted to the
quantum eigenvalue structure of a purely chaotic system {Arnol'd’s Cat’) and the
final section reports a study of a similar system (Sinai's Billiard™"*), the coordinate
space of which is two-dimensional.

. Weshall not discuss here other important aspects of semiclassical mechanics, such
‘as matrix elements*'® and the nodal structure of eigenfunctions.*'*"

ASSOCIATING WAVE FuncTioNs WITH CURVYES IN THE PHASE PLANE

Let @, be a smooth curve in the phase ptane g, p (FIGURE 1) representing a family
A classical trajectories at time ¢ = 0. Individual trajectories are points on &,
listributed uniformly in a {generalized “angle™) variable 8. The associated approxi-
mate wave function, ¢(q, 0), is a series of contributions,

®(q,0) = _ alq) exp [ib(q)], (1)

from ait points g, p{q) lying on &, with coordinate g (FIGURE 1).
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The amplitude a,(q) is obtained from the correspondence principle, according to
which the probability densities a; of the different contributions are proportional to the
densities of the projections onto g of the branches of @,. Thercfore.

al{g)dg = K'df,, 2

where K is a constant. The phase 5,(g) is obtained from de Broglie's rule. according to
which the contributions to ¢ are waves with wavelength h/p,(q). so that

h ko dbi(q)
bg+ —| - big) = —— 29 _ o 3
(‘7 p,(q)) W= 4 @
Combining (2), {3), and (1)'gives
dg | /2 2 Pdg)
#{g.0) = K - ex [ —d '—6,]. (4
Z | 0 | jq' 7 dq )

where ¢, is a constant and 6; are phases that will not be discussed further here.

FIGURE 1. The curve @, parameterized by
O “angle” variable #, with momenta p, and p,
contributing to the wave at g.

Inasmuch as a wave ¢ can be generated according to (4) from any curve @g, tht
association might seem arbitrary. In fact, it is not, because the association is preserved
as the state changes. In time ¢, @, evolves, by virtue of the classical motion of each of
its points, into a new curve, @,, to which can be associated a wave ¢{g, 1) analogous t0
{4); using the WKB method of quantum mechanics.® or some other,! it can be sf_m"‘\'_ﬂ1
that. in the semiclassical limit # — 0, the ¢ thus constructed is an asymptotic,
approximation to the exact solution, (g, ), of the time-dependent Schrodinger,
equation. In the special case where @, is an invariant curve of the dynamics (c.g., if the’
Hamiltonian is time-independent and @, is one of its contours) and where, moreover,
represents an invariant measure on @, then ¢ is an asymptotic approximation to &
stationary state of the system. '

What concerns us in the next two sections is the global breakdown of approxima-
tions of type (4} as t — = and @, gets infinitely complicated, The point is that ¢ i "ahd.-_
as 1 — 0 for any fixed ¢, and not as f — = for any fixed £, however small. We are not
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concerned with isolated breakdowns of (4) at caustics (turning points), i.e.. ptaces, g*
(FiGuRreE 1), where @, is perpendicular to the g axis so that two or more roots, p,(g).
coalesce and ¢ diverges: near ¢*, uniformly valid approximations to ¢ can be
construcied either by projection of Wigner's function® or by using an equation
analogous to (4) for the semiclassical momentum wave function and then Fourter
transforming to get ¢.”"'" Nor are we concerned with the quantization of the area
within closed curves @, necessary to ensure that ¢ is single valued.'

Global breakdown of (4) cccurs when @, pets so complicated that most of its
convolutions have areas A or smaller in phase space, or, alternatively, when most pairs
of caustics g* are separated on the g axis by less than a de Broglie wavelength.

QUANTIZING GENERIC AREA-PRESERVING MAPS OF THE PLANE

Consider the following discrete map of the classical phase plane:

Gn.1 = Ga T Py
dV{g,.) |- 5
Paoci = Pu — dq

This can be generated by the following time-dependent Hamiltonian acting over unit
time:

Hig.p. 1) = p* 0=1< )
W(g) (h=t<)

Repeated action of the map corresponds to a system where, alternately. the force is
switched off and the mass is made infinite. [[ ¥ is more complicated than quadratic in
g. then the map (5} exhibits generic behavior. This is illustrated in FiGURE 2. which
shows the orbits of points for the case

(6)

Vg = —. N

AR

The now-familiar hierarchy of elliptic and hyperbolic fixed points, smooth invariant
curves, and chaotic areas is evident,*"* indicating that (5) is 2 good model for a section
through the phase space of a generic higher-dimensional system.

FIGURE 3 shows the first five iterates @, under (3) and (7) of the curve

pPog
Gy 5 + i 8

@, lies almost entirely in the outer, hyperbolically escaping region of FIGURE 2. [ts
iterates et rapidly more complicated by throwing off tendrils'® and increase in length
as exp{exp(3n)) while preserving their area.

The main reason for studying the map (5) is that its Hamiltonian (6) can easily be
quantized. Indeed, it is obvious that the time-evolution operator {/ taking states|,) at
time # into states .., ) at time n + 1 is
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[ = exp [_i:(&)‘ exp [ _2':] 9

This means that, in the position representation, wave functions ,(g) iterate according
1o the integral equation

: iV ) I
Vo) = (2rR) M exp [-74'-’5—'——:2] S dgexp [55’7,&""] W), (0

To see the quantum effects corresponding to the developing complication of
FIGURE 3, the initial state Jo(g) must be that associated with &,. According to (8), @,
is the contour £ = U of the time-averaged Hamiltonian, p*/2 — g*/4. representing a
particle in a quartic potential well; therefore, , was taken 1o be an eigenstate of this
Hamiltonian, with ki chosen so that £ = ' was the energy of the 18th state: this value
of i is shown as a square on the # = 0 gp plane in FIGURE 3.

P.=

o .

15

FIGURE 2. The orbits of points under the map given by equations 5 and 7. showing invariant
curves and chaotic areas.
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FIGURE 3. The evolution of curve @, (8) for five iterations of the map of FIGURE 2. showing the
development of tendrils.
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The first five iterates of the probability density |¢,.(g) |* are shown in FIGURE 4a.
They should be compared with the curves @, in FIGURE 3, and with the projections of
these curves shown in FIGURE 5a. The singularities in FIGURE 5a are the caustics g*
(cf. FIGURE 1). For n = 2, the identification of classical and quantum features is fairly
clear and shows that ¢, and @, are indeed associated as described in the previous
section. Note the dramatic decrease in spectral purity of ¥.{g) as compared with
¥, (9); this is associated with the tendrils on @, which cause a sudden increase in the
number of branches p,(g) and. hence, in the contributions to the semiclassical wave
function (4).

For n > 2. there is no clear association between ¢, and individual feaiures of €.
This represents a new regime of “quantum chaos.” There is, however, on the average.
an association between ¥, and @,. This can be seen by smoothing |, [* and the curve
projections over a de Broglie wavelength. The resulting quantum and classical
smoothed curves are shown in FIGURES 4b and 5b, respectively. The correspondence is
quite close and shows that, while the peaks of the smoothed |¢[* for # ~ 2 are
associated with individual caustics, the peaks for n > 2 are associated with clusters of
caustics.

A greatly expanded account of the material in this section was published in
Reference 1.

QUANTIZING A TwIST MarP

Tendrils growing on curves whose points map chaotically (as in FIGURE 3) do not
represent the only way in which an evolving curve can get complicated. Even for
regular motion (as in the ceniral region of FIGURE 2}, a curve that is not invariant wili
wrap around an elliptic fixed point and form a whorl as a result of its constituent
poiats mapping round the fixed point at different rates."*

A simple medel for classical and quantum whorls is provided by the time-
independent Hamiltonian,

H{g, ) f((q' p’). (1)

where fis an arbitrary, smooth, nonlinear function of its argument. Classical motion is
around circles centered on the origin, with radius (p* + ¢%)'/? and action

d
j{ pdg (g +p) p ) a2
The orbit with action [ has the frequency
dH  df
! “ 13
wll}) = FTRTI {13

which varies with f because fis nonlinear. Therefore, radii map to spirals and (11)is a
twist map.>'®
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FIGURE 4. The evolution of (a} probability densities hf;,,l’ and (b) probability densities
smoothed over a de Broglie wavelength, under the quantum map given by equation 10.
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FIGURE 5. {a} Projections of curves of FIGURE 3, showing caustic spikes; (b} curves (a)
smoothed over a de Broglie wavelength.
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The quantum mechanics of this model is very simple. since / is a function of the
harmonic oscillator Hamiltonian. Therefore, the energy levels are

E, ==f((n N %) h) (14)

and the stationary states x,(q) are the familiar Hermite functions

. - q -q
X.(q) = (2"nlh \[‘;) I,'ZH" (huz) exp [_z_h'} (15)

Any initial state, ¢(q, 0), can be expanded in terms of the x, so that the evolving state,
¥{g. ). is given by

¥(g. 1) = Z{ f ‘dq'\b(q',O)x,(q’)]x,,(q) cw[— {16)
= e
Computations based on this model have been carried out by Z. V. Lewis, with the
Hamiltonian function in (11) taken as f(/} = In /, for ¢ = 0, 100w, 500w, and .
Classical curve maps @, are shown on FIGURE 6a. @, is a circle with radius

V2 x (30 + 'A) = 7.81, whose center lies at ¢ = 1, p = 0. The whorl develops very
clearly as ¢ increases. Its windings get tighter and tighter and, in the limit 1 — =, the
curve fills an annulus. FIGURE 6b shows the projections of @, onto the g axis. Caustics
proliferate, and, as t — =, only their average density matters (in fact, this can be
calculated analytically).

In the quantum mechanical computations, i was taken as untiy. so that &,
corresponded to an initial state

¥(q.0) =~ xlg — 1. an

The evolving probability density | (g, #)|* was calculated using (161, This equation
shows that ¢ (g, 1) continually changes, even as 1 — «<—behavior contrasting with that
of @, which tends 10 a limit, as shown in FIGURE 6a. Therefore, the association
between @ and ¢ breaks down when ¢ is large enough. as we shall see.

FIGURE 6d shows the probability densities, As t increases, ¥ becomes spectrally
richer, as would be expected from the increasing convolutions on FIGURE 6a. The
eurve | ¢ |* for ¢+ = = is actually a time average, which, from (16), is

if“'((n + YA
7 |

2 =

ime = 2 { Jaqud, oxe)

average =0

2
x:(4). (18}

l (g, 1)

To facilitate comparison between the projections of @, and the probability
densities, both these sets of curves were smoothed over g by a de Broglie wavelength,
as in the previous section; the smoothed classical curves are shown in FIGURE 6c and
the smoothed quantal curves in FIGURE 6e. For ¢ = 0 and f = 100, the agreement is
excellent and it is clear that the direct association between @ and ¢ holds accurately.
But when ¢ = 500x there is no close relation between classical and quantal curves, even
when smoothed. This is probably because the whorl’s windings now have areas small in
comparison with £, so that their details are quantally irrelevant. Nevertheless, if the
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FIGURE 6. Classical and quantum maps based on the “nonlinear harmonic oscillator”
Hamiltonian (1%), with f = In [, for tim  * =~ 0, 100, 500w, and e, computed by Z. V. Lewis.

(a) Curves @, evelving from initial cunn  , showing the development of a whorl; {b) projections
of @,, showing caustic spikes;
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FIGURE 6. (continued) (c) smoothed projections of @,; (d) evolution of probability density
¥iq, D% aceording to equation 16, starting from the initial wave (17) (for ¢ = =, the
time-average (18) is shown): (e) probability densities of (d) smoothed over a de Broglie
wavelength.
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quantum mechanical time average (18) is smoothed over g, the agreement with the
smoothed projection of the fully developed whorl is very good, as the final pictures in
FIGURE 6¢ and 6e show.

A full account of the material in this section wili be published by Z. V. Lewis and
M. V. Berry.

QUANTIZING ARNOL'D'S CAT

As a model for a completely ergodic system, consider the phase space 1o be the unit
2-torus 0 = ¢ = 1,0 = p = 1. with dynamics governed by the linear map

- ; To T\ ({4,
V) R VRO M [ Y
Doy Pl tmod 1) Ty To \poJimw .
The elements of 7 must be integers; this ensurcs that the map is continuous. The map
is area-preserving if det T = 1: this ensures that 7 can represent a Hamiltonian system,
The map is hyperbolic if | Tr7'| > 2; together with the return of points to the torus, this

ensures that shapes evolve chaotically under T. Maps of this type have become known
by the callective title “Arnol'd’s Cat.”™"* An example is

21
Ti( ) 120
12

which may be generated by the Hamiltonian

aresinh 3 { P = 1
et kit el (B S 21
2 (\5 vod b

acting for unit time. This maps periedic figures into periodic figures in the gp plane
while stretching them along asymptotes making an angle of 60° with the ¢ axis.

Cat maps are interesting because, although thetr ergodicity indicates that they
possess no invariant curves that could form the basis of Bohr-Sommerfeld semiclassi-
cal quantization, they can, nevertheless, be quantized exactly. The first aspect of
quantization is purely kinematic. Because phase space is a unit torus, position wave
functions ¢ (g) must have a unit period in g, implying that momentum wavefunctions
¥{ p) must be series of delta functions at p = nk, where n is an integer and 4 is Planck’s
constant. But E(p) must also have a unit period in p. Taken together, these conditions
imply that

1
h=—, 22
N }

where NV is an integer. This strange conclusion makes the model somewhat mechani-
cally artificial, but its quantized form has a direct physical realization in optics in

terms of diffraction by a periodic grating. Measurements of g or p can yield only
values lying on the “quantum lattice,”

Q !
==, = — N <N‘
g=5 p=5 (U=QP=N) (23)
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where  and P are integers. In the classical limit, N — =, g and p become continuous
variables. For a technical reason that will not be explained here, NV will henceforth be
restricted to be odd.

The second aspect of quantization is the introduction of dynamics in the form of a
unitary operator corresponding to T, analogous (o equation 9 and propagating wave
functions (), in the discrete representation (23) according to

Vor(0) = 3 Upg tal Q). (24)
o=

This operator must preserve the periodicity in both ¢ and p, a condition that can be
shown to require that T have the form
odd even
(23)

T (even odd )
odd even even odd
(thus excluding the most familiar cat map, whose clements are 1, 1, 1, 2). The expli‘cit
construction of Uy for arbitrary maps of type (25) is an intricate process involving

Gauss averaging and the Legendre and Jacobi sign symbols of number theory."” For
the particular map (20), the evolution operator is

T

~i =i 1
Ugg. = exp [T] exp [—;—' (0 + 07 - QQ’)] (ﬁ) (26)

Eigenfunctions of the quantum map are states, ¥({), that propagate into
themselves under {24), apart from phase factors exp {i«]. These phase factors are the
eigenfunctions of U/; they are defined by

det (Upy — exp [ialdgy) = 0. 27

This is an IV x N determinant, so there are ¥V “eigenangles” e/(1 < j =< N), and it is
intevesting to ask how these are distributed round the unit circle, especially in the
classical limit, N — =,

To answer this question, first consider the effect of a cat map on points in the
quantum lattice (23). Being rational, these points map around closed orbits {“cycles™),
in contrast to generic points on the torus, which have irrational coordinates and never
return to their starting points. For each ¥, there will be a number #(N) of iterations
after which every rational point with denominator N will have completed at least one
cycle. The number #({N) is the period of the map: it is defined as the smallest number
satisfying

Tn(N) = (1 0) s (28)
0 1/ imos ¥y

and given by the lowest commeoen multiple of the lengths of the cycles of points in the
quantum lattice. Now, for these linear maps whose Hamiltonians (e.g., {21)) are
quadratic, certain guantum mechanical quantities (e.g., Wigner’s function in phase
space) evolve classically. It follows that, after n(/V) iterations of the quantum map,
wave functions will have returned to themselves (apart from a possible phase factor),
ie.,
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O™ 2 1 exp [io(N}], {29

where o is, in general. unknown. Therefore, the eigenangles must be muitiples of
2x/n(¥). apart from a shift. ie.,

Irm, (N} (15j5N )

P = +
Ay TN 1< m, < n(N)

130}

The spectrum of L' therefore consists of N eigenangles distributed among #(.V')
possible eigenlevels, The number a{/N) is an extremely erratic function. defined
number-theoretically by 128). Sometimes # < N, in which case some levels must be
muitiply occupied, and sometimes # > /N, in which case some levels must be empty. In
map (20, for instance,

aly=1, nd)=6. a5 =3 mNH=8 a4 =18 #illy=10 3L

Number-theorctical arguments, together with numerical experimenis, strongly
suggest that, in a suitably defined asymptotic sense,

nNY~CN as N— x, (32)

where € is constant. But the limit is approached extremely slowly and erratically.
Therefore, the semiclassical behavior of this chaotic sysiem is very different from that
of an integrable system. where the eigenvalues are smooth functions of A. In fact.
decreasing A, and hence increasing N, causes the spectrum to depend on the iterition
of points in an ever finer quantum lattice; the cycle structure thus revealed is
increasingly complicated.

A greatly expanded account of the malterial in this section is being prepared for
publication by J. H. Hannay and M. V. Berry.

QUANTIZING SINAI'S BILLIARP

Consider 2 particle moving freely in the xp plane and being specularly reflected
from circular discs of radius R whose centers are arrayed at the points of the unit
square lattice {FIGURE 7a). R can vary between 0 and 0.5. This motion is equivalent to
motion cn a unit square with periodic boundary conditions with a ceniral disc (FIGURE
7b), or to billiards on a torus with a hole (FIGURE 7c). This is one of the few systems
with two degrees of freedom that is known to be ergodic;'®'® as 1 — «. almost every
orbit passes almost every point of the square (FIGURE 7b) with almost every direction.
The ergodicity is associated with hyperbelic instability, which derives from the
continual defocusing of particle beams upon reflection at the disc. Alternatively, it is
possible to think of each reflection as transferring the particle between two different
sheets of the xp plane, so that the coordinate space is a sphere with two handles
(FIGURE 7d) with infinite negative curvature concentrated on a circle;" ergodicity is
then made plausibie by the fact that motion on a manifold with constant negative
curvature is ergodic.'®

Because of its ergodicity, Sinai's Billiard is nonintegrable and cannot be quantized
by the Bohr-Sommerfeld rules. But, because of its periodicity, the system can be
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quantized using methods developed for the quantum mechanics of efectrons in solids,™
The wave equation is

P Y )

-a—; + a—ys + (2'17) EIJI - (), {33
and this must be solved subject to the conditions that ¢ vanishes on the boundaries of
the discs in FIGURE 7a and that ¢ has the periodicily of the lattice: these conditions

determine the energy cigenvalues E (the factor (2r)’ is chosen purely for conve-
nience).

o
>|

| ~ g o d

[ ——
FIGURE 7. Representations of Sinai's Billiard. (a) As & regular array of reflecting discs

showing orbits () that never hit a disc, and closed orbits (1) that do hit a disc; (b) as a squaré

with opposite edges identified, containing a hard disc: (¢) :y 2 (urus with a rcﬂec;ting hole; (d} as

a sphere with two handles, consisting of two tori joined on u circle on which the Gaussian
curvature is infinitely negative.

By expanding ¢ in angular eigenfunctions and using 4 (wo-dimensional version™ of

the Korringa-Kohn-Rostoker (KKR) method of electron band theory,™ it is found that
the energies satisfy

det,, I8, + tan n{E)S,_(E)] = 0 { e <{l,l') <) (3d)

The n, are the scattering phase shifts, which for a disc are

J,(Z‘:rR \f’;)

tan my(E) = B
: YiQeREY (35)
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where J and Y denote the usual Bessel functions. The S, are the KKR structure
constants; they are defined by

SHE) = Y Y{2xrvE) exp [ild.], (36)

where the summation is over vectors r of the unit lattice, excluding r = 0, and 4, is the
angle made by r with the x axis. [n physical terms. the determinantal equation (34) is
the condition for constructive interference of waves scattered from the discatr = 0
with waves reaching the neighborhood of that disc after multiple scattering from and
amongst the other dises.

The symmetry of the system (FIGURE 7b) gives rise to degeneracies, for example.
between wave functions related by reflection in a diagonal of the square. Such
degeneracies can be eliminated by considering only those states which are antisym-
metric about x = 0 and x = y, so that the problem becomes one of determining the
vibrations of a membrane clamped at its boundary. which has the form of the heavy
line in FIGURE 7b. For this subclass of quantum billiard states, the energies are given
by the following equation. derived from (34):

deln.n'[ann' + tan Tn‘-tn(E)[S-irn—n'J(E) - S-I.(n.u‘](E)“ = 0 (1 = (n- ﬂ') < 7-)- (37)

Of all band structure methods, KKR gives the most compact representation. More
conventional methods would involve expanding ¢ in a basis set of states labeled by two
indices, leading to determinants in which, in contrast to (34) and (37), each clement is
labeled by four indices. Mareover, the rapid decrease in tan , when { > 2z R VvE gives

TaBLE 1
E~NERGY [EVELS E, FOR DIFFERENT VALUES OF R

R
" 0.0 0.1 0.2 0.3 0.4
l 5.00 3.00 317 6.53 11.78
2 10.00 10.01 10.§2 12,67 20.27
3 13.00 13.03 13.92 18.24 28.05
4 17.00 17.07 18.21 22,07 33.87
5 20.00 20.16 23.52 27,78 40.38
6 25.00 25.08 2571 3l.14 47.34
7 26.00 26.17 27.93 36.87 57.40
8 29.00 29.46 34.08 41.57 59.60
9 34.00 34.41 37.66 42.91 68.51
10 37.00 37.26 40.95 50.68 74.74
Il 40.00 40.60 41.79 53.58 77.83
12 41.00 41.37 46.86 58.53 89.91
13 45.00 46.08 51.02 60.92 91.43
14 50.00 50.27 55.22 66.98 98.87
15 5200 52.31 57.42 69.36 105.52
16 53.00 54.50 61.76 72.85 109.63
17 58.00 59.76 63.07 79.86 114.72
18 61.00 61.38 66.44 84.2] 121.05
19 65.00 65.02 7207 87.93 131.23

20 65.00 66.40 72.72 89.29 132.24
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FIGURE 8. Energy levels of the quantum
Sinai billiard for R = 0.3 plotied as a
function of the variable £* (41), for which
the average density of states is unity. 10
N*(E*Y is the number of levels n for
which E¥ <« E* (42).

N N *
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very rapid convergence. In the case of (37), the Nth energy level can be computed to
high accuracy with the determinant truncated at n = # = n,,,,, where

2aN Y2
=R|———1] .
L (U » rrRz)) (38}

If R = 0.4 for example. the first 100 levels can be computed from a 15 x 15
determinant. The series (36) for the structure constants converges very slowly, but can
be transformed by a (nontrivial) application of the Ewald summation procedure into
an exponentially convergent representation.

{n the “unperturbed” imit R = 0, the levels are integers given by

E=m+n (1 =m<n< =) (39

Although symmetry degeneracies (e.g.. m. nand n, m, or m, n and m, —n) have been
eliminated, number-theoretic degeneracies remain; the firstisat £ = 65 = 82 « 12 =
77 + 4% The average density of states in £ is w/8.” These states are very irregularly
distributed as £ — = because the probability that any integer E can be expressed as
the sum of 1wo squares decreases like (InE)~""* as £ — =.” Therefore, the asymptotic
(semiclassical} spectrum for R = 0 consists of increasingly large gaps between levels
with increasing degeneracy.

Energy levels were computed for R > 0 using (37). The lowest twenty levels, for
R =0100.4instepsof 0.1, are listed in TABLE 1. [t is possible to compare these results
with theoretical predictions in several ways. Consider first the mode number
{integrated density of states function) N (E), defined as

N (E) = number of states with £, < E = »_ O(E — E,), (40)
n=|
where E, labels the energy states and © denotes the unit step function, It is known that,
for a membrane such as that outiined in FIGURE Tb, N (E), suitably smoothed,
possesses an asymptotic expansion in decreasing powers of E, whose successive terms
depend on the area of the membrane, and the length, corner angles, and curvatures of
its boundary.” When applied to the present problem, the expansion gives
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T i 3
NIEY ~ EXE) = — _ 2 __ -z - 1‘___.
(£Y (E) 8(1 mRE 2(l+2 R(Z 4))E 3% 41

For comparison with the numerical computations, it is sensible to plot

N*E¥) =) @O(E* - E*(E,)) (42)

n=)

rather than WV (E), and such a graph is shown in FIGURE 8 for the (tvpical) case R =
0.3. Agreement with the theoretical 45° straight line is very good. If only the leading
“Weyl™ term in (41) is retained, then the agreement is poor.

[t is exceptional for the eigenvalues of a vibrating system to be degenerate, even if
a single parameter is varied"” (in general, a degeneracy is achieved by varving two
parameters). Therefore, no degeneracies except those at R = 0 (which arise from the

E
8.
17-
FIGURE 9. Some energy levels of the
quantum Sinai Billiard as a function of R,
showing near degeneracies.
16
15-
[

20 25 30 R

special, integrable nature of the unperturbed system) are expected in the quantum
Sinai Billiard. And, indeed, none have been found, despite an extensive search. Quite
frequently, two levels approach one another as R varies, but they always repel rather
than cross. Several examples of this behavior are shown in FIGURE 9.

Finally, it is possible to expand the KKR determinant (34) by analvtical means and
study the effect of closed orbits on the spectrum embodied in the density of states
function

A(E) = d.N'(E)

=S_HE - Ey). (43)
a=|

Lack of space prevents more than a summary of the instructive results of this analysis,
The expansion empioyed is different from the usual multiple-scattering series of KKR
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theory,” and leads to three different types of contributions to n{E):

l. A constant term, analogous to the leading term in (41) and giving the average
density of states,

2. Oscillatory terms, proportional to £~ '*, from each 1opologically distinct closed
classical orbit that never strikes a disc, e.g.. those labeled a in FIGURE Ta. Such orbits
are not isolated; they occur in families resembling the closed orbits of an integrable
system” and, indeed, contribute similarly to n(E).

3. Oscillatory terms. proportional to £7'2, from each topologically distinct closed
classical orbit that does strike a disc, e.g.. those labeled 8 in FIGURE Ta. All such orbits
are isolated and unstable. and their contributions to (£} are in precise agreement
with the predictions of earlier, more general studies of the effect of unstable closed
orbits.®*

The resulting semiclassical expansion of n(E)} for the full spectrum (i.e., that
including states of all symmetry types), complete for terms of types | and 2 and
including the simplest terms of 1ype 3, namely those corresponding to bounces between
pairs of discs, is as follows:

2 E z
’ - =
THIE 4]

cos
(1 - 2RAB(Y - < [
mMEY s w(l — wRY + E°'* E ! Rr)()'Ei 2Rr) Z

l’.I,..

ml,’l‘.

c

+ ET ST (r - 2RYO(1 - Rr)

cos [4wm(r — 2RYVE]

e T N T

In this formula, r = (p. g), where p and g are relatively prime integers (positive and

negative) not both zero. r = {(p* + ¢°), and - . . denotes the contribution from
unstable closed orbits involving three or more discs.

Although their contributions are individually weaker, unstable closed orbits are
much more numerous than nonisolated orbits, and must eventuaily dominate the
spectrum by interfering 1o form the delta functions in (43}, in 2 manner not understood
at present. It i5, therefore, interesting to try to discern the effect of the unstable orbits
on the small number of energy levels so far calculated. One such effect is in the
R-dependence, rather than the E-dependence, of #(E). According to (44}, only the
unstable orbits have oscillatory R-dependence, suggesting that levels with energy near
E should vary with R, with a “wavelength”

AR = (4VE) ™ {45)

This is in rough agreement with the R-variation in FIGURE 9, for which AR ~ 0.03.

The material in this section, which will soon be published in greatly expanded
form, complements a recent pioneering computational study of another completely
ergodic system, namely the stadium (which consists of billiards in an enclosure
consisting of two semicircular arcs joined by tangential straight lines).!?

{44)
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