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The function
o [(1—el?"t)eldn]

~&Dn (1<D<2, vy>1, ¢,=arbitrary phases),

is continuous but non-differentiable and possesses no scale. The graph of
ReW or ImW has Hausdorff-Besicovitch (fractal) dimension D. Choosing
@, = un gives a deterministic W the scaling properties of which can be
studied analytically in terms of a representation obtained by using the
Poisson summation formula. Choosing ¢, random gives a stochastic W
whose increments W (¢t +7) — W (t) are statistically stationary, with a mean
square which, as a function of 7, is smooth if 1.0 < D < 1.5 and fractal
if 1.5 < D < 2.0. The properties of W are illustrated by computed graphs
for several values of D (including some ‘marginal’ cases D = 1 where the
series for W converges) and several values of v, with deterministic and ran-
dom ¢, for 0 <¢< 1 and the magnified range 0.30 < ¢ < 0.31. The
Weierstrass spectrum y™ can be generated by the energy levels of the
quantum-mechanical potential — A4 /%, where 4 = } + 4n%/In?y.

1. INTRODUCTION

Mandelbrot (1977) discusses the celebrated function devised by Weierstrass in
1872, which although continuous everywhere is differentiable nowhere. He points
out that the Weierstrass function is a fractal, in the sense that its graph is a curve
whose Hausdorff-Besicovitch dimension exceeds unity. As the function’s fractality
implies, it has no smallest scale. But it does have a largest scale, and this might
be a disadvantage when using it to model fractal phenomena. Therefore Mandelbrot
proposes the following extension of the Weierstrass function, which has no scale

at all:
W) = n=z-:—oo_7(2:m- (1<D<2, y>1, ¢,=arbitrary phases). (1)

D is taken to be the Hausdorff-Besicovitch (fractal) dimension of the graph of W(¢),
by which we mean, since W is complex, the graph of Re W or Im W. y is a parameter,
and the phases ¢, can be chosen to make W exhibit deterministic or stochastic
behaviour. The frequencies y” form a ‘ Weierstrass spectrum’, spanning the range
zero to infinity in geometric progression; this is the sense in which W possesses no
scale. With the indicated restrictions on y and D, the series for W converges but the
series for d W /d¢ does not.
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We shall call W the ‘Weierstrass-Mandelbrot function’. In view of its mathe-
matical importance and potential applicability, W deserves detailed analytical and
computational study. This paper is a first step in that direction.

At the outset we admit to a difficulty: so far as we know, there does not yet exist
a proof that D is in fact the fractal dimension of W. We do, however, strongly
believe that this is the case, for theoretical and ‘experimental’ reasons to be givenin
§ 4 after the necessary analysis has been developed; until then we simply assume it.

The fractal nature of W implies that repeated magnification of its graph reveals
ever-finer levels of detail. Such behaviour contrasts sharply with that of a differen-
tiable function, whose graph tends to a straight line when magnified. The levels of
detail are self-similar under an affine scaling in which the ¢ axis is stretched by a
factor y and the W axis by y2~P. In the deterministic case, discussed in §2, ¢,
is chosen to be a linear function of #, and the origin ¢t = 0 plays a crucial role in the
scaling, a fact explained by Poisson transformation of the series (1). In the stochastic
case, discussed in §3, {@,} is chosen to be a set of random numbers, and the scaling is
embodied in the mean square increment of W between two points. These two kinds of
scaling are illustrated by graphs of W (t) obtained by numerical computation from (1).

Three special values of D are particularly interesting. For the ‘Brownian’
fractal, D = 1.5 and W(t) is a model for the distance travelled along the W axis in
time ¢ by a particle moving in infinitesimal steps which are equally likely to be
backwards or forwards. For the ‘extreme’ fractal, D — 2 and W(¢), whose graph is
almost area-filling, is a model for ‘1/f noise’ (Mandelbrot 1977; Press 1978); our
computations in this case are for D = 1.99. For the ‘marginal’ fractal, D = 1 and
W (t) is a model for a section through a conjectured subglacial landscape (Nye 1970)
self-similar under equal magnifications in the W and ¢ directions; when D = 1 the
convergence of the series (1) is determined by the behaviour of ¢, as 7 ——oo,
whereas the function’s fractal nature is determined by ¢, as n -+ co; for our com-
putations we chose {¢,} for which (1) does converge.

In addition to D = 1, 1.5 and 1.99 we also studied D = 1.2 and 1.8. For each of
these values, we computed graphs of W(t) for v = 1.2, 1.5 and 5 over the ranges
0<t<1 and the hundredfold magnification 0.30 < ¢ < 0.31. This gave thirty
different types of graph. There were four versions of each type, corresponding to
three deterministic sets and one random set {@,}, excepting those cases for D = 1
where the series (1) does not converge. Limitations of space restrict us to showing
only an illustrative selection of all these graphs. Details of computational
procedures, and the overcoming of a difficulty arising from the fact that W has a
Weierstrass spectrum, are described in the appendix.

The frequencies in Fourier series form an arithmetic progression, and such linear
spectra are familiar from elementary eigenvalue problems like the vibrating string,
the harmonic oscillator,and the components of the angular momentum operator. By
contrast, the Weierstrass spectrum of W (t) seems not to have been discussed before.
In §5 we show how it can be generated naturally by a quantum-mechanical
Hamiltonian whose potential is weakly singular.
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2. DETERMINISTIC FUNCTIONS
These are given by (1) with the phases chosen as

b = pm. )
W can now easily be shown to obey the affine scaling law
W(yt) = e7iry*D W(t). 3)

This implies that the whole function W can be reconstructed from its values in the
range t, < t < vt,; for example, W in the ranges v, <t < y2t, and y 1, <t <,
are magnified and diminished versions, respectively, of W in the range ¢, < ¢t < vi,.

As a first illustration of this scaling we consider the cosine series
= Re Wty = 3 (—l—y—f—‘_’;—y” (4)
which also converges for the marginal case D = 1. C(t) is never negative. Figures
1 (a—e) show C(t) for D = 1, 1.2, 1.5, 1.8, and 1.99 with y = 1.5, for 0 < ¢t < 1. It is
clear how the form of C(t) near any point ¢, is repeated, magnified and revealing
more detail, near yt,, y2t,, etec.

As a second illustration we consider the alternating-sign sine series
o — 1\ qiny™
A0 =-ImWOym= 3 EmT, %)
which does not converge when D = 1. A(t) must change sign infinitely often, because
(3) implies A(yt)/A(t) < 0. Figures 2 (a-d) show A(¢t) for D = 1.2, 1.5, 1.8 and 1.99
with y = 1.5, for 0 < ¢t < 1. The repetition and resolution of features at ¢, yt,, y2¢,
etc. is again obvious.

The graphs of C(t) (figure 1) and 4 (¢) (figure 2) look rather different, although they
both show fractal curves with the same D. This is because the range of ¢ depicted
includes the origin and so contains infinitely many vy-periods exemplifying the
scaling (3), which implies very different behaviour for functions with 4 = 0 and
1 = n. To demonstrate the respects in which C(t) and A(t) are similar, it is necessary
to look in detail at a range of ¢ that does not include the origin and which is smaller
than a y-period. This is shown on figures 3a—d, which are magnifications of figures
1c, 1d, 2b and 2¢ respectively, displaying the range 0.3 < ¢ < 0.31. The resemblance
between functions with the same fractal dimension is now much clearer.

The scaling law (3) does not imply that W(¢) is a fractal, because it is satisfied by
smooth functions of the form

Jn(@) = t2Pexp[—i(u+2nm)Int/Iny], (6)

where m is any integer. These functions can be combined into an alternative series
for W (¢) which will of course have the property, not shared by (1), that the individual
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terms all obey (3). To obtain this new series, we transform the sum over n in (1)
by the Poisson formula (Lighthill 1958), and obtain

(1 — ei‘)’nt) ei(/l+2'n'm)n
7(2—D)'Ib ¢ (7)

W(t) = ﬁ N dn
m= — o -
After integrating by parts, the terms in this series can be expressed as I' functions
(Abramowitz & Stegun 1964), with the result
HTD o—p2lny  +o :

W)= "o 5 faljemmrT (D— 2+1-‘”—;;37@)). (8)
Application of Stirling’s formula shows that the terms decay as exp (—2mn2/Iny)
as m —+o0 and as |m|~@-D x exp (im x constant) as m ——co; therefore the series
is convergent. The convergence is fastest when y — 1, in contrast to (1) whose
convergence is fastest when y — co.

An immediate application of (8) explains the trends of the curves on figures
1 and 2, as given by the most slowly varying contributions to W(t). If we try to
identify these in equation (1), we find only the zero-frequency terms » —— o0,
whose value is hard to estimate. From (8) and (6), it is obvious that the most slowly-
varying contributions correspond tom = 0 (4 = 0)and m = 0, —1 (# = =n). In the
case of C(t) (equation (4)), the trend is

P PT(D—1)cosin(2—D)
C(t) ~ @—D)hy . (9)

In the case of A(t) (equation (5)), the term m = —1 dominates the term m = 0
because of the exponential in (8), giving the trend

—¢2-D 611'2/2]11 v

A ~ Ty

Im {eiwr(1}D+1nt/1ny) T (D— 2__"1‘:_)}. (10)
Iny

If n/Invy is sufficiently large this can be simplified by using Stirling’s formula, to

give, after some calculation, the trend

2\ tlh\2 2 . [ = etlny\ =

The trends (9) and (11) are plotted as the smooth curves on figures 1 and 2 respect-
ively; evidently they represent the overall behaviour of C(f) and A(t) very well.

All the graphs on figures 1—3 were computed with y = 1.5. The effect of varying
v can be seen on figure 4. Figures 4(a, b) show C(t) (0 <t < 1) fory=12and 5
respectively, with D = 1.5; they should be compared with figure 1¢. As expected,
increasing 7y separates the scales of variation of the function. Figures 4(c, d) are
similar to figures 4 (a, b) but with the range 0.3 < ¢ < 0.31, and should therefore be
compared with figure 3a. For these magnified graphs, the effect of varying y is
much less pronounced; the fractal dimension shared by the graphs is relatively
more important ( a point we shall take up again in §4).
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3. STOCHASTIC FUNCTIONS

Let {¢,.} in (1) be a set of random numbers on the range 0 to 2r. Then W(t) is the
sum of infinitely many contributions with random phases and so is a Gaussian
random function (Rice 1944, 1945). Figures 5(a—e) show some of these random
fractal functions: Re W(¢) (0 < ¢ < 1) for D = 1, 1.2, 1.5, 1.8 and 1.99 with v = 1.5.
In the case D = 1, the convergence of (1) is assured by choosing ¢, = a, n, where
the a,, are a random sequence of zeros and ones.

Each such W(t) is a member of the ensemble of random functions generated by all
possible sets {¢,}. Included in this ensemble as a subclass of zero measure are the
deterministic functions discussed in §2. No other functions W satisfy the scaling
(3), so that in general the origin ¢ = 0 is not the source of y-periodicity; this is
obvious from figure 5, especially in comparison with figures 1 and 2.

Figures 6 (a—e) show hundred-fold magnifications of figures 5(a—e), i.e. Re W (t)
(0.30 < ¢ <0.31). The similarity is so striking that if the axes were not labelled it
would be impossible to decide which graphs were the originals and which were the
enlargements.
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F1cURE 1 (a) For legend see page 465.
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F1cure 1. Weierstrass—Mandelbrot, cosine fractal function C(f), range 0 < ¢
(@) D =

On the Weierstrass—Mandelbrot fractal function 465

1(d)

‘ | l {f Mh”
MM M wm,w" ,,w ! W

ﬂw ' ] “W “W‘ "N' l

|1 i

T 17 ‘ T T | T T { T 1 1T I 1 7 |

0.200 0.800 1.000

1(e)

l,. Mn.r |
|

T 1 ‘vw |

T ] T 1T I T 1 1T r T

i
i
I

I
I
.

T T T 1 J T T T |

L I I | I | I | | L | I i 1 | I L J

0.200 0.400 0.600 0.800 1.000

<1,y = 15:
(¢ D =1.5;(d) D = 1.8; (¢) D = 1.99 (note change of origin).

16-2

1; (b) D = 1.2;



466 M. V. Berry and Z. V. Lewis

E 2()
U.SUO%
0.2005:-_
0.100;
- M,

-0.100

-0.200

-0.300

-0.400

<

IIIIII|I|IIIIHIlI[HH!IIIlllllIIII!!‘\\HH

0.0 0.200 0.400 0.600 0.800 1.000

L 2()

0.500

0.0

-0.500 |

-1.000 | —

= L 1 L | I L L | L L L | L L 1 | 1 1 L |
0.0 0.200 0.400 0.600 0.800 1.000

Ficure 2 (a), (b) For legend see page 467.



On the Weierstrass—Mandelbrot fractal function 467

T
R g - l M\h

10.000 | 2(d)

w‘vu‘g
|} rll“

F1cUrE 2. Weierstrass—Mandelbrot alternating-sign sine fractal function 4(¢), range 0 <¢ < 1,
v =15:(a) D =12;b)D = 1.5; (¢) D = 1.8; (d) D = 1.99.
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To understand the statistics of W, we introduce ensemble averages, denoted by
(e and defined as mean values over all possible sets {¢,}. Next we calculate the
variance V(7) of the increments of W, namely

Vir) = | W(t+1)— W(t)|2e

o rdgp, 2 ©  (elr*t — elHt+) (e~ 1Yt — o=iy™(E+1)) oiG1—m)
B nﬂ wlo 27 l}l o mw @=D)i+m)
®  (1—cosy"T)
=2 X i - (12)
n=—w Y

This is independent of ¢, and, together with the easily-proved result (W (t+71)—
W(t)))e = 0, implies that the randomness of the increments of W is stationary. W
itself is not a stationary random function, since its variance, as obtained from (12)
and W(0) = 0, is
AW BDe = V1), (13)
which does depend on ¢.
V(7) is a measure of the correlation between the values of W at points separated

by 7, and the formula (12) holds not only for the ensemble average at fixed ¢ but also
for the ¢-average for a given function in the ensemble, i.e.

{W(t+7)— W(t)|2) = lim %,JT de|W(t+7)— W(t)|2 = V(r). (14)
T —> o -7

Comparison of (12) with the cosine series (4) shows that V(r) represents a strange
correlation, which itself has the form of a Weierstrass function with 4 — 2D replacing
2—D. Thus V(r) is a fractal function, with dimension 2(D —1) if D > 1.5, but isa
differentiable function if D < 1.5. For all D, V(r) obeys the scaling law

Viyr) = y**P V() (15)
By analogy with (9), the trend of V is

( TP T(2D —2) cosnD
V% Tny@—D)(@2D—3) °

(16)

which is an exact representation of (12) as y — 1.

The power spectrum S(w) of W is proportional to the square of its Fourier trans-
form, or to the Fourier transform of the time-average correlation (W (¢t +71) W*(t)),,
and is given, apart from a zero-frequency term, by

©°  Sew— n)
Sw= ¥ Tezr) (17)
n=—o Y
To approximate this discrete Weierstrass spectrum by a continuous spectrum S(w),
we average S(w) over a range Aw including An frequencies y*, so that
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- 1 (iaw , An
where n(w) = In w/Iny. This gives
= dn(w)/dw 1
S(w) ~ y@2D)nlw) ~ n7y u5—2D" (19)

In the limit y — 1 this is an exact result, and the Gaussian random fractal function
W (¢) then has a continuous spectrum.

4. FRACTAL DIMENSION OF THE GRAPH OF W

Following Orey (1970), we use the ‘potential’ definition of fractal dimension D
(Mandelbrot 1977). Let positive charge uniformly cover the ¢ axis with unit density.
Move this charge up or down until it hits the graph of Re W (t). Now write the electro-
static energy (per unit length of the ¢ axis) of this fractal line of charge, by employing
a modified Coulomb law where the interaction potential of two unit charges
separated by r is #~% where d need not be unity. This energy is £(d), where

E@) = Tlmio % dtf dt' [Re W(t)—Re W(t'))2+ (t—¢')2]%2.  (20)

Then the fractal dimension is defined as the greatest d for which E(d) is not infinite.
To study the convergence of this double integral, definer = t'—¢ and

A(r,t) = Re (W(t+1)— W (2)), (21)
so that E@d) =1} lim o f dtf dr [A2(r, t) 4+72]34. (22)
T-—)oo T—¢

The next step, whose legitimacy will be discussed presently, is to replace K by its
ensemble average (E).. This gives

where P(4,7) is the probability that the increment in Re W between ¢ and ¢ +7 will
be 4, and is independent of ¢ because of the statistical stationarity of the incre-
ments. P is a Gaussian function of 4, whose variance {42)¢ is 1V () (equation 12):

P(d,1) = e 4"D [ [(rV(T)). (24)
Therefore (23) becomes
e—22V (1)
E@d) = —f dAf dT ) A= (25)

We obtained this formula by replacing the t-average (22), over a given function
W, by the ensemble average (23), over all functions W at fixed ¢. Is this justified ?
Let the series (1) be truncated to include N terms, where later we shall take the
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limit N — co. The N phases ¢, can be considered as angle coordinates on an N-
dimensional torus, each point of which represents a function W in the ensemble.
Ensemble-averaging corresponds to fixing ¢ and integrating over the torus. Now,
t-averaging, i.e. fixing {¢,} and integrating over ¢, has the same effect as fixing ¢ and
integrating along a curve on the torus whose equation is given parametrically by

¢, = constant+ "¢ (—o0 <t < +00), (26)

as is clear by inspection of (1). This curve winds round the torus with angular
frequencies y™. The resulting ¢-average is equal to an ensemble average, provided
the curve eventually covers the torus uniformly. But by an ergodic theorem for
tori (Arnol’d 1978) this will happen provided the frequency ratios are irrational,
i.e. if v is irrational. This result is independent of N and so holds as N — co.

Thus (25) is correct for almost all functions W, even those which are deterministic,
the only possible exceptions being the set of measure zero with rational y. What
about these exceptions? Equation (1) shows that W, considered as a function of y,
is continuous (although it may not be differentiable). This strongly suggests that
the fractal dimension is a continuous function of y, and so its value at rational y
equals its value at any neighbouring irrational y. ‘Experimental’ support for this
argument was provided by a calculation of (1) with y equal to the highly irrational
number (,/5+1)/2 = 1.618..., D = 1.5 and random phases; the resulting graph
closely resembled figure 5¢, for which y has the low-order rational value 1.5. We
conclude that the fractal dimension of every member in the ensemble of functions
W is determined by the convergence of (25).

Now we argue that the fractal dimension as given by (25) is actually independent
of y. What is important is the behaviour of the integrand near the origin 4 =7 = 0.
This depends on V(7), which by (12) and (15) is a very complicated function near
7 = 0. Since V is never negative, it is plausible that the convergence of (25) is
determined by the trend (16) of V , i.e. by its average over ranges 7 to y7, which
are infinitesimal when 7 ~ 0. Assuming this, and ignoring irrelevant constants,
we obtain

Euyxfwcu Rk i 27)

o |T|PP(A2 472
which is indeed independent of y. In the limit y — 1, (27) is an exact representation
of (25).

The final step is to transform to polar coordinates r, 6 in the 4,7 plane, giving

2 © . rP-1-dexp { —r¥D-D cos? f /(sin )*-2D}
E’(d)ocf0 d(?fo dr I (28)

As r — 0 the exponential factor is unity except in a narrow sector of angular width
0 ~ r(P-VIE=D) The singularity (sin #)-¢-D)is integrable, so convergence is governed
by the factor »P—1-4, and requires

d <D. (29)
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Therefore the fractal dimension of the graph of W is D in all cases, as we have
assumed throughout this paper.

Of course these arguments are far from rigorous, and the possibility remains that
W has a fractal dimension differing from D by a quantity that vanishes as y — 1.
‘Experimental’ evidence suggests otherwise: the functions C(¢) (0.30 < ¢ < 0.31)
for D = 1.5, shown on figures 3a, 4c and 4d for v = 1.5, 1.2 and 5, all display
approximately the same degree of irregularity; so do the corresponding graphs of
A () (figures 3¢, 7a, b), and the random fractals (figures 6¢, 7c, d). Moreover, the
fact that the three groups of functions, C(t), 4(¢) and random, all resemble one
another supports our earlier conclusion that the fractal dimension is the same for
all sets of phases {¢,}.

5. QUANTUM POTENTIAL WITH A WEIERSTRASS SPECTRUM

A striking feature of W is its Weierstrass spectrum y», and it is natural to ask
whether any operator possesses such a spectrum (excluding such trivial possibilities
as the eigenvalues of exp [({,/%)Iny], where [, is the angular momentum operator).
We seek a potential well U(x) of such a form that the discrete energy levels for
a non-relativistic particle are

E,=—-6vy™ (—0<mn<ow). (30)

These levels are defined by eigenfunctions ¥, (x) on the positive x axis, and satisfy
the Schrodinger equation

dzé/’_;z(wM (B,—U@)]¢,(x) =0 (¥,(0) = ¢,(c0) = 0). (31)

The spectrum (30) has an infinitely deep ground state (n = —o0) and excited
states clustering to a limit point at £ = 0 (n = +00). Now, any ‘regular’ potential,
i.e. one that is bounded from below or diverges as 2— 0 more slowly than — 1/4a2,
has a ground state at finite energy. On the other hand, any so-called ‘singular’
potential (Frank, Land & Spector 1971), which diverges faster than — 1/4x2, has
wave functions oscillating infinitely rapidly as  — 0 and so would appear to possess
a continuous spectrum of bound states. It therefore seems that the Weierstrass
spectrum, being both bottomless and discrete, can only be generated by a potential
that in some sense is neither regular nor singular.

Consider, however, the weakly singular potential

U(x) = —A4/x?, (32)

where 4 > }. The solution of (31) which decays at infinity is, for any negative energy
B,

Y(x) = B\/wa(A—%)(x«/(“E), (33)

where K, denotes the modified Bessel function of the second kind with order v
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(Abramowitz & Stegun 1964), and B is a normalization constant. As x— 0, standard
formulae give
Brjx
V) SRy DIT @ = D]

xsin{y/(4—-})In(3zy —E)—arg'(1+i/(4 —1))}. (34)

This tends to zero, suggesting that a bound state exists for any negative £, i.e. that
the spectrum is continuous. (If 4 < %, solutions of the form (33) diverge at the
origin and there are no bound states.)

Now, as Frank et al. (1971) point out, discreteness can be imposed by demanding
that any two solutions (33) with energies E; and E, are orthogonal. Using the result

0 _ n(ab)—u(a2v _ b2v)
f_wdzsz(az) KV(bZ) = m)— (35)
(Gradshteyn & Ryzhik 1965), we find that orthogonality implies
exp{iy(4d—})In(-E,)} = exp{iy(4 —})In (- E,)}, (36)
s0 E,/E, = exp{2nn/{(4 -})}, (37)

where 7 is an integer. Therefore the levels do indeed form a geometric progression,
and the spectrum can be brought into the Weierstrass form (30) if one level is
fixed at — &, and 4 is chosen to be

A = }+4n%/In%y. (38)
The same result can be obtained from the exact eigenstates of the potential
Ulw) = —4/(x+96) (39)

as ¢ — 0.

It is possible that the attractive inverse-square potential might be the only one
with a Weierstrass spectrum, but we are unable to prove this. There may well be
other vibrating systems with a Weierstrass spectrum (e.g. variable-density strings),
but we do not know any.

APPENDIX: COMPUTATIONAL PROCEDURE

The Weierstrass—Mandelbrot function W was computed directly from the series
(1), using complex double-precision arithmetric and Re W or Im W plotted against £.
The summation over n was truncated at np;,( < 0) and n,, (> 0). ny;, was chosen
so that the sum of the neglected terms — o0 < n < npy;, could not be perceived by
eye at the scales plotted. A similar criterion was not used for n,,,, because it
sometimes (i.e. for y - 1 and D — 2) resulted in such large arguments y”¢ that the
trigonometric functions in (1) could not be computed. This difficulty is a direct
consequence of W having a Weierstrass spectrum, which makes the frequencies y*
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increase very rapidly with n. Therefore n,,, was chosen so that the neglected terms
N > Nyex corresponded to oscillatory contributions to W whose ¢-wavelengths could
not be perceived by eye at the scales plotted. This new criterion resulted in much
smaller values for n,,,,. In those cases where it was possible to compare the results
obtained using both criteria, there was no visible difference, except for one case,
namely the function C(¢). Here there were non-oscillatory terms, whose sum for
N > Nygy caused an overall shift in the function when the smaller n,,, was used;
therefore these terms were summed analytically and added to the computed
function.
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