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ABSTRACT

Theories of semiclassical bound state spectra for systems
with N freedoms are reviewed, emphasizing the different features
occurring on successively finer scales of energy E, measured in
terms of h, and attempting to correlate these with whether the
underlying classical motion is regulaxr or irregular.

1. INTRODUCTION

Substantial efforts are now being made [1-7] to unravel the
semiclassical energy-level structure of bound Hamiltonian
systems, motivated for example by the need to understand the
high-lying states of vibrating molecules, The difficulty of the
guantal problem reflects the complexity of the underlying
¢classical motion [8-11]: for a system with M freedoms (i.e. with
a 2N-dimensional phase space), where N 2> 2, motion may be
regular (ordered, predictable), i.e. orbits wind smoothly round
N-dimensional tori in phase space; or it may be irregular
(chaotic, unpredictable), i.e. exploring 2N-1 dimensional regions
in phase space with neighbouring orbits separating exponentially.
What corresponds, guantum-mechanically, to these classical
distinctions? My intention here is to give a brief discussion
of this guestion, concentrating on the distribution of energy
levels; a more substantial review, including an account of the
morphologies of wave functions, will be published elsewhere [12].

Obviously one expects the nature of the classical motion to
influence the quantal spectrum under semiclassical ceonditiens,
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i.e. when b is in some sense small (in comparison with
classical guantities having the same dimensions), 1In fact
when b + O the spectrum displays a richness of different types
of behaviour on clearly separated energy scales. I shall
describe this picture of the spectrum by starting in § 2 with
the coarsest energy scales (larger than ©(h)), on which the
spectrum is described by the mean level density d(E). In § 3 I
shall explain how oscillatory corrections to d, corresponding to
level clustering on scales of order h, are associated with
classical closed orbits. § 4 is devoted to the 'guantization
conditions' giving individual levels, whose spacing is of order
h™. Then, in § 5 the texture of the spectrum on scales smaller
than B¥ will be discussed in terms of the distributions of
spacings between neighbouring levels. Finally, in § 6 the most
delicate features of all, on the finest scale-degeneracies
between energy levels - will be considered.

It will be helpful to have in mind certain extreme types of
classical motion. The extreme of regularity is displayed by
integrable systems, where there are N global constants of motion
(including the energy) and all orbits are confined to phase-
space tori. Systems displaying extreme irregularity are
ergodic: only the energy is conserved and almost all orbits (i.e.
all except a set of zero measure) explore almost all of the
2N-1 dimensional 'energy surface'. But most Hamiltonians
{(including the anharmonically coupled oscillators representing
vibrating molecules) are neither integrable nor ergodic: a
finite volume of phase space is filled with N-tori, and a finite
volume with 2N-l1-dimensional chaotic orbits; often the
proportions change as the energy increases, being nearly
integrable ('guasi-integrable'} at low energies and nearly
ergodic at high energies.

2. SCALES LARGER THAN h: THE MEAN LEVEL DENSITY

Consider a bound system with coordinates gq = {ql...qN} and
momenta p = {p,...p, }, with classical Hamiltonian
H{q,p). Suppose the corresponding Hamiltonian f = B4, D)
generates the discrete spectrum of energies E = E_,E,... = {E,},
labelled in order of increasing E. A complete deScription J
of this spectyxum would be obtained from knowing the level density
A(E), defined as

a(E} =.T. S(E-E,) = Tr &(E-f) (1)
j=1 |

There is a beautiful semiclassical theory for 4(E}, whose
principal architects were Gutzwiller [13-171 and Balian and Blogh

[18-21). This is based on representing 4(E) in the form
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d(E} = dE) +4d . (B, (2}

where & jg the mean level density and d is a series of
oscillatory corrections. The terms on 2he right side of (2)
correspond to successive smoothings of the singular function
d(E}. On the coarsest scale, that is after smoothing over
energy ranges AE large enough to obliterate all traces of
individual levels and all scales of level clustering, only a(E)
survives, As AE is made smaller, more and more terms in
d (E} contribute, with faster oscillations, until eventually
tﬁg§ sum to give a series of delta functions at the energies of
the levels. In simple terms, the representation (2) is a
generalization of the following 'Poisgon' expansion for a series
of equally spaced delta functions:

(=] ac

L §(E-n) =1+ 2 E cos 2mmE (3N

n=-o n=1

We begin by studying the mean level density d(E). This is
given by the simple semiclassical rule [e.g. 22] that each
quantum state is associated with a phase-space volume hY¥, so
that it predicts

dm ¥ f@g { dp 8 (E-H(g.p)), 4)

h

i.e. the level density is proportional to the 'size' of the
energy surface.

One way to obtain this formula - which is convenient in that
it also leads to a theory for 4 e~ is to write (2) in terms of

the outgoing time-independent Green function:
G"'(g,g';E) z <q’| 1 - ]CI> (5
E+ie-H
so that
__1 + -

In view of the fact that G is the probability amplitude for
observing at g particles emitted from q” with energy E, it is
not surprising that the semiclassical Eheory [13-21; see also
the review 23] gives G' as a sum over all classical trajectories
leading from ¢” to g with energy E. Aas g™»> g this sum is
dominated by the direct path going straight from g” to g, and
the contribution to (6} from this path alone giveg precisely

d as given by (4}).
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In the important gpecial case where H takes the form

gl
H(grg)- = " + v(.g]l (7)

g ]

[3¥)

(4) gives d as an integral over the classically accessible
space, namely

N N -1
—_ i 3 1 _ 2 -
d(E)xLﬁ?] A7) g ag [E V(gg Ofe V(g)], (8)

where & denotes the unit step function. If N=2 this reduces
to the simple formula

_Amu
2wh2

a(E) (9)

where ¢44E) is the area of the classically accessible g-space.
In the context of 'billiard' systems, where V(g) vanishes
within a curve B and is infinite outside B, so that classical
trajectories are straight lines reflecting specularly at B
and quantal wave functions vanish on B, (9) is called the Weyl
formula (for a review see [24]).

For numerical tests of (4) it is convenient to work not
with the spiked function d(E) but with its integral, namely
the mode number N(E} defined by

E
Nig) Ejd(E')dE' = I

© (E-E.). (10)
3 3

1

The procedure is to compute the levels E,, construct the exact
stepped curve N(E) and compare its 3 trend MN(E) with what
(4) would give. In one such test, Marcus and his coworkers
[25,52] obtain very good agreement. Here I show another test,
for the 'desymmetrized Sinai billiard’', whose boundary B is
shown on fig. 1. This system (which I studied in detail in
[26]) was chosen because its classical trajectories were proved
to be ergodic (Sinai [27]) whenever R > O (when R = O the
system is trivially integrable). Fig. 2 shows N(E) (stepped
curve) and A(E) as given by (9} and (10} (full curve) for

five values of R. Ewvidently the agreement is poor. The
reason is that {4) is an asymptotic formula which is

here being tested on low-lying states. It is necessary

to include correction terms. These are not contributions to
dosc {which will be discussed in § 3), but are smooth terms of
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lower order in f, depending on aspects of billiard geometry [24,
18] other than the area . When these corrections are
included, the agreement improves spectacularly, as the dashed
curves in fig., 2 show.

AR

Figure 1. Desymmetrized  yp
Sinai billiard.

We draw two conclu-
sions from the formula (4)
for d. The first is that "
the mean spacing of the
levels, d‘l, is proport-
ional to BN, The second
is that on these coarsest °
scales, embodied in d, the NiE)
spectrum is so smoothed as
to no longer display any
evidence of the regularity
or irregularity of the under-
lying classical motion. To
find such evidence, we must
take an "energy microscope'’
and inspect the spectrum
more closely,

20

0 () % Bt
Figure 2. Mode number (stepped curve)
for Sinaji billiard, with uncorrected
mean mode number (full curve) and
corrected mean mode number (dashed
curvej.

3. SCALES OF ORDER h: OSCILLATORY LEVEL CLUSTERING

The fact that the mean level spacing is of order h' might
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lead us to expect that the mean level density d(E} would be
obtained simply by smoothing the delta-~spikes of the exact 4(E)
over an energy range of order BN, But such an expectation is
mistaken, because as we shall see the corrections @ oscillate
with energy ‘'wavelength' of order h, which when N> 1
(i.e. in nontrivial cases] is infinitely larger than the mean
spacing as h + O. In this important respect the spectrum in
the general case contrasts with those special cases (which
actually correspond to N=1 as analyzed for example in [23])
represented by (3), in which the slowest-oscillating corrections
have energy wavelength equal to the mean spacing.

The clearest route to understanding the nature of the
contributions to d is the Green function method based on (5}
and (6). As alreagy stated, G+(g,g’;EJ is a sum over classical
paths linking g¢” and g. As g~ > g these include not only the
direct path giving d, but paths looping back to g after a
finite excursion. A looping path need not be a closed orbit,
because it may (and usually does) return to g with momentum p
different from its initial momentum E‘ But in the integration
over q in (6) such non-clesed looping paths can be shown
[16, 12, 23] to give negligible contributions.

The conclusion is that only closed classical orbits with
energy E contribute to d (E); these include repetitions
{labelled by p)} of primi%%ge (i.e. unrepeated) closed orbits
(labelled by j). The resulting formula for d will be
written down first and then explained: ose

. J (E) pS. (E)
= _,’_,_,___ 1 —_—
C(E) = Z z 1+i 732 sin B + paj (11)
I =l i
h
In the phase, Sj(E) is the action
8y (E) =j£ Py (q:E) .dg (12)
around the j'th path, and n. depends on the focusing of
trajectories near the closed orbit.

As E varies, the action round the j'th path changes, and
causes its contribution to d sc to oscillate with energy wave-
length AE given by

de h
aE AE = 21 i,e. AE= -T-J—

(13}

oo

vhere T, is the period of the j'th primitive orbit. Therefore

the oscillations are indeed on the scale h (much longer
than K~ as h + O] as asserted. Longer paths give faster
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oscillations.

The amplitude in {11) depends on whether. the j'th path is
isolated or nonisclated, and whether it is stable or unstable.
In (11} the integer %, measures the degree of isolation: the
j'th orbit ig embedded in an {.-parameter family of closed orbits.
2, may vary from zero (for an Isolated orbit) to N-1 (for the
tarus—fllllng closed orbits of an integrable system - taking
account of the fact that each closed orbit occupies one dimension).
As an example, the stadium billiard (fig. 3) which Bunimovich [28]
proved to be ergodie, has both isolated closed orbits {(e.g. the
'long-diameter' and 'rectangular' orbits in fig. 3) and non-
igolated closed orbits (the 'short-diameter' orbits in fig. 3).

Figure 3. Stadium billiard, with two isolated
closed orbits and three members of a family of
nonisolated closed orbits.

In (l11) the behaviour of the factor A, as a function of
repetitions p depends on the stability of P the j'th orbit.
For isolated orbits, A, oscillates with p if the orbit is

stable, and decays expgngntlally if the orbit is unstable - as
expected in view of the repeated focusing or continued de-
focusing of beams of trajectories in the two cases. For
integrable systems, where orbits are embedded in N-1 parameter
families, Berry and Tabor [29, 30] showed that A, decreases
as p -1y72 '

The Green function theory leading to (l1) is reviewed by
Rajaraman [31] and deWitt-Morette et al. [32]. In the original
papers, Gutzwiller [16] emphasizes the question of stability,
and Balian and Bloch [20] emphasize the gquestion of isclation.

Now I want to dispose of a fallacy based on a mis-
interpretation of {(11). Consider the terms with given j, i.e.
those corresponding to all repetitions of a single closed orbit.
The terms will interfere constructively if

sj (Em) = (ZTrm——aj)h (14}

defining a series of energies E -corresponding to integers m, at
which the sum over p gives a contribution to dosc with some sort
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of singularity whose nature depends on A . The fallacy is to
suppese that E must be eigenvalues of 3P fi, i.e. that (14) is
a semiclassicaT quantization condition associating individual
quantum states with repetitions of individual closed orbits.

Why is this a fallacy? For a start, (14) gives energies
with separations of order h, whereas the true levels have
separation hN. 8o there are too few levels. But why not
superpose the level sequencies obtained from (14) with all
topologically different orbits? Because this would give too
many levels! An instructive example is motion in a rectangle,
where the true levels are labelled by two quantum numbers (see
§ 4) and the false levels given by (14) are labelled by three
quantum numbers and moreover have the 'infrared catastrophe’ of
existing with arbitrarily low energies.

Nevertheless, there are two circumstances where (14) does
give semiclassical quantal levels correctly., The first (trivial)
case 1s potential wells with N=1, where there is only one
topology of closed orbit and the levels do have separation h
(see e.g. [23]). The second case is when the orbits are
isolated and stable. Then Miller [33] showed that by considering
lowest-order fluctuations about the pericdic orbit it was
possible to generalize (l4) into a condition with a full set of
quantum numbers. But Voros [34] pointed out that isolated
stable orbits are always surrounded by tori, and explained how
this guantum condition is really an approximate version of the
'torus guantization' to be discussed in § 4.

In general, though, a single closed orbit gives not
individual levels but a collective property of the spectrum,
namely an oscillatory clustering with scale AE given by {(13).
Conversely, the determination of individual levels from {11)
invelves the close orbits collectively, and would reguire the
summation over sufficiently many closed orbits for individual
delta functions in d(E) to emerge as the result of interference.
Is this a feasible procedure for calculating individual levels?
I shall arxgue that it is not.

To begin to see delta functions emerging from (11), it is
necessary to include at least all orbits glving oscillations
whose energy wavelength (13) exceeds the mean spacing a-l.
Since the longer orbits give faster oscillations, it is
necessary to sum over at least all closed orbits with period
less than Tmax' which is easily calculated to be

jq_q jc;lp ¢ (E-H(g,p)}

max hN—l

{15}

Bs b+ 9, T . increases and it is necessary to include ever

more closed orbits. How many? As discussed for
example in [12] and [26], the number is of order h™N(N-1) for
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integrable systems, and of order exp{+const/h} for chaotic
systems where clesed orbits are vastly more numerous. This
means that the numbBer of operations reguired to determine levels
by summing over closed orbits is much greater than in competing
methods (see § 4}.

Nevertheless, it is instructive to see delta functions
emerging as more topologies are included, and I illustrate this
with an integrable system with N=2, whose Hamiltonian involves a
Moxse potential:

p2+p2 ~28{x~-r 1 =6 (r-r }
H= LI A v [e ° - 2e °©
2y o
(u=1 proton mass, Vo = 0.2 eV, ¥, = 0.25 nm, § = 10 nm'_l ;

r = (x2+y2)1/2

(16)

there are 166 bound levels. Fig. 4 shows some simple topologies
of closed orbit (classified by the number of rotations and
librations before closure), and fig, 5 shows the effect on d(E)
of including increasingly many topologies. In the last frame,
which includes several hundred closed orbits, delta functions
are beginning to emerge very clearly (arrows mark exact levels,
the chain curve is d(E)). For more detalls see [29].

{11

AN

{31 1.2} 32

(23

Figure 4. Some closed orbits in a central
potential.
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Figure 5. Emergence of § functions in
d(E) as more oscillatory corrections, from
closed orbits, are added to d(E}.

For ergedic systems, direct summation over closed orbits
appears hopeless as a means of locating eigenvalues. However,
in a tour de force, Gutzwiller [35] has recently evaluated by
an indirect {(and not very economic) method the path sum for the
{almost certainly ergodic) Kepler problem with anisotropic
‘kinetic energy. He obtains the first 18 levels with an
accuracy of a few percent.

it is therefore the case that, rather than being a means of
calculating individual levels, the sum over closed orbits gives
information about clustering on scales of order k. According to
{(11), this clustering is much stronger for integrable systems
(orbits nonisclated and neutrally stable) than for ergodic
systems (most orbits isolated, and all unstable). This is the
first evidence that systems whose classical motien is irregular
have levels distributed more regularly than systems with
regular classical motion; in § 5 we shall see that the same
property holds down to the finest scales,

And finally, although I have presented the closed orbit
expansions as semiclassical approximations, and this is how they
arose in the Green function theories [13-20], it is
encouraging that an exact correction is known between the

spectrum and the closed orbits for nonintegrable systems. For

the wave equation on a smooth compact Riemannian manifold (which
need not have constant curvature), if the eigenwavenumbers are
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2
/ /h), then the function

1
k. (=2uE,
JL Y J)
[} ik A
QO = T e 71
j=1

was proved by Chazarain [36] to have singularities for each A
equal to the length of a closed geodesic (Q(A) is the Fourier
transform of the k density of states). Balian and Bloch [21]
cbtained a similar exact result for the Schr8dinger equation:
the transform with respect to -l s singular at the action
values of closed classical orbits.

4.  SCALES OF ORDER hN: QUANTIZATION CONDITIONS

Now we step down from the scale h to the scale hN, and seek
a semiclassical quantization formula giving the positions of
individual energy levels with an accuracy that increases as
h + 0. Such a formula exists for regular motion, that is for
orbits lying on phase-space tori; it is known by various names:
Bohr, Sommerfeld, Einstein [37], Brillouin, Keller [38],
Maslov [39] ... I shall refer to the procedure, now to he
described, simply as 'torus quantization'.

Let tori be labelled by the wvalues Ii of the actions round
their i'th irreducible circuits Yt

_ 1 :
I, 5 5 § pl{g)-dg (L£igN), (18}

Yy

Then the eigenstate with quantum numbers m = {m,...m_} is
associated with the torus whose actions I = {Ii...IN are
quantized by

I m + o/h (19)

o

where ¢ = {o,...0 } is a set of N integers giving the number of
real-space cdustics encountered during each cycle Yi of the torus.
The energy levels Em are simply the energies of these guantized
tori, i.e. -~

EE = H(lml (20)
where H denoteg the Hamiltonian in action representation (for
elementary derivations of this torus quantization formula see
[40] and J12}).

The tori picked out by ({19}, asscciated with individual
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quantum states, almost never have commensurable frequencies and
so do not contain closed orbits. O©On the other hand, we saw in

§ 3 that closed orbits can be made to generate the whole spectrum.
This is apparently contradictory but actually no more than the
fact that an irrational number can be approximated by a series

of rationals.

The explicit formula {20} is exact as h > 0. For fixed E
this corresponds to high states, but (20) often gives results
accurate to a few percent even for the ground state (e.g. when
¥=1, in which case it is the familiar WKB level formula [23]);
in a few cases (harmonic oscillator, Coulomb potential,
rectangular boxes) it gives all levels exactly. For integrable
systems, the whole phase space is filled with tori and {20)
approximates all the levels. For quasi-integrable systems, the
Kelmogorov-Arnol 'd-Moser (KAM) theorem [8-11] guarantees the
existence of tori filling part of phase space, and so (20} can
be employed to find a finite proporticn of the levels, provided
the actions and energies of the tori can be determined. This
is a difficult problem of classical mechanics, which has been
tackled analytically by perturbation and iteration methods, and
numerically by studying caustics and the Poincare surface of
section. By these techniques, Marcus and his colleagues [1-4],
Percival and Pomphrey [5], Jaffe and Reinhardt [6] and Chapman,
Garrett and Miller [7] obtained eigenvalues for chemically
interesting quasi-integrable systems in very good agreement with
'exact' computations.,

What determines the levels if large regions of phase space
are filled with irregular trajectories? The extreme is an
ergodic system. Then torus quantization must fail, for there
are no tori, nco actions and so no qguantum numbers. Nobody has
so far succeeded in finding an explicit guantum condition to
put in its place, i.e. to give the levels in what Percival [41]
called the 'irregular spectrum'. For billiard systems with
N=2, however, and in particular for the ergodic Sinai billiard
(fig. 1), it is possible to devise an implicit quantum
condition [26] in the form of a determinant, obtained by a Green
function procedure, which is much more rapidly convergent than
those cobtained from conventional basis-set expansions. The
determinant has effective size MxM, where

perimeter of billiard boundary

M= 3 Broglie wavelength A of state being studied (1)

Because A is proportional to h, the work of finding levels
increases as h » 0, but less rapidly than in any other method
known to me.

It is possible by (nontriviall analytical manipulation of
the explicit torus gquantization condition (20), or the implicit
determinantal condition for billiard eigenvalues, to give
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alternative derivations [29,26] of the 'large-scale' formulae
for 4 and aosc already discussed in §& 2 and 3.

5. SCALES SMALLER THAN hN: LEVEL SPACINGS

Now that we are down on the scale BN corresponding to
individual levels, the next step is a further application of
the energy microscope, to study the fine-scale texture of the
spectrum as embodied in the distribution P(S) of spacings S
between neighbouring levels. S is measured as a fraction of
the mean level spacing [d(E)]~1, and P(S) is defined by

P(S)}ds = probability that the spacing of a randomly
chosen pair of neighbouring levels lies
between S and S+dsS. (22)

The ensemble over which the probability is taken is defined
semiclassically, as the infinitely many levels near any given
E as h + 0. fhe function P(S) was introduced [42] in a non-
semiclassical context, to describe the many-body spectrum of
nuclei.

We shall study P{S) as § * O, because this gives
information about the finest scales of level clustering. If
P(S} - 0 as 8 + 0O, neighbouring levels can be considered to
'repel' each other, leading to a degree of regularity in the
arrangement of levels, which can be guantified by the manner in
which P(8) wvanishes. If on the other hand P(5) -+ constant as
8 @ 0, neighbouring levels cluster rather than repel.

In § 6 I shall outline an argument strongly suggesting
that for generic (i.e. 'almost all') systems,

P(S) ~ const x S as 8+ 0O (23)

(the same result holds for eigenvalues of the ensembles of
random matrices [42] considered in nuclear physics). Therefore
generic systems are expected to display linear level repulsicn.
Fig. 6 shows a test of this prediction, obtained by calculating
several hundred gquantal eigenvalues [26] of the classically
ergodic desymmetrized Sinai billiard (fig. 1), for a range of
R between .20 and .44. It is clear that the levels do repel,
and that the linear law gives a good fit. McDonald and Kaufman
[43], and Casati et al. [44], in computations of P(S} for the
desymmetrized stadium billiard {one quarter of the shape in
fig. 3), also obtain level repulsion.

On the other hand, for systems with torus quantization
Berry and Tabor [45] showed £reom (20) that in almost all cases
(and if N > 1), P(S) has the universal form
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P(S) = e > (24)

witich 1s finite as 5 + 0, in contrast to (23), and corresponds

10

05

5

0 1 2
Figure 6. Level spacings distribution for
desymmetrized Sinai billiard.

to levels arriving irregularly with a degree of clustering. Fig.
7 shows tests of this prediction for two integrable systems with
N=2: (a) corresponds to a rectangle with side ratio 2, and (b)
corresponds to a potential which is a square well in the x
direction and a harmonic oscillator in the y direction.

Evidently the negative exponential is a very good fit to the
computed histograms.

PiS)

(a) (b)

Figure 7. Level spacings for (a) rectangle with
side ratio 1/2, and (b) sguare well along x and

harmonic oscillator along vy.
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It is tempting on the basis of (23) and (24) to use
P{S] to discriminate between a spectrum associated mainly with
irregular motion and a spectrum assoclated mainly with regular
motion. Indeed the implication

classically irregular motion in Hamiltonian without
symmetry + level repulsion given by (23] (25)

is almost surely correct. But the reverse implication is wrong;
the existence of level repulsion does not indicate classically
irregular motion.

To see this, consider the delicate case of the 'desymmetrized
square torus billiard' (fig. 8}, which is one of a class of two-
dimensional systems that Richens and Berry [46] showed to
possess the 'pseudointegrable' property of having two constants
of motion confining orbits not to tori but to phase-space
surfaces with the topology of multiply-handled spheres (two
handles in the case of fig. 8, as opposed to one for tori). If
there is any chaos here, it is of a very rudimentary nature -
not 2N-1 dimension filling, and with no exponential orbit
separation. WNevertheless, P(S)} shows clear level repulsion, as
fig. 9 indicates.

L2 S
‘ 0 05 10 15 20 25

Figure 9. Level spacings
distribution for desymmetrized
Figure 8. Desym- square torus billiard.
metrized square

torus billiard.

Moreover, even for systems with tori the quantization
condition (20] forming the basis of the level clustering law
(24} is approximate rather than exact. For most systems with
tori, and indeed for most integrable systems (where phase space
is entirely f£illed by tori} I expect ([12] and § 6) that for
very small values of S, of order exp{-const/h}, P(S) will be
given not by (24) but will fall to zero like (23). So when
does clustering occur in the exact -(rather than semiclassical)
spectrum? For the very special case where Schrddinger's
equation is separable in the coordinates (as opposed to more
general phase-space separability under the cancnical trans-
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formation to action-angle variables, whose existence is
guaranteed by integrabilityl.

It should also be pointed out that there are certain very
special classes of system (all integrable] for which P(S} does
not exist. For example, consider two equal harmonic oscillators
with Hamiltonian

2 2
p *t p
2 2
H= ——3 4y (q +q2) (26)
2u 1 2
The exact levels are
E o = hw(m1+m2+l) (© € m),m, < =) (27}
12
and occur at energies
= hup (L $p< =) (28)

with degeneracies p. The mean level density is, from (4) (or
directly)

- - (29)

so that the mean spacing of states is of order 52 as expected
for N=2. But the actual levels {28) have spacings h and arrive
in ever-more-degenerate groups, so that P(5) dees not exist -
the clustering structure continually changes as h + 0.

6. THE FINEST SCALE:DEGENERACIES

The most delicate guestion we can ask concerning
neighbouring levels is: under what circumstances do these
ceincide? 1In other words: when do degeneracies cccur? We
shall see that the answers to these guestions will enable us to
understand the spacings dlStrlbutanS P{S} just discussed,

If the Hamiltonian H has any symmetry, this may produce
degeneracies, whose nature can be studied using group theory I
shall not consider degeneracies of this type, and so when f
does have symmetry I shall consider only states which all have
the same symmetry class. This procedure is equivalent to
congsidering all the states in a suitably 'desymmetrized'

Hamiltonian, and that is why I have used this term in connection
with the billiards in figs. 1 and B.
For a typical (generic) such Hamiltonian it seems clear that



STRUCTURES IN SEMICLASSICAL SPECTRA 241

degeneracy is infinitely improbable. But it might be expected
that in a one-parameter family of Hamiltonians,

5= 8@ f A (30}

the eigenvalue curves E(A) could cross, and so twe levels could
degenerate, for isclated values of the parameter A. But the
surprising fact is that this picture is not correct: for typical
systems with real eigenfunctions (the only ones considered here)
it is necessary to vary two parameters, not one, in order to
make two levels degenerate. This is the content of a theorem
due originally to von Neumann and Wigner [47] and Teller [48]
and later generalized by Arnecl'd (ref. [9], appendix 1C). The
proof is based on a simple argument [12] employing degenerate
perturbation theory.

Let the two parameters be A and B, Then the theorem just
mentioned implies that the connection of eigenvalue surfaces
E=E, (A,B) in E, A, B space takes the form of a double cone
(dlabolo) (flg. lo) with sheets joined at the ‘'diabolical
point"' E* ’ A ’ B ; Where A . B are the parameters for which
the degeneracy occurs. If only one parameter A is varied, the
diabolical point will almost surely be missed and the curves
E+(A) will avoid each other like branches of a hyperbola
obtained by slicing the cone, rather than crossing.

E

a C®
N Aiabolical

point

LA

AR
B

Figure 10. Diabolical degeneracy structure
in space of energy E and parameters A, B.

In testing the resulting picture of the spectrum, it is
plausible to assume that a one-parameter family of non-symmetric
classically ergodic systems will be typical in the quantal sense,
and so will produce no level crossings, Such a family is the
desymmetrized Sinai billiard (fig. 1) with the radius R acting
as parameter., The levels E. (R] were computed 'exactly' [26],
and the resulting spectrum is shown in fig. 11. There are many
near-degeneracies, but close examination shows that no two levels
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actually cross, so this test is successful.

0 ] 02 3 04 "

Figure 11. Spectrum of an ergodic system:
levels E of desymmetrigzed Sinai billiard
as functions of R.

The two-parameter rule dees not hold for systems whose
levels are given by the torus quantization rule (20). In these
cases level crossings occur when only one parameter A is varied,
thus reinstating the intuitive picture which as we have seen is
wrong for the general case. To see why this is so, regard (20)
as defining, for a given parameter A, a set of N-1 dimensional
hypersurfaces E=H(I ;A) in the N-dimensiconal space of guantum
numbers m. The lev 1s occur at energies whose hypersurfaces
intersect a lattice point. Consider Ehe lattice point m .
Typically, the hypersurface through m glll not contain any
other lattice point, and so the state m will be nondegenerate.
But on varying A the hypersurface will smoothly change its
orientation and there will typlcally be values A" where it cuts
another lattice point, so that a* corresponds to a pair of
degenerate states. A simple example of this behavicur is the
(integrable} family of rectangular boxes with sides 1, A, whose
eigenvalues are

2,2
g =10 +a%n%) (31}

m,n 211

P
Degeneracies occur whenever A 1is rational; for example, the
states (2,1) and (1,3} degenerate when a2 = 3/8.
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Cne~parameter crossings will occur in the exact spectrum
in the rare .cages when torus quantization is exact. They will
occur in separable systems for which toris gquantization is not
exact, Because the basis for the conclusion still holds, namely
that the energy can be written as a continuous function in the
space of qguantum numbPers. But for nonseparable systems with
tori I expect (20] to be modified by some multidimensional
analogue of barrier penetration, causing the one-parameter
degeneracies it predicts to be split by energies of order
expi-1/h2}, so that the exact levels will show the typical
property of two-parameter crossings.

There are some special integrable systems whose levels are
all proportional to integers, and which are therefore not
naturally embedded in continuous families, whose degeneracy
structure is very strange. We have already mentioned the two
equal harmenic oscillators (26), whose spectrum ({28) shows
increasing degeneracies. BAnother example is the 459 right
trianglg (desymmetrized square), whose levels are proportiocnal
to m%+n“. It can be shown [26] that as h - O the levels are
increasingly multiply degenerate, with multiplicity proportiomnal
to ln(h—l), and are separated by energies of the order
t2¢n(h~1) rather than hZ.

Marcus and his coworkers [25, 52] suggest that the
presence of many near—-degeneracies (overlapping aveoided
crossings) in curves of energy levels as functions of a single
parameter, is an indication that the corresponding gquantum
states are associated with classically chaotic motion. This is
unlikely to be correct, because two-parameter degeneration is the
generic case, i.e. exceptions such as classes of systems with
one-parameter degeneracies (or some other number not equal to
two) occur with measure zero and so are fragile (like nedal-line
intersections of wave functions when N=2 [12, 49, 50]). On the
other hand, regular motion such as occurs on tori is robust as
guaranteed by the KAM theorem and does not occur with measure
zero, Therefore most torus-associated spectra should show two-
parameter degeneration, and hence avoided crossings, albeit on
very fine scales; only separable systems should show true one-
parameter crossings. Support for this idea that avoided
crossings need not imply classical chaos is given by computations
of Richens and Berry [46] on the 'pseudointegrable' billiard of
fig. 8, where orbits are confined to a two-handled (two-
dimensional) sphere in phase space: energy levels as a function
of L show avoided crossings very similar to those in f£ig. 1l.
The further suggestion [25, 52] that the reverse implication
holds, i.e. that the energy levels of quantum states  associated
with classical chaos will show many avoided crossings, is almost
certainly correct.

To conclude, I shall now as promised outline the connection
between degeneracy structure and the level spacings distribution
P(S); for details and a more formal argument, see [12] and [26].
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Consider first the case of a generic Hamiltonian, which can be
embedded in a family with two parameters A, B and having
degeneracies at diabolical points in E, A, B space as in fig.
10. Let the actual Hamiltonian under study have parameters

AR , B . Then the line in B, A, B space with A=A , B = B _will
thread its way among cones, which if h is small will e
presumably be thickly distributed (according to an unknown, and
in this context unimportant, lawj.

Now, P(S} is defined according to (22) as an average over
spacings for fixed A, B, i.e, as an 'energy average'. But by
hypothesis there is nothing special about the parameters A , B
and so the energy average can be augmented by an ensemble
average over a region of A, B near Ao' B . Thus can P(S) be
expressed as an integral over a volume V in E, A, B
space. For small 5, the only contributions come from the
neighbourhoods of diabolical points in V, and are proportional
to the measure of the intersection of a diabolo by twe parallel
sheets separated by S. But this measure (length of intersection}
is always proportiocnal to S, whatever the orientation,
ellipticity or cone angle of the diabclo, and this implies
directly the linear level repulsien (23).

A similar argument for nongeneric systems which require m
parameters to produce a degeneracy leads to

Qo

m-1
P(S) ~ const x § as S + 0Q (32)

We have seen that m=1 for systems with torus guantization (as
opposed to 2 generically), and this leads to the 'clustering'
prediction P + const as S + O, consistent with (24). For
systems where degeneracies are strictly forbidden, such as
finite one-dimensicnal systems, and two-dimensional harmonic
oscillators with irrationally related frequencies, we can take
m = © and predict, in accord with observation [51, 12, 45],
that P(S) vanishes faster than any power of S,
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