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‘Accidental’ degeneracies between energy levels E; and E;,; of a real
Hamiltonian can occur generically in a family of Hamiltonians labelled
by atleast two parameters X, V,... Energy-level surfaces in B, X, Y space
have (locally) a double-cone (diabolo) connection and we refer to the
degeneracies themselves as ‘diabolical points’. We studied the family of
systems in which a particle moves freely within hard-walled triangles
(vibrations of triangular membranes), with X and Y labelling two of the
angles. Using an efficient Green-function technique to compute the levels,
we found several diabolical points for low-lying levels (as well as some sym-
metry degeneracies); the lowest diabolical point occurred for levels 5 and 6
of the triangle 130.57°, 30.73°, 18.70°. The conical structure was con-
firmed by noting that the normal derivative u of the wavefunction ¢ at a
boundary point changed sign during a small circuit of the diabolical point.
The form of the variation of  around a circuit, and the changing pattern
of nodal lines of y, agreed with theoretical expectations. An estimate of the
total number of degeneracies A(j), involving levels 1 through j, based on
the energy-scaling of cone angles and the level spacing distribution, gave
H3(g) ~ (§+ $)*%, and our limited data support this prediction. Analytical
theory confirmed that for thin triangles (where our computational method
is slow) there are no degeneracies in the energy range studied.

1. INTRODUCTION

Our purpose is to study degeneracies between discrete energy levels of quantal
systems without symmetry and for which no magnetic fields are present, or, to put
it more generally, between discrete eigenvalues of generic real Hermitian linear
operators. For a single such system, degeneracies are infinitely unlikely and have
traditionally been called ‘accidental’. For a family of systems, however, it is possible
to produce degeneracies by exploring the space of parameters X, Y, ... labelling
members of the family. Von Neumann & Wigner (1929) showed that in general one
parameter is insufficient to produce a degeneracy: at least two are required.
Teller (1937) showed that the surfaces representing energy levels £ in the space of
E and the two parameters X, Y are connected at degeneracies like the two sheets of
a double cone: a diabolo. To emphasize this conical geometry in the neighbourhood
of degeneracies we shall refer to the connections as ‘diabolical points’.
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Diabolical points can occur in the electronic energy levels of a polyatomic mole-
cule, which (in the adiabatic approximation) depend on parameters X, 7Y,...
representing the configuration of nuclei. (Herzberg & Longuet-Higgins 1963;
Desouter-Lecomte et al. 1979). As the molecule vibrates, and the nuclear configur-
ation comes close to a diabolical point in the electron spectrum, an excited electron
on the upper sheet of a cone can make a ‘radiationless transition’ to the lower sheet,
in which the small energy difference is released not as a photon but into the nuclear
vibrations. In a bold extension of this idea, Hill & Wheeler (1952) considered the
energy levels of nucleons in a nucleus to depend parametrically on its external
shape, and estimated the viscous resistance to change of shape by regarding
radiationless transitions between diabolical points in the nucleon spectrum as the
elementary acts of damping.

More recently, two aspects of the energy levels of semiclassical systems have been
related to the existence of diabolical points in spectra of two-parameter families of
generic Hamiltonians (Berry 1981, 1983a,b). The first aspect is the distribution
P(8) of the spacings S between neighbouring levels, previously considered (see, for
example, Porter 1965) in the context of nuclear spectra. When § is small P(S) - 0
as § — 0 for generic systems, whose mechanics (classical or quantum) is non-
separable in the coordinates. For separable systems by contrast, P(S) — constant
as § — 0 (Berry & Tabor 1977). The difference is attributable to the fact that
separable systems exhibit the non-generic property that their levels can degenerate
when just one parameter is varied. The second aspect is the presence of many
‘avoided crossings’ in curves of energy levels as functions of one parameter (Marcus
1980; Noid et al. 1980). Variation of just one parameter may cause the system to pass
close to a diabolical point in the space augmented by a second parameter, and the
avoided crossings are simply the approximately double-hyperbola curves obtained
by slicing the diabolo near its vertex.

Only recently have a few diabolical points been exhibited by displaying conical
structure in the energy levels of non-symmetrical systems depending on two or
more parameters (in molecules; Vaz Pires et al. 1978; Dehareng et al. 1983). By
contrast, there have been many studies of systems with geometric symmetry that
can give rise to degeneracies whose nature can be understood in terms of group
theory (see, for example, Knox & Gold 1964). We therefore choose to explore, in
a systematic way, the spectrum of a non-symmetrical two-parameter family of
systems whose levels can be determined fairly easily, with the intention of dis-
covering diabolical points and determining some of their properties.

The family selected for study is triangular quantum billiards. These are two-
dimensional systems with coordinates r = (x,y), whose eigenvalues k; and eigen-

functions y;(r) are determined by solving the equation for the vibrations of
triangular membranes, namely

Viy(r)+kiy(r) =0, rinB,
gjj(r O: }

)= ron B, )
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where B is a triangular boundary. B is specified by giving any two of the angles
«, B,y and the area 7. The dependence on & is a trivial scaling which we remove by
defining the energy eigenvalues & in terms of the wavenumber eigenvalues k& by

E; = k}/4n, 2)

where the factor 4n is included to give the asymptotic energy levels an average
spacing of unity (Baltes & Hilf 19776). Thus the space of triangles is effectively two-
dimensional. The choice of triangle parameters X, ¥ (functions of «, £, y) will be
described in § 2.

To solve (1) an efficient computational scheme was employed, based on a Green-
function technique which is explained in §3. The resulting spectra E;(X, Y) are
displayed in §4. A number of diabolical points were found, and their energies and
parameter values are listed in §4 together with the corresponding values for
degeneracies anticipated for reasons of symmetry in the equilateral and isosceles
triangles.

In order to ensure that genuine degeneracies have been found (and not merely
a close approach of blunted cones), we make use in §5 of a remarkable topological
result (Arnold 1978; Herzberg & Longuet-Higgins 1963; Longuet-Higgins 1975;
Uhlenbeck 1976; Mead 1979, 1980, 1983; Mead & Truhlar 1979; Berry 1984): during
a circuit of a diabolical point, each of the two wavefunctions changes sign. We con-
firm that such sign changes do occur, and also verify an analytical theory for the
detailed form of the variation of wavefunctions when the circuits are small. We also
display the interesting changes in the nodal pattern of the states around the circuits.

Computations for thin triangles are difficult, and toensure that nodiabolical points
are missed when one or two angles are small an analytical theory is developed in § 6.

The density of diabolical points in £, X, Y space is expected to increase with £.
In §7 we estimate this effect by giving an approximate theory whose ingredients
are the level spacing distribution P(S) and the scaling with Z of the cone angles.

2. TWO-PARAMETER SPACE OF TRIANGLES

Each triangle, with angles o, £, v, can be represented by a point in the Euclidean
space with cartesian coordinates «, £, y. All such points lie in the equilateral triangle
a+ f+v = n(figure 1). Weremove the redundancy associated with labelling triangle
vertices by defining @ > f# > y. Thus the essentially different triangles are repre-
sented by points in the 30°-60°-90° ‘triangle of triangles’ shown shaded in figure 1.

It is convenient to parametrize triangle space not by two angles but by variables
X, Y defined as follows:

y=10Y, }
g =(1—-1X)10Y + 10X,

This opens out the ‘triangle of triangles’ into the ‘rectangle of triangles’ 0 < X < 9,
0 < Y < 6. The rectangle is shown in figure 2, together with the contours of y and g

v, B in degrees. (3)
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and the locus of right triangles. The transformation from 4,y to X, Y is nonsingular
except for the point y = f = 60° representing the equilateral triangle, which is
spread out along the line ¥ = 6.

Fiaure 1. The ‘triangle of triangles’ (shaded) in the space of angles «, £, y.

equilateral

Y
B

isosceles,
isosceles, a

5]

X

0

Fiaure 2. The ‘rectangle of triangles’ with parameters X, Y, showing contours
of v (dashed lines) < f (full lines). The heavy line represents right triangles.

The only triangles for which the £; and ¥;(r) have been determined analytically
(Jung 1980) are 60°, 60°, 60°; 90°, 45°, 45°; 90°, 60°, 30°. For these triangles, the
classical trajectories (geodesics in the triangle billiards) are integrable: in the four-
dimensional phase space they explore two-dimensional tori, obtained by sewing
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copies of the triangle corresponding to the finite number of directions which any
single trajectory can adopt. For all three triangles, the spectra possess degeneracies
to be described in §4. Only the 90°, 60°, 30° triangle lies within, rather than on, the
boundary of, the X, Y rectangle.

Of the remaining triangles, all except a set of measure zero have angles which are
irrational multiples of n. Therefore typical trajectories explore infinitely many
directions, so that these dynamical systems are non-integrable. It is an open
question whether they are ergodic—that is, whether a typical trajectory explores
almost all positions and directions - but it is known that trajectories in irrational
triangles have zero entropy (Sinai 1976) and so cannot exhibit the exponential
instabilities of fully chaotic systems such as the billiards of Sinai (1970) and
Bunimovich (1974) (see Arnold 1978). Nevertheless, they do, as we shall see, appear
to exhibit generic quantal behaviour so far as degeneracies and level spacings are
concerned.

Triangles whose angles are rational multiples of 7 (and which form a set of
measure zero) are classically pseudointegrable (Richens & Berry 1981), in the sense
that their trajectories in phase space lie on two-dimensional surfaces that are,
however, not tori (apart from the three special triangles already mentioned) but
multiply-handled spheres (Zemlyakov & Katok 1975; Gutkin 1983). Quantally
these too appear to exhibit generic behaviour.

Isosceles triangles form a special case, where the quantum states fall into two
symmetry classes of even or odd parity with respect to the symmetry line. There is
nothing preventing degeneracy between states with different symmetry, and so we

expect, and shall find, degeneracies along the ‘isosceles’ lines X = 0 and X = 9 of
the rectangle of triangles in figure 2.

3. GREEN-FUNCTION FORMALISM FOR CALCULATING
BILLIARD SPECTRA
To solve (1) we first reduce it to an integral equation round the boundary B. Let

Y(r) be any solution of the differential equation in (1) with wavenumber k, and let
G(r, r’) be the outgoing solution symmetric in r and 7/, of

V2G(r, ')+ k2G(r, 1) = 8(r —1'), (4)
namely Q(r,r') = —HHLDk|r—1')), (5)
where H{" denotes the zero-order Hankel function of the first kind (Abramowitz &

Stegun 1964). Multiplication of the G-equation by ¢ and the yr-equation by G,
subtraction, integration over the area within B and use of Green’s theorem give

Y(r), r within B,
fﬁds’{z/f(r’) n'-V.G(r,r)=G(r,r')n"-V .y (r')} = {%w(r), ron B, (6)
0, r outside B.

In this equation, s’ is arc length round B, reckoned anticlockwise, and n’ is the
outward normal unit vector to B at ' (figure 3).
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Define the normal component of the gradient of ¢ at s on B by

u(s) =n-V,§(r(s)), (7)

then a nonsingular integral equation for «(s) can be obtained by taking the normal
derivative of (6) with r lying on B, and by using the boundary condition that ¢r = 0
on B. Thus

u(s) = —2§ds’u(s’)n-V,G(r, r'). (8)

Next, we define p(s,8') = |r(s)—r(s)| (9)

as the length of chord between s and s’, and let 6(s,s’) be the angle between the
chord and the tangent to B at s (figure 3). Then use of (5) together with

n-V,G =sinf(s,s") 0G /dp (10)
gives, finally u(s) = — —%1k§ ds'u(s") sin 0(s, s") H{P{kp(s, s')}. (11)

(In appendix A we show that u satisfies a normalization condition (A 13)
involving k.)

To obtain a scheme for computing the wavenumbers % from this linear homo-
geneous integral equation, it is desirable to employ a discrete representation for
u(s). A mathematically obvious choice is the Fourier coefficients of « with respect to
s, which is a eyclic coordinate whose period & is the length of the perimeter of B,
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and for many purposes this may be computationally efficient too. In our compu-
tations, however, it turned out to be more economical to simply discretize the
boundary by dividing it into K segments. Defining

Sm = ml/K? /)(Sl’ m) Pums O(Sl,sm) = ma 1< (l’m) < K’ (12)

equation (11) gives the consistency condition for the energy levels ¥ (defined in
terms of & by (2)) as

ANE; X,Y) =0, (13)
where 4= lim det M (14)
K—o

and M denotes the K x K matrix whose elements are

M, = 8, + (k¥ /2K)sin 0, HP (kp,,,). (15)

Im

This is a non-Hermitian complex matrix in which £ (or %) occurs nonlinearly.
the billiard geometry is embodied in 8, and p,,, which thus depend on the para-
meters X, Y. Before embarking on computations of 4 as a function of £ whose real
zeros are the eigenvalues of the Hermitian operator defined by (1), it is necessary to
check two aspects of the formalism.

Firstly, the limit in (14) must make sense. To see that it does, we expand 4 in
terms of traces of powers of M —1, using

4 = lim exp{trin M} = lim exp{— 020_‘, (_I)ntr(M—l)”;. (16)
K—w K—w 1
From (15),

n
lim tr (M —1)* = lim (ikL/2K)" %Y .. ?‘ I1 sin Olj,j“H‘ll)(kp,),le). (17)

K—wo K—w Lol

But, symbolically,

111—1?:07{—2 ds;, (18a)
so that
lim tr (M — 1) = (k)" fﬁdsl fﬁ Sy Hsm() 8;01) HV{kp(s;,8;41)}. (18D)
K—w©

(Snt1=51)

This shows that A can be represented exactly in terms of integrals over n-chord
closed cycles of B. The representation is very convenient for analytical purposes,
and resembles the formalism employed by Balian & Bloch (1972) to study semi-
classical oscillations in the level density, but we will not pursue this aspect here.
Secondly, we must confirm that M (15) is nonsingular in spite of the
presence of the Hankel function which diverges as p=! as p — 0. If s, and s, lie
on the same side of the triangle, sin¢,, is identically zero and the corresponding
element M, is identically d,,,. But if s, and s, lie on different sides and close to the
same corner, then p,, can vanish without sin 6, vanishing, and these elements of
M, can be very large. However, the normal derivative u(s) vanishes as s approaches

a corner s,; if the corner has angle «, it can be shown by the methods of § 6 that
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U ~ |s—8o|™*V, and this is sufficient to ensure convergence of the boundary
integral in (11) in the limit K — co. Nevertheless, the large matrix elements near
corners do cause 4 to converge slowly for thin triangles, and this led us to supple-
ment the numerical calculations by developing the analytical theory of § 6.

In practical computation it is of course not possible to take the limit X -+ co. To
estimate how large K must be in order to obtain a close approximation to an
eigenvalue k, we note that k corresponds to a de Broglie wavelength A = 2n/k and
realize that this is the smallest scale on which waves ¥(r) and their normal deri-
vatives u(s) may vary. It is therefore necessary to sample B at least several times
(say t) in each de Broglie wavelength, giving

Ko = 1L/A = (t/21) kL. (19)

For the most accurate computations (near diabolical points) it was necessary to
take t ~ 8, which led to matrices of order K ~ 125 for the highest states studied.

As E varies through an isolated eigenvalue E; (for fixed X, ¥), the determinant
behaves like
AE) = (E—-E)A(E;)+.... (20)

This implies that in the Argand plane, with coordinates Re 4 and Im A4, 4 passes
smoothly through the origin as £ passes E;. This is the behaviour for generic X, Y.
We are interested, however, in the behaviour near diabolical points, that is near
double zeros of A. At a diabolical point, 4 has a double zero E*, and

A(B) = J(B~ B3 4"(B*)+ }(E ~ B 4" (%), (21)

This shows that A4 passes through a cusp at the origin as £ passes £*. Explicitly, by
orienting axes in the 4-plane so that Re A”(E*) = 0, (21) gives

Red = {Re A" (E*) (2/Im A"(E*)) (Im A)%. (22)

As the triangle is deformed to make X, ¥ vary through a diabolical point at X*, Y*,
the Argand variation of A4 with E consists of a loop (crossing the origin twice at the
two nearby eigenvalues) that shrinks to a cusp and then expands again. These types
of behaviour are illustrated in figure 4 with a computed example.

For large K, the zeros E; of A will not be purely real but will possess small
imaginary parts whose values indicate the accuracy of the truncation. The reality
of the zeros could be preserved by employing a real (standing-wave) Green function,
involving the Neumann function Yy(k|r —r'|) instead of (5). This would lead to a
matrix resembling (15) but with real elements, but has the disadvantage that the
determinant analogous to A possesses numerous ‘false’ zeros £ which are not
solutions of the eigenvalue problem, in addition to those that are. The false zeros
could sometimes be diagnosed by the fact that they possess parabolic coalescences
rather than conical crossings, but there were many cases to which this diagnosis
was not applicable and so we chose to eliminate this nuisance altogether by working
with a complex 4.

Finally, we point out that the formalism developed in this section is by no means
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restricted to triangular, or even polygonal, boundaries, and applies equally to
smoothly curved quantum billiards. Similar techniques have been developed by

De Mey (1976), Niwa et al. (1980), Riddell (1979) and Tai & Shaw (1974), and
applied to the calculation of low-lying levels.

(@) ImA (b) ImA (c) Im4

Red Red Red

F1cURE 4. Variation of the complex determinant A(¥; X, Y') with E, for the triangle X = 4.61,
Y = 3.97 (cf. figure 6). (a) E passing through level 8, which is non-degenerate; (b) E

passing through the degeneracy of levels 6 and 7; (¢) K passing through levels 9 and 10
which are almost degenerate.

4. DISTRIBUTION OF DIABOLICAL POINTS

For points X, Y in the rectangle of triangles, the complex determinant 4 ((14)
and (15)) was computed as a function of £, and its zeros in the range (0 < E < 18)
were determined; these are the energy levels of the triangle X, Y. This procedure
was carried out for the grid of triangles in which X ranged from 0 to 9 in steps of
unity, and Y ranged from 0.6 to 6 in steps of 0.2. For each value of X, the data were
plotted as curves of K,(Y). A typical set of levels (for X = 7) is shown as the thick
lines in figure 5. There are many avoided crossings, suggesting the presence of
diabolical points elsewhere in the X, Y plane. To find them, a finer grid of triangles
was examined in each region where the diabolical points were thought to lie, and
the precise location of the points was determined by iteration with Newton’s method.
The existence of each degeneracy was tested by calculating the two relevant eigen-
functions on an X-Y circuit enclosing it, and seeing whether they changed sign
(this test will be described in more detail in §5).

Twelve diabolical points were found in this way; their parameters and ener-
gies are listed in table 1. The lowest diabolical point occurs between levels 5 and
6, for an obtuse triangle. One might call this the ‘ paradoxical triangle’, because it is
the generic triangle with the special property that no other triangle (other than
symmetric ones) has a lower pair of degenerate levels. It is possible to check that
the angles are not close to low-order rational multiples of = by expanding them into
continued fractions. This gives f ~ 7Tn/41 and y ~ 8n/77, to the accuracy of
table 1, and is strong evidence that the triangle is nonspecial.

The next diabolical point occurs between levels 6 and 7, for an acute triangle
whose angles are well approximated by o ~ 937/197 and y ~ 551/179; again, these
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are reassuringly far from low-order rationals. Figure 6 shows E;(Y) for the value
X = 4.61 corresponding to a slice through this diabolical point. The near-crossing
of levels 9 and 10 in figure 6 reflects the proximity of the next diabolical point, at
X =4.85, Y = 4.06.

18

Ficure 5. Energy level curves for E;(Y) (full lines) for X = 7, showing avoided crossings.
The dashed lines are smoothed energy level curves E$"(Y), calculated from (28).

Also listed on table 1 are the symmetry degeneracies between states of even and
odd parity for isosceles triangles. These are illustrated by figure 7a, which shows
E(Y) for X = 9, corresponding (figure 2) to triangles with their two larger angles
equal. The crossings are evidently actual, rather than avoided as in figures 5 and 6.
Two of the isosceles degeneracies in table 1 lie very close to the line ¥ = 6, and are
resolved by magnification in figures 7b and c.

The last group of entries in table 1 is the list of degeneracies of the equilateral
triangle Y = 6, which can be seen on the right-hand sides of figures 5, 6 and 7a. All the
levels (not just the degenerate ones) are known exactly. They are given by the
formula (Richens & Berry 1981).

E,, = (n/343)(m?+n%—mn), 1< m< §n. (23)

States with n = 2m are non-degenerate; all the others are degenerate with multi-
plicity two because of symmetry. (This does not mean that the levels have these
multiplicities; indeed Pinsky (1980) shows that the asymptoticlevels have increasing



3, 4

©OOPLOPXPVTITIDIOOM

PPAINS S

cocpoogoooooooq

——
=0 o

10, 11

MQ'\'IOIM
—— 00 O W

—
w o

Diabolical points in the spectra of triangles

TABLE 1. DEGENERACIES IN TRIANGLE SPECTRA

E

10.02

9.79
14.44
14.27
16.67
13.74
16.42
16.35
16.74
16.06
17.44
17.43

7.85
12.15
14.47
12.86
14.22
16.67
15.73

16.89

8.87
10.34
10.65
12.55
12.63
14.76
12.31
13.21
13.59
14.76
16.92
15.32
16.83
14.13
17.22
16.22
16.50
16.98
16.60
16.95

4.23
7.86
11.49
12.70
16.93

X Y a/deg
diabolical points
1.75 1.87 130.57
4.61 3.97 84.98
2.38 1.02 139.88
2.85 1.53 128.16
0.94 1.00 152.06
4.85 4.06 83.10
2.94 1.16 133.10
0.86 1.51 143.35
3.20 1.70 123.11
5.20 3.88 84.01
2.03 2.26 122.12
5.53 3.37 89.15

1s0sceles degeneracies

0 3.12 117.64
0 1.83 143.32
0 1.51 149.80
0 3.45 111.04
0 2.20 136.00
0 1.28 154.34
0 4.65 87.04
0 3.8 104.00
0 3.07 118.62
9 2.81 75.97
9 1.77 81.14
9 5.77 61.15
9 3.19 74.03
9 1.28 83.59
9 2.01 79.95
9 1.00 85.02
9 1.45 82.78
9 0.81 85.93
9 3.40 73.01
9 2.39 78.03
9 2.17 79.18
9 1.18 84.42
9 0.69 86.58
9 1.55 82.23
9 0.91 85.47
9 4.45 67.77
9 1.20 83.99
9 3.46 72.73
9 2.83 75.87
9 2.27 78.66
9 3.62 71.90
9 5.89 60.58

equilateral degeneracies

SIS
[~
(=]

£/deg

30.73
55.30
29.94
36.55
17.90
56.29
35.30
21.53
39.94
57.19
35.25
57.16

31.18
18.34
15.10
34.48
22.00
12.83
46.48
38.00
30.69
75.97
81.14
61.15
74.03
83.59
79.95
85.02
82.78
85.93
73.01
78.03
79.18
84.42
86.58
82.23
85.47
67.77
83.99
72.73
75.87
78.66
71.90
60.58

y/deg

18.70
39.72
10.18
15.29
10.04
40.61
11.60
15.12
16.95
38.80
22.63
33.69

31.18
18.34
15.10
34.48
22.00
12.83
46.48
38.00
30.69
28.06
17.72
57.70
31.94
12.82
20.10

9.96
14.44

8.14
33.98
23.94
21.64
11.16

6.84
15.54

9.06
44.46
12.02
34.54
28.26
22.68
36.20
58.84

25
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multiplicities, for number-theoretic reasons not obviously connected with
symmetry.)

Similarly, the energy levels of the other two special triangles are known exactly,
and give useful confirmation of the accuracy of the computations. For the 45°, 45°,
90° triangle (X = 0, Y = 4.5)

E,, =in(m2+n?), 1< m<n. (24)
18
15
10

I

0
0.

»
]
ob—
S
Ot p—
(=}

Y

Freure 6. Energy level curves E,(Y) for X = 4.61 showing a crossing (slice through a
diabolical point) of levels 6 and 7 at ¥ = 3.97, and a near-crossing of levels 9 and 10
at ¥ = 4.02.

All states are non-degenerate, but the levels show number-theoretic degeneracies
which for large £ dominate the spectrum (Berry 1981); the first occurs for levels 19
and 20, at £ = 25.53, by virtue of the fact that 72+ 42 = 821+ 12, For the 30°, 60°,
90° triangle (X = 6, ¥ = 3), the states are the odd-parity subset of the equilateral
states (23), and

E,, = (n/6y3)(m*+n:—mn), 1< m<in. (25)

All states are non-degenerate, but the levels show number-theoretic degeneracies;
the first occurs for levels 20 and 21 at £ = 27.51, because

1024 12—10x 1 = 1124 52— 11 x 5.

The form of the energy surfaces E;(X,Y) ‘on the average’, that is with the
degeneracies removed and the surfaces locally smoothed in X and ¥, can be
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explained in terms of a theory for the mode number A" (), defined as the number of
levels with energies less than £, namely.

© O(x < 0),
N (E)= Y O(E—E;), where O(x)= {%(x = 0), (26)
i=1 1(x > 0).
(@) 18 —
15 (b) 7.94
E X
10 7.84
B 5.7 6.0
Y
5 (¢) 17.10
E
0 1 | | | | 16.85
06 1 2 3 4 5 6 5.8 6.0
Y Y

Fi1GuRE 7. (a) Energy level curves E;(Y) for X = 9 (corresponding to isosceles triangles with
their larger angles equal), showing crossings of states with different parity. (b) and (c)

magnifications of the small boxes in (a), which show isosceles degeneracies very close to
equilateral ones.

Baltes & Hilf (1976) review asymptotic formulae in which the stepped function
A(E) is approximated smoothly in a series of falling powers of £. When applied to
triangles, these formulae give A" ~ A" where

N E) = B—Y{LE[(An)i]+gx(n/a+n/f+n[y—1)+O0ET),  (27)

where .# and . are the perimeter and area of the triangle, and » > 0.

According to (26), the jth level can be approximated by setting A4"*™(E) equal
to j—3. On using (27), we obtain the levels E§":

Ei" = j' +3Q°+ 3Q(@* + 45')%, (28)

where J'=J—sr—sgn(l/a+1/f+1]7),
. . . 29
and 0= sin o +sin £ +siny (29)

(2msina sin ff siny)}’
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The predictions of this formula are shown for X = 7 as the fine lines in figure 5.
Two things are clear from the way the true levels £;(Y) oscillate across the smoothed
levels E§"(Y): the formula (28) is a very accurate approximation (even for the
ground state, which is surprising in an asymptotic theory); and the computations
have not missed any levels.

AE

diabolical point

Fioure 8. Geometry and notation near a diabolical point.

5. SMALL CIRCUITS OF DIABOLICAL POINTS

Referring to figure 8, we consider a diabolical point at energy E* and triangle
parameters X*, Y* which we take for simplicity to lie at the origin of X-Y space.
If the Hamiltonian operator is A (X, ¥), the two degenerate states |y and |y

satisfy ﬁ(O,O)IWik> = B* |y}, H(0,0) [y3) = B*|y$). (30)

Near the diabolical points, the geometry of the energy surfaces E,(X, Y) and
Ey(X,Y), and the nature of the states |1/,) and |,), are determined by the matrix

elements g (X, ¥) = (¥ A(X, Y)=A(0,0)|y5), ij=1,2. (31)
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Degenerate perturbation theory (Teller 1937) gives the energies as
By, = E*+}[Hy+ Hyy + {(Hyy — Hy,)? + 4H3H. (32)

The conical structure follows from this, together with the fact that the H}; vary
linearly near X = Y = 0. In §7 and appendix A we shall describe in detail how the
H;; depend on the triangle deformations. For the present it is sufficient to represent
the matrix elements in terms of two vectors T and S'in R = (X, Y) space (figure 8),
defined by

Hy,—Hj = T'R,} (33)
2H, = S R.
Thus AE = E,—E, = {(T-R)*+(S- R)?}3. (34)

Let S and T have lengths S and 7' and make angles o and 7 with the X direction,
and let
S T=8Tcosp, S/T=V. (35)

Then g and V determine the cone geometry as follows. For level separation AE,
the major and minor radii R of the elliptic cone sections (projected onto the XY
plane) are given by

1/R% = [T%/2(AE)2) (1+ V2T {1+ V4+2V2cos 28}4), (36)

which shows that circular cones correspond to ¥V =1 and f = irn and highly
eccentric cones to ' < 1 or V > 1. The angle y made by the major axis with the

X direction is — V?2cos 20 — cos 27
(VA+1+2V2cos2 )}

We remark (with Arnold 1978) that the conical geometry near a diabolical point
closely resembles that near an umbilic point of a surface (Berry & Hannay 1977;
Berry & Upstill 1980) at which the two principal curvatures are equal. However,
the ‘surface’ (considered as a deviation from the X-Y plane) whose curvature
difference would be equal to AE(X, Y) exists only locally, and cannot be continued
in any obvious way to include degeneracies between more than one pair of levels.

The states ¢,y and [y,) are linear combinations of [¢F) and [¢F), which we
write in terms of a ‘mixing angle’ y(X, Y) as

v = }arccos [ (37)

|7ﬁj> = COSX]'(X’ Y) l?/fik>+SIHX](X, Y) |¢§k>7 .7 = 1’2 (38)
Degenerate perturbation theory (Berry 1981), together with (33), gives
e?x1,2 = + (T-R+iS-R)/[(T-R)2+ (S R)?}. (39)

The two solutions y, and y, differ by 4=, thus ensuring orthogonality of |y,) and
).

Now let R vary round a circuit C surrounding the origin (figure 8). Then (and only
then) the complex number T R+iS- R makes a circuit that encloses the origin of
the complex plane. Thus y, and y, each change by n round C, so that [y, and |y,)
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change sign. The importance of this sign change as a test for diabolical points was
emphasized by Longuet-Higgins (1975) (see also Uhlenbeck 1976; Mead 1979, 1980,
1983; Mead & Truhlar 1979). Berry (1984) has generalized the theory to Hermitian
(rather than real symmetric) Hamiltonians, and calculated the phase factor that
replaces the sign change.

We apply the circuit test to the normal derivative u(s) of the wavefunction at the
point s on the boundary of the triangle. From (38),

u(s) = uf(s) cos x +uF (s) sin y, (40)

where u{ (s) and u(s) are the normal derivatives of the degenerating waves at the
same boundary point. Defining

uy'(s) = u*(s) cos Z(s), uf(s) = u*(s)sin Z(s), (41)
we can write the circuit test function (40) (in a more explicit notation) as
u(s; R) = u*(s) cos {y(R) — Z(s)}. (42)

The circuit was chosen as a circle in the X-Y plane, parametrized by its angle 0
(figure 8) reckoned from the X-axis. A lengthy but elementary calculation based on
(39) shows that the variation of u with 6, for any s, is given by a member of a two-
parameter family of universal functions. The result is

) i sin (6" + ') !
u = u¥(s) {§ [1 ~ [sin?(0"+ ')+ V'2sin® 0']%]} ’ w

where

97 sin o — s
0'59——%1r+arctan[Vco Z sin o s1n1'],

Vcot2Z coso—cosr

7= [1+ V2+(V2—1)cos4Z—2Vcos,Bsin4Z]%

14+ V2—(V2—1)cos4Z+2V cos fsin4Z
2Vsin g
(V2—1)sin4Z + 2V cos ff cos 47’

(44)

tan ' = 0<p <.
The circuit test function changes sign exactly once round C and the shifted angle ¢’
is defined so that the zeros of u lie at ' = 0 and 6’ = 2r.

The prediction of this theory is that the normal derivative at any point s will
vary round C according to the function (43) for some choice of 4" and V', provided C
is small enough for the local analysis to apply. The two states |,) and |{fry) corre-
spond to the two signs of the inner square root in (43), and this shows that their
boundary normal derivatives vary round C in exactly the same way, apart from
a relative shift of = in 0 or 6'.

For all diabolical points in table 1, the circuit test gave the predicted sign change.
Figures 9a and b show how u, and u, vary round a small circle (radius 0.1) in the
X-Y plane, for the two lowest diabolical points (levels 5 and 6, and levels 6 and 7).
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0 - 2m

Ficure 9. Variation of normal derivatives %, and u, around circular loops of radius 0.1 in the
X-Y plane, centred on degeneracies. The dashed curves are fits by the theoretical formula
(43). (a) Diabolical point involving levels 5 and 6 (fitted by #/ = 30° and V' = 2). (b)
Diabolical point involving levels 6 and 7 (fitted by £ = 12°, V' = 2. (¢) Symmetry
degeneracy involving levels 3 and 4 (fitted by ' = 45°, V' = 5).
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Ficure 10. Positive (black) and negative (white) regions of a wavefunction during a circuit

(in the X-Y plane) of the diabolical point between levels 6 and 7, for the angles indicated
(measured from the X axis).

The values of » were calculated for a point s = }.#, measured from the corner «
in the direction of £. To a close approximation the curves of v, and u, are the same
apart from a shift of m, and are well fitted by (43) with a suitable choice of ¥’ and '

Figure 9¢ shows similar behaviour of u; and u, for the symmetry degeneracy
between levels 3 and 4.
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In figure 9 the circuit angle 6 is measured from the X-direction and yet the curves
are well fitted, without 6 shifting, by (43), which involves ’. The explanation is that
the cones are elongated in the X-direction, so that the larger of the two vectors S
and T is directed near the Y-direction; the near-equality of 6 and ¢’ (up to ) now
follows from (44) provided V is not close to unity (i.e. when the cones are elongated).
It is possible that the X-elongation is an artefact of the choice of parameters X, ¥
describing triangles.

The sign changes of |¢/,) and |,y round C imply that the pattern of nodal lines
of the wavefunctions ¥, (r) and () must change round C, in order to produce the
reversal of positive and negative regions. Generically, that is for an arbitrary point
on C, nodal lines do not cross (Berry 1983b), but they may stably do so in a one-
parameter deformation such as C (Uhlenbeck 1976). If at any point on C the positive
and negative regions of i are equal in number and all nodal lines hit the boundary,
then such nodal crossings need not occur, and the sign reversal can be accomplished
by the whole nodal pattern sliding round within the triangle. This occurs for example
around the symmetry degeneracy between levels 2 and 3.

But crossings may occur even when they need not. Figure 10 shows thé nodal
rearrangements round the diabolical point involving levels 6 and 7. There are five
‘redundant’ nodal crossings; four occur on the boundary (near & = 18°, between 176°
and 177°, between 171° and 178°, and between 358° and 359°), and one within the
triangle (between 359° and 360°). Note the extremely rapid pattern changes near
6 = 0° = 360° and 6 = 180°, which are a consequence of the elongation of the cones.
Despite the complex sequence of changes, at each point r, i reverses sign only once
during the circuit.

Korsch (1983) gives a very clear picture of nodal rearrangements around a sym-
metry degeneracy of the square billiard, as well as illustrating the nodal patterns in
a parallelogram as its angles vary.

6. ASYMPTOTIC THEORY FOR THIN TRIANGLES

The computational technique based on the determinant A (13)-(15) converges
slowly for thin triangles (y and ¥ small); and it is then desirable to check the compu-
tations against an analytical theory, to be sure that no degeneracies have been
missed.

The theory is based on the observation that exact solutions of the wave equation,
vanishing on sides issuing from a corner with angle y, are

P(r, @) = Iy (kr)sin (nlg/y), 1=1,2,3,..., (45)

where r and ¢ are polar coordinates with the corner as origin (figure 11), and J
denotes a Bessel function (Abramowitz & Stegun 1964). The solution which also
vanishes on the third side is in general a superposition of these Bessel waves with
different 1.

2 Vol. 302. A
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When 7 is small, however, waves with | > 1 contribute very little to the low-lying
states. There follows from this a theory which we will work out, and compare with
computation, for the two kinds of isosceles thin triangle (y < m, « = f = i, ie.
Ysmalland X =9;and y = 8 < ©, ¢ & m,i.e. ¥ small and X = 0). Generalization to
thin non-isosceles triangles is possible but cumbersome.

F1cure 11. Coordinates for theory of thin triangle with o = f£.

Consider first the case o = f (figure 11). The Bessel functions of order n/y which
vanish on the circle r = R, where R is the length of the long sides of the triangle, will
be good approximations to eigenfunctions of the triangle, because for small y the
short side nearly coincides with part of the circle. The condition for an eigenvalue £;

can therefore be written as
Jury(k; R) = 0, (46)

and k; and R can be eliminated in favour of £; and y by using (2) and the relation
between R, y and the area o7, which gives

k; R = 2(2nE;/y)}. (47)

Bessel functions of large order (small y) can be approximated uniformly in their
arguments by means of Airy functions, and standard formulae (Abramowitz &
Stegun 1964) enable (46) to be replaced by

Ai(—(n/y)¢) =0, (48)
where ¢ = {3[(Z2— 1)t —arccos (1/2)]}3, (49)
and E = nZ%/8y. (50)

If a; is the (tabulated) jth zero of the Airy function, (48) gives

§=a;/(n/y)}, (51)
from which (49) gives Z implicitly and thence E; from (50).

All the states thus obtained have even parity with respect to the symmetry line
bisecting y. The first states with odd parity involve Bessel functions of order 27 /y
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(cf. 45) and it is not hard to show that if 0 < ¥ < 0.6 (the range not covered by
figure 7a) no such states have energies 0 < £; < 18 which was the range of our
computations.

Ficurg 12. Thin triangle with vy = f. States have even or
odd parity about the symmetry line.

TABLE 2. LOW-LYING LEVELS OF THIN ISOSCELES TRIANGLES
vy=6%a=p=87°(X=9,Y = 0.6)
E; (computed by

level number j E; (analytic theory) determinant)

1 5.429 5.44

2 7.036 7.05

3 8.608 8.62

4 10.212 10.21

5 11.870 11.87

vy=pf=10°%a = 160° (X =0,Y = 1)
E; (computed by

level number j K, (analytic theory) determinant)

1 5.664 5.69

2 7.512 7.58

3 9.040 9.05

4 10.655 10.74

Now consider the case f = y (figure 12). States have odd or even parity about the
symmetry line and can be found by matching states of the type (45) based on the
f and vy corners. The match is imperfect in the shaded region of figure 12 but this
gets thinner as the triangle does. For odd states, the Bessel functions vanish on the
radius corresponding to the symmetry line, and the states are formed simply by
adjoining two copies of the states of the & = fisosceles triangle. For even states, the
Bessel functions must have zero slope at the symmetry radius. The result is that the
levels of these § = v triangles are given by (49)-(51) with the factor 8 replaced by 4
in (50) and with the zeros a; of the derivatives of the Airy function included in (51)
as well as a;.

Table 2 gives the lowest levels computed by this theory for the 6°, 87°, 87°
isosceles triangle (Y = 0.6 and X =9, corresponding to the left-hand edge of

2-2
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figure 7a), and for the 10°, 10°, 160° isosceles triangle (¥ = 1 and X = 0), together
with levels computed by the determinantal method of §3. The agreement is very
good. It becomes much less good if the uniformity of the approximation embodied
in (49)-(51) is degraded by approximating the function {(Z) for Z close to unity, or
the zeros a; or a; by their large-j asymptotic forms.

s=0

Ficure 13. Boundary displacement d(s; X, Y) taking diabolical
triangle B* to deformed triangle B(X, Y).

7. ESTIMATE OF DENSITY OF DIABOLICAL POINTS

We shall obtain a scaling law for the increase with j of the number of degeneracies
between energy level surfaces £;(X, Y) and E; (X, Y) in a given region of triangle
space X, Y. The average spacing of the surfaces, S(= E;,, — E;), is unity (cf. (27)-
(29)) and they are conically connected. For small S, each cone has a ‘domain’ whose
area 2;(S) can be estimated in terms of the linear theory of § 5, provided the rate of
increase of the energy separation (AZ on figure 8) with X and Y is known. From
(32)—(34), this rate of increase is proportional to the derivatives with respect to
deformations of the matrix elements H;;, defined by (31).

It is shown in appendix A that if the triangle boundary B(X, Y) is obtained from
the diabolical boundary B* by displacing the point s on the boundary of B* by
8(s; X, Y) (figure 13), the matrix elements are

Hj(X,Y) =——§dsn 5(s; X, Y)uX(s)uX(s), i,j=1,2, (52)

J

where u} denotes the normal boundary derivatives of the degenerating states |§)

and |3 ). Also proved in appendix A are the vanishing of H;; under displacements
4(s) corresponding to rigid motions of B*, and the trivial scahng of H;; under homo-
geneous dilation of B*. Under the non-trivial deformations represented by X and
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Y, the components of § vary linearly. We are concerned with the dependence on E,
that is on level number j or wavenumber %, and this is embodied in u} as we now
describe.

The uf are gradients of y¥(r) which oscillate with wavelength roughly 2z /k, and
so the u scale as k (an explicit example is the normalization law (A 23)). According
to (32) and (52), the energy spacing S depends on integrals of (uf2—u3?) and ufug,
whose values fluctuate positively and negatively round B*. Orthogonality of u}
and uy imparts a degree of incoherence and gives rise to destructive interference
whose effect can be estimated by modelling uf(s) and 3 (s) by independent sets of k
random numbers (one sample of uf(s) per wavelength round B*). This reduces the
values of (uf—wu2) and u,u, by a factor k*: a result confirmed by a more careful
calculation in which u{(s) and u3'(s) are modelled by independent gaussian random
functions with a suitably-chosen autocorrelation function. Thus the H}; and also
their X and Y derivatives, are estimated to scale as k x k x k=3, i.e. as k¥ ~ B ~ ji:
the cones get thinner as j increases.

For small spacings S the principal cone radii Ry scale as Sk—%, and the area
3(S) = nR, R_ scales as S%~3 ~ 2% We seek the density py(j) of degeneracies
between levels j and j+ 1 in the X-Y plane. This is connected via 2%(S) to the level
spacing distribution P(S) (probability density for spacing S) by

fraction of area of X-Y plane for which spacing is less than 8 equals
s
[ 48PS = puli) i) ~ puliy 2, (53)
P

so that (S) ~ pa() k38, as S—0. (54)

The ‘linear level repulsion’ for small S is expected for any system with diabolical
points (Berry 1981, 1983b). Moreover, the slope of P(S) at the origin should be of
order unity for generic systems (Porter 1965). In the present case this is confirmed by
figure 14 which shows P(S) computed from about 400 spacings. The histogram is
well fitted within the accuracy of the data by the Wigner distribution

P(S) = inSexp{— inS?}, (85)

shown as a dashed line in figure 14 (the ‘exact’ slope should be §n2 (Porter 1965) but
this is immaterial in the present context).

Equations (54) and (55) togetherimply that the degeneracy density p4(j) ~ k3 ~ j2.
For the total number A3(j) of degeneracies in the whole XY rectangle up to and
including those between levels j and j+ 1 (labelled j + 1), this gives the estimate

J
Halj) = .ZIP(J') oc (j+4)%. (56)

j'=
This asymptotic estimate should become more accurate as Jjincreases. Nevertheless,
we shall test it using the limited data of table 1. Including all degeneracies,
symmetry-related as well as diabolical because they too have conical neighbourhoods,
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|
4

Ficure 14. Probability distribution P(S) of the level spacings S in the range 1 < X < 8,
1.6 < Y < 4, £ > 12. The dashed line is the Wigner distribution (55).

4 —

In A4(7)
[\

| | i
0 1.5 20 25

In(j+3)
Ficure 15. Double logarithmic plot of number A47(j) of degeneracies below and including
those between levels j and j+ 1. The straight line has slope 2.5 (cf. (56)).

we obtain the double logarithmic graph of figure 15. The points are well fitted
by the straight line which is drawn with the ‘theoretical’ slope §. We have

confirmed that the fit is not significantly affected by (approximately) including the
‘perimeter’ and ‘corner’ corrections embodied in (27)-(29).
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CONCLUDING REMARKS

Using the family of all triangles as an illustrative example, we have studied
degeneracies occurring in the spectra of families of generic real Hermitian operators.
By applying the sign-reversal test we have confirmed that the energy eigenvalue
surfaces are conically connected, so that the degeneracies are diabolical points.
Some of the degeneracies are expected, and found, for symmetric triangles. This
naturally raises the question of whether the diabolical triangles of table 1 might
possess some hidden symmetry. We think the answer is negative but cannot give
a proof. From any degeneracy it appears possible to construct an operator that
commutes with # (Valkering & Caspers 1973), but this does not appear to be
associated with any geometric symmetry of H*, and as pointed out in §4 the angles
of diabolical triangles are not close to rational multiples of =.

The conical degeneracies are expected to occur for two-parameter families of
generic real Hamiltonians. Special classes of Hamiltonian may have different
degeneracies. For example, energy levels of Hamiltonians which are separable can
degenerate when only a single parameter is varied, so that for two parameters X, Y
the energy surfaces intersect in lines. One case in which this occurs is when X and ¥
are parameters in a two-dimensional potential with circular symmetry: the crossing
levels correspond to different angular momenta. Another special class is one-
dimensional Hamiltonians with fixed-end or vanishing-at-infinity boundary
conditions, for which degeneracies are strictly forbidden, so that even an infinite of
parameters X, Y, ..., will not produce them.

A quite different way to embed a given Hamiltonian in a two-parameter family
is to consider it as a member of a family labelled by a single complex parameter C.
It is possible for levels to degenerate at isolated points in the C-plane (even for one-
dimensional problems; see Bender & Orszag 1978). But for complex C the operators
are not Hermitian, the eigenvalues are not real, and at degeneracies their ‘surfaces’
have a branch-point, rather than conical, structure.

On the other hand, if the operators are Hermitian but not real (e.g. if magnetic
fields are present), three real parameters must typically be varied to produce a
degeneracy (Von Neumann & Wigner 1929).

Finally we remark that degeneracies involving more than two levels can be
made to occur by varying more parameters. These higher degeneracies have been
systematically studied by Caspers (1968) and Arnold (1978). The simplest case is
degeneracies of three levels, and typically requires five parameters (for real
Hamiltonians), so that numerical exploration of higher degeneracies is daunting.

M.V.B. thanks Professor Th. W.Ruijgrok for extensive discussions and for
carrying out stimulating exploratory computations, and the Institute of Theoretical
Physics, University of Utrecht for its generous hospitality during the initial
phases of this work. M. W. was supported by an S.E.R.C. postgraduate award.
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APPENDIX A. MATRIX ELEMENTS FOR TRIANGLE DEFORMATIONS

First, we derive the formula (52) for the Hamiltonian matrix elements H;;. Let
the Hermitian operator corresponding to equation (1) with energy k2 be . Then
matrix elements of the operator H associated with energy E are given (cf. (2)) by

Hy; = (A [4n) ;. (A1)

To find the deformation matrix elements 5;; corresponding to (31), it is convenient
to first soften the boundaries and represent the unperturbed (diabolical) triangle B*

by a potential V(r) which is small within B* and rises rapidly beyond the boundary
of B*. Thus

K= —V24 V(r). (A2)

To obtain the deformed boundary, deform the contours of V at each point r by
d(r), so that

V(r) = V(r—4é(r)). (A3)
Thus the deformation matrix element for states |i;) and [i/;) becomes, to first
order in 8,
- <7ﬁ1| V r— 6 I'ﬁy
f [ arpnpmsn-vv. (A4)

Now we must take the limit as V(r) hardens into a sharp high wall and y,(r)
vanishes outside B*. Then the integration in (A 4) is confined to a thin boundary
ribbon. Using coordinates s (round the boundary) and z (perpendicular to the
boundary and increasing outwards), we obtain

A= —égdsn(s)-&(s)l(s), (A 5)

® ov
where I(s) = dz s ; . (2,8) (A6)

and &(s) denotes 8(r(s)). Integration by parts gives
I(s) = *fw dz(mw7+ Vl/fj%‘if). (A7)

The next step is to eliminate V by using the wave equation
Vi = (V24 kD) ¥y (A8)
It is convenient to write ¥; as _

o= P (), (A9)
where /1"t is an interior wavefunction satisfying (1), and f(2) is a cutoff function

falling smoothly from 1 to 0 as z increases through zero. Equatlon (A 8) now becomes

Vi, = 20U R [ P (A 10)
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where the prime denotes differentiation with respect to z. Near the boundary,
int

T = ui(s)z’ (All)

where u, is the normal derivative of |;). Equation (A 7) now becomes

16) = = 2us) (o) [ ety 42" (S (A12)

Expansion and repeated integration by parts leads to

1) = —u(s)uyls) | a2y

— 0

= +uy(8) uy(s), (A 13)
thus Hiy=— § dsn(s)-6(s) u(s) u;(s) (A 14)

and (52) follows directly on using (A 1). (This result can alternatively be derived by
minimizing the field Lagrangian for the wave equation.)

Secondly, we prove that #”;; vanishes when &(s) represents rigid translations and
rotations, and scales correctly for homogeneous dilations. To do this we rewrite
(A 14) asintegrals over the triangle area o7 in three different ways, whose equivalence
rests on the fact that Vi, is parallel to n on the boundary:

Hly= - ffdsn-a(vng,wj) - —”ddrv.(awf,wj), (A15a)
=—§dsn-v1,/fia-v;/fj=—”Mdrv-(v¢ia-v¢j), (A 15b)

=—f§dsn~Viﬁjﬁ-Vgﬁi=—ffﬂdrV-(Vl/fj5~V¢i). (A 15¢)

Next we write o; as (b) +(c) — (a). Repeated use of vector identities, together
with the perpendicularity of V x § to the r plane and the wave equation (1) for ¥,
with k; = ky = k, gives

Hyy = f f Ar[k28 -V () + Vi Vi,V -5
o7
—{Vips (Vip; V) + V- (Vi V)} 8] (A.16)
Now 5V ) =V (80— ¥, V6. (A 17)

The divergence integrates to a boundary term that vanishes as a result of ¢
vanishing, and

#y=— [ ataep,-vi-vi)v-s

VY (V- V) + Vi - (Vi V)3 6] (A18)
is left.
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We consider the following three deformations:

translation: &(r) = constant;

rotation: d(r) = 2 x r (R perpendicular to the r plane); (A 19)
dilation: o(r)=Ar.

For translations, (A 18) immediately gives #;; = 0. For rotations, V-8 = 0 and the
terms in braces in (A 18) become

(Vi (V- V) + Vi (V-V} x 1 = Vi, (2 x Vi)

+ Vi (2 x Vi) =0, (A20)
so that #°}; = 0. In conjunction with (32), these results confirm that the degenerate
level at E* is neither split nor shifted by translations or rotations. The vanishing of
diagonal elements ¢ = j also confirms that a non-degenerate level is not shifted by
these operations.

For dilations, (A 19) gives V-Ar = 24 and use of Vif-Vr = Vi shows that all
terms in (A 18) cancel except the first, which gives

Hy = —2Ak2der Yoy = —24k2 8. (A21)

Inspection of (32) shows that dilation does not split a degenerate level £*, but shifts
it by
k2 —k*2 = — 24 k%2, (A 22)

A non-degenerate level is shifted by the same amount. This is precisely the shift
expected by virtue of the fact that k scales with area as 2/~ and area scales with
dilation 4 as (1+ 4)2.

The dilation shift (4 21) together with (A 14) gives the normalization condition
for any state in terms of its boundary normal derivative:

%ﬁdsn(s) - r(s) ud(s) = k? (A23)

(the origin of r is immaterial; this apparent arbitrariness may be reduced by, for
example, choosing as origin a boundary point s’ and averaging over s’).

Finally, we remark that for certain deformations (those for which the new B
is not contained entirely within the old), the states defined by (1) do not form a
complete set; it is necessary to augment them with states satisfying Neumann
boundary conditions. In lowest order, however, these new states do not contribute
to the shift or splitting of degenerate levels.





