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Wave-front dislocations are lines in space along which wave fronts end, named by analogy with
dislocations in imperfect crystals. Continuous waves and quasimonochromatic pulses (of
continuous waves with slowly varying envelopes) are conveniently represented by complex-
valued wavefunctions, the zeros of which correspond to wave-front dislocations. Pulse
dislocations move through the wavefield, and may interact, as the pulse propagates. As examples
of realistic model wavefields, the soundfields of a rigid circular piston radiator vibrating in a fixed
rigid baffle plane, driven both by a sinusoidal scurce producing continuous waves and by this
source modulated by a Gaussian envelope, are computed exactly and displayed. The birth of
dislocations in the nearfield and their propagation with the pulse into the farfield are observed and
discussed, and birth and death events in the nearfield are displayed in detail. The behavior of
quasimonochromatic pulses and their dislocations may be understood in terms of the carrier
wavefield, both qualitatively and, via a perturbation theory, quantitatively.

PACS numbers: 43.20.Rz, 43.20.Bi

INTRODUCTION

Some of the finest detail of a wavefield is embodied in its
wave-front dislocations. These are lines in space on which
wave fronts end, named by analogy with crystal dislocations
along which atomic planes end. In a continuous wavefield
the dislocation lines are fixed, but in a wavefield with nontri-
vial time variation the dislocation lines generally move, and
may interact, as do crystal dislocations.

Wave-front dislocations were discovered by Nye and
Berry' in ultrasound reflected from a rough surface. The
incident wave was a pulse of sinusoidal waves with a slowly
varying envelope, and the reflected wave, received at a point
and displayed on an oscilloscope as sound pressure against
time, was an extended train of disorderly oscillations. On
moving the receiver to explore the wave at different places, it
was quite common to observe two wavecrests move apart
and an extra crest appear between them, or the time-reversed
sequence of events. The meaning of such a birth or death of a

wavecrest is that a dislocation line has intersected the track

of the receiver. These phenomena are discussed in more de-
tail, illustrated, and the basic theory developed, by Nye and
Berry'; wave-front dislocations are set in a more general con-
text by Berry.”

The ultrasonic experiments were devised as laboratory
analogs for radio echo sounding of polar ice sheets. The
echo, and especially its skeleton of dislocation lines, provides
a three-dimensional reference frame, fixed relative to the
bedrock, with respect to which displacements can be mea-
sured. Radio echo-sounding experiments® in Antarctica sug-
gest that displacements as small as a hundredth of a wave-
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length can be measured in this way. In their own right;
ultrasonic pulses are used extensively in medicine, NDT, etc.
From a theoretical point of view these applications are quite
crude; usually, only the times of emission and reception of
the pulse as a whole are recorded, and interference effects
arising from the presence of several waves within the pulse
envelope are ignored. In any precise quantitative interpreta-
tion of an echo, however, a precondition would be a com-
plete understanding of the wavefield in the emitted pulse,
dislocations and all—hence the study reported here.

Wave fronts are geometrical abstractions of a wavefield
and their precise definition can be made in several ways.
Following Nye and Berry, our choice is to work with a com-
plex-scalar-valued wavefunction ¢{r,z). This can be writien
in amplitude-phase form as

Yir, 1) =p r, tJe "), (1)
where p and y are real-scalar-valued functions, which are
uniquely determined (mod 2# for y ) unless ¢# = 0, in which
case y is indeterminate. In this representation we define the
family of wave fronts to be the surfaces in space satisfying

xir,t)=¢ modulo 2m,

for some constant ¢, usually taken as zero. The wave fronts
are undefined when y is indeterminate, i.e., when ¢ = 0, and
wave fronts end along lines on which ¢ has a simple zero; this
defines the wave-front dislocation lines. (Higher order zeros
correspond to dislocation interactions.) In a transverse sec-
tion through a dislocation the equiphase lines {y = const)
have a characteristic radial pattern, and the ending wave
front corresponds to one of the radial spokes [see Figs. 4{b)
and 6 later, and also Ref. 1].

For the analogy with crystal dislocations to be useful
there should be a number of wave fronts in the neighborhood
of the dislocation which are not too contorted. In particular,
the envelope function should be nonzero over at least several
periods of the carrier. We expect the dislocation structure of
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a wavefield to be simplest when the modulation s slowly
varying in comparison with the carrier, which we will call
the quasimonochromatic (Qmy) case. Many real remote sens-
ing systems generate gm wavefields (which are often ana-
lyzed as though they were monochromatic!). Discussion of
dislocations to date has concentrated on quasimonochroma-
ticity, and we shall do so here, although we anticipate that
wave-front dislocations would be a useful concept in any
wave system where wave fronts could be sensibly defined.

Only real wavefunctions are usually observed, but Nye*
has shown that in the quasimonochromatic limit it is possi-
ble to reconstruct the complex wavefunction from its real
part alone. This ability has been realized expenimentally in a
*“complex-plane wavefunction display” by Walford eral.* It
is also possible to define wave fronts and wave-front disloca-
tions using only a real wavefunction® by analogy with the
way wavefunctions would typically be observed on an oscil-
loscope, but observationally we would not expect this defini-
tion to give results significantly different from those based on
a complex wavefunction.

Nye and Berry' set up local models of dislocated wave-
fields in order to prove that they could exist and to demon-
strate their basic properties, and the local properties of wave-
front dislocations have recently been defined more
rigorously by Nye.* The effect of pulse shape on the motion
of dislocations has been discussed by Wright and Nye’ for
three simple symmetrical examples—Gaussian, Lorentzian,
and hyperbolic secant—and also for a “smooth-step” enve-
lope. This was primarily in the context of a simple two-beam

‘model wavefield involving linear spatial modulation, which
again is physically realizable only locally. These authors also
introduced a bandwidth-perturbation theory for predicting
the behavior of dislocations in quasimonochromatic wave-
fields from continuous wave {cw) data alone.

The purpose of the present paper is to study the wave-
front dislocations in a realistic global model of a simple phys-
ical wave system. We chose to investigate numerically the
soundfield of a rigid plane circular piston set in a rigid infi-
nite plane baffle. The rotation symmetry of this system
makes it essentially two-dimensional, so that the wavefield is
easy to display. It also means that the dislocation lines must
be circular loops centered on, and perpendicular to, the axis
and must lie in the wave-front surfaces so that only disloca-

tions of “pure-edge” type “** can occur. This model radiator
has been studied by other authors. However, they have ei-
ther computed only cw fields (e.g., Refs. 811} or they have
‘not presented their data so as to show the wave-front disloca-
tions in studies of pulsed fields (e.g., Ref. 12).

The details of our model and the resulting diffraction
integral are discussed in Sec. ] and Appendices A and B, The
parameters were chosen mainly to match experimental ob-
servations of dislocations by Nye, Walford (unpublished},
and Humphrey.'® In Sec. I, we analyze the continuous wa-
vefield for one particular frequency in order to set the scene
for Sec. 11, in which we modulate the amplitude of this cw
source to give a single pulse with a Gaussian envelope and
observe the dislocation structure as the pulse propagates
through the soundfield. We look more closely in Sec. [V at
the dislocation interactions which have occurred. In Sec. V
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we summarize these observations in terms of the trajectory
surface traced out by the moving dislocation lines and relate
these to the results of the perturbation theory of Wright and
Nye.” Section V1 draws together our conclusions

Our discussion is relevant to fields other than acoustics.
For example, in communications engineering considerable
interest exists in the “synthests of antenna patterns with pre-
scribed nulls,”'* which we can paraphrase as “designing
wavefields with specified wave-front dislocation trajector-
ies.” This problem is normally analyzed in terms of farfield
cw nulls only.

I. THE CIRCULAR PISTON RADIATOR MODEL

The soundfield we consider is generated by a rigid plane
circular piston of radius g vibrating in an infinite rigid plane
baffle, such that its displacement from the baffle plane at
time ¢ is (7). We use a cylindrical polar coordinate system
such that the baffle plane is given by z = 0, and we consider
the soundfield in the half-space z> 0. We denote by p the
perpendicular distance of the field point from the z axis, as in
Fig. 1.

We assume that the soundfield may be represented by a
velocity potential 4, which we shall take as our scalar wave-
function, such that the irrotationa! fluid velocity is given by

u= - Vi and 3 satisfies the nondispersive scalar wave
equation
Fy
VY =1L,
v o1t

where ¢ is the constant sound velocity. Then from standard
hydrodynamics'® the acoustic pressure and density fluctu-
ations are, respectively,

—a _ %

Sp=d py and &d L
where d is the mean fluid density, so that i completely deter-
mines the soundfield.

The boundary condition on the fluid is that its normal
velocity equals that of the boundary. Assuming Fr) to be
sufficiently small to justify applying this boundary condition
at z = 0, the boundary condition becomes

p<a

__ W o [FD
wip.0== Lip0= {7 £<,

/

acement
baffle \ 1=12a
plane .I
p=Ra
field point

FIG. | Coordinates for the wavefield
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where F'{t )J=dF /dt. This completely specifies the wavefunc-
tion, for which a convenient representation is

Wp,z,t)=0la ~plFlt — 2/¢c)

ac cos@ —a
* 7 Jo d¢(a’+pp2—2apcos¢))
XF[t— (2 +a* +p? — 2apcos@)''/¢], 12)
where
0 if x<0
Ox)—1{14 if x=0
1 if x>0

The derivation of this integral is sketched and discussed
briefly in Appendix A. It is exact for any field point position
{ p, z) and for an arbitrary piston displacement function F (1 ).
At first sight one might suspect it to predict that ¥ is discon-
tinuous at g = a; however, closer examination shows that
thisis not the case. The integrand is regular (assuming F to be
regular), and is easily evaluated numerically using conven-
tional routines.'® Note that since the acoustic pressure is
bp == ddp/at, the above formula gives essentially &p if we
regard F (1) as piston velocity rather than displacement. This
observation facilitates comparison of our results with those
of other authors,

On the axis (2) reduces trivially to

O, z, t)=c{F(t—z/c)—Flt — (2 + aV)'"%/c]}, (3)

which is well known.””*® On the cylinder generated by the
edge of the piston, (2) also simplifies somewhat to

CE RS §
Ha,z,t)= 2(F(r z/c) TJ’J:'dq’

XF{t — [+ 21 — cos n”%z)- )

This forin is convenient numerically to avoid the indeter-
minacy of the integrand of (2) at ¢ = O whenp =a.

Converting to spherical polar coordinates r and & such
thatp = 7 sin # and z = r cos & we find the farfield limit, i.e.,
the limiting form as 7 — o, tobe. .

ac J"'
- dgp cos @

wrsin @ Jo

XF(:—- r + isinﬁcosq)) +O(l)
c ¢ r
{5}
in agreement with elementary Fraunhofer diffraction the-
ory. On the axis 8 = p = 0 and (5} is indeterminate, but its
limiting form as @ — 0 gives

Yelr, 0, 1) = (@®/2n\F'(t — r/c) {6)
assuming F tobe at least once differentiable. This agrees with
the limiting form of (3) as 2 — <. Comparing (3) and (6)
suggests that in the nearfield the velocity potential is related

to the piston displacement, whereas in the fairfield it is relat-
ed to the piston velocity.

Yelr 6,1) =

Il. THE CONTINUOUS WAVEFIELD AND ITS NULLS

Not surprisingly, a quasimonochromatic wavefield is
best understood by relating it to the continuous wavefield at
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its carrier frequency. Therefore, in this section we examine
the particular continuous wavefield which we intend to
modulate in the next section, paying particular attention to
its (fixed) wave-front dislocations or nulls. The linearity of
the theory allows us to use complex wavefunctions and pis-
ton displacements, as discussed in the Introduction. There-
fore we drive the piston with the monochromatic signal

F{t)=e™

of angular frequency w, and for convenience define the di-
mensionless variables

R=p/a, Z=z/a,
and

YR, Z, T)=(l/chf{p,zt)
The monochromatic wavefunction becomes, from (2),

T=ewt, K=ka=walc,

¥ (R, Z, T)=6(1 — R)}""—%2)

IJ" ( Reosgp— 1 )
+ L[ a
7 Jo ¥ 1+ R?*—2Rcos g

Xexpl{[T~K(Z?+1+R?
—2R cos @ }'2]}. (7

On the axis this reduces to
¥, (0, Z, T)=eT(e %% — ¢ =2y
= 2ie""— X2 sin[K(Z, — Z}/2],

where Z, = (Z% + 1)'2and Z' = [Z + (Z? + 1)"/?)/2is the
mean distance of the field point from the center and edge of
the piston. Axial nulis occur at finite Z when

K(Z,— Z)/2=nsw forsome integer n>0,

ie.,at Z=[K?— 2nnf)/4nnK.
Since this must be >0 there are exactly int{K /277) axial nulls,
where int(x)=max{0, integer<x}. In fact, this is the number
of whole wavelengths A which fit into the piston radius a,
because K /27 = a/A.

The farfield limit simplifies to

Yemlr, 6, 1) = ie*" ~* (ac/r sin O, (ka sin 6)

on recognizing the integral representation of the Bessel func-
tion J, {Abramowitz and Stegun,?® formula 9.1.21). Thisis a
standard result?! [usually calculated for F'(t) = ¢ ], show-
ing that the maximum farfield amplitude occurs on the axis,
where

VEmlr, 0, t) = iwe™ ~*a/2r).

Therefore, we define the normalized farfield wavefunction

2 . 4 2 (K sin @
Vrnlt,7) = o Uplr, 0,0) = i ZUEIT)

where K = ka as above and we have introduced the dimen-
sionless retarded time 7 = wit — kr.

Farfield {angular) nulls occur at K sin 8 =, ,,, where
J1.» 18 the nth zero of J, and has the value (n -+ ) asymptoti-
cally as n — co. The first few values are shown in Table I,
using information from Abramowitz and Stegun.?® If
Jin<K <j,, , there are n farfield nulls, i.e., approximately

F. 9 Wright and M. V. Berry: Pulsed circular piston 735



TABLE L. Exact and approximate zeros of the Bessel functon J,

n Fin {n+ 4im
1 3.832 3.927
2 71.016 7.069
3 10.173 10.250
4 §3.324 13.152
5 16471 16.493

int{X /7 — }), which may underestimate the true number by
at most 1.

We conjecture that cw nulls are unlikely other than on
the axis or at infinity; there are no others for the value of X
that we have used. It would be interesting to plot the trajec-
tories of the cw nulls in this model as K varies, but we have
not done so here and are not aware that anyone else has. We
shall see later that the relation between axial and farfield cw
nulls is important in understanding the pulse dislocations.
Because

intlK /m — ) =2int(K /2m) £ 1 for K30,

the number of farfield nulls is approximately nwice the num-
ber of axial nulls, with an error of at most + 1to — 2.

For our numerical study we took K =100 f{ie.,
A /a = 0.63), mainly to model the observations mentioned in
the Introduction, which used pulses of ultrasound in air
{c = 331.5 ms™') with a carrier frequency of about 100 kHz
(A=0.33 c¢m) and a piston radius a of about 0.5 cm. This
value of X gives only one axial null at Z = 0.4816 and nwo
Jarfield nulls at @ = 22,53 and 44.55°. This cw field has
sufficient structure to give interesting dislocations in the
pulse case while remaining sufficiently simple to understand.
An important observation is that for a slightly larger value of
K anew farfield null would appear at & = 90° (without imme-
diately introducing a new axial null, thereby exploiting the
error limit that the number of farfield nulls may be twice the
number of axial nulls + 1}. Asexpected, there are vestiges of
this incipient null in the diffraction pattern.

Results are displayed first for the farfield, which is
simpler than the nearfield. Figure 2{a) shows the reduced
farficld amplitude | ¥5, | a5 a function of 6, and Fig. 2(b)
shows a set of equiphase lines in (6, 7) space, both calculated
from (8). The incipient null is evident from the very low am-
plitude at @ = 90°. Because of the factor  in {8} it is conven-
ient to use “phase = #/2 mod 27 to represent wave fronts,
as in Fig. 2(b). This figure is trivial, but is useful for compari-
son with the pulse case later. The wave fronts are straight
lines broken up into an “interlocking comb” pattern, caused
by the phase jumps of 7 when J, changes sign through the
nulls. This pattern is typical of a null surface (degenerate
dislocation), which occurs in the farfield because r plays only
a trivial role.

The nearfield wavefunction computed from (7) is shown
in Fig. 3. Figure 3(a) shows the amplitude as a surface in
three dimensions, and Fig. 3(b) shows it as a contour plot.
Note that | _ | has a maximum value of 2. Figure 3ic) shows
the equiphase lines in steps of #/4 from 0, so that every
eighth may be taken to represent a wave front, In all our
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FIG. 2. Reduced farfield continuous wavefunction: {a) amplitude; (b} equi-
phase lines at 7/2 mod 27, for comparison with the pulse case shown in Fig.

4b).

nearfield plots the complete wavefield is generated by rotat-
ing the section plotted through 360° about the axis of the
system, which is the fop line bounding the plots. The radius
of the piston is indicated by the double line at the top left of
the plots running along Z=0from R =0toR =1, R in-
creases downwards.

The phase singularity at a dislocation, discussed in the
Introduction, shows up clearly at the axial null in Fig. 3(c},
but note that this is a degenerate null because of the axial
symmetry. The amplitude “landscape™ shows valleys, whose
bottoms are generally not at zero height, two of which run
off into the farfield. One valley begins at the axial null, runs
up to a saddle point at about Z = 0.9, R = 0.3, and then runs
down into the farfield with monotonically decreasing height,
which becomes zero at infinity, The other main valley begins
at a minimum just in front of the piston, near Z =0.1,
R = 0.4, runs up to a saddle point near Z = 0.25, R = 0.6,
and then down into the farfield. The two minima are linked

by a short valley passing over the saddle near Z =0.25,
R = 0.25. The curvature of the contours close to the piston
near R = 1 in Fig. 3(b) suggests another slight valley, and
Fig. }a) clearly shows a slight dip here: this is the vestige of
the next farfield null (and associated valley) which would
appear if X were increased. Figure 3(b) and (c) shows the
farfield null angles as chain lines. Note that Fig. 3{c) shows
the equiphase lines bunching together in the minima near the
piston, tending towards the coalescence which occurs at an
actual null.

Figure 3(d) and (e) shows the actual wavefunctions, one
with a phase shift of 7/2 relative to the other. The solidi on
all three-dimensional plots mark the zero crossings. Figure
3{e) shows particularly clearly the effect of the axial null,
where a wavecrest comes to an abrupt end. Bearing in mind
that the graphs should be rotated about the axis to generate
the full wavefield, the effect is that the wave fronts develop a
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FIG. 3. Nearfield continuous wavefunction: {a) amplitude; (b) ampli
from 0.1 to 1.9 with local maxima marked by + ‘and the axial nul
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puncture as they pass through the null, which immediately
closes again on the other side. The point puncture is fixed in
space and the wave fronts sweep through it.

Figure 3 shows what look like approximately standing
waves across the piston face, with every point over the piston
face nearly in phase at any fixed time [see Fig. 3{c]], but the
wavelength seems to be somewhat longer than the real wave-
length. The complicated diffraction effects seem to be con-
tained within a sphere of radius about 1.5a around the center
of the piston. Outside this radius the amplitude is decreasing
monotonically, and the wave fronts {or equiphase lines) look
like distorted spherical waves. This distortion takes the form
of kinks near the farfield null angles, which are tending
towards the farfield discontinuities shown in Fig. 2(b}.

It is reasonable in practice to regard the farfield as
where the cw amplitude decreases monotonically with dis-
tance from the piston center. Then along the axis the near-
field/farfield “boundary” is the axial maximum of ampli-
tude furthest from the radiator, which occurs at

= (K?—7)/20K = 1435 forK =

This is also the point where the paths from the center and the
edge of the piston differ by exactly 4 /2, i.e., when the first
Fresnel zone just fills the piston face. The graph shows that
outside this boundary the wavefunction is farfieldlike, ex-
cept that the amplitude minima are not zeros, thereby sup-
porting this definition of the boundary. In fact, there are
many other ways of defining the near/far boundary,*? all
essentially ad hoc. The appropriateness of a particular defini-
tion depends on the context, e.g., a definition appropnate to
short pulses is given by Robinson et al.’®

Qur plots of cw amplitude agree quite well with Sten-
zel's plot,?® except that Stenzel shows no evidence of the
incipient null. They also agree qualitatively with plots®® for
larger values of a/A. To our knowledge, no one has previous-
ly displayed the equiphase lines or detailed plots of the actual
wavefunctions. However, Truell era/.'® have presented some
theoretical results by plotting graphs of amplitude and phase
as functions of R for a few fixed values of Z. Despite their
choice of X = 226 (our K == 10) their Figs. 2-14 and 15 ap-
pear consistent with our Fig. 3{a), (b}, (c).

Some experimental confirmation of the theory is pro-
vided by Dehn,* who photographed the near cw amplitude
field of a circular piston radiator at /4A~28 in a sequence of
sections transverse to the axis. Chivers and Aindow? com-
pare graphs of experimentally measured phase with those of
Truell et al., and find fairly good agreement if the compari-
son is based on an effective radius for their real radiator.
They also observe that, contrary to the assumptions of many
theoretical models, the nearfield of a piston radiator is
planar only near 1.1 times the distance to the last axial ampli-
tude maximum (giving Z = 1.58 in our case) and out to about
half the {effective) piston radivs. This observation is support-
cd by our Fig. 3(c), except that the region of planarity ap-
pears to be centered at about Z = 1.75 rather than 1.58.
Chivers and Aindow make the remark—very pertinent to
our present study—that phase information in ultrasonic sig-
nals has traditionally been ignored, but is now becoming
accessible.
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Iil. THE GAUSSIAN ENVELOPE PULSE AND ITS
DISLOCATIONS

For our main study we drive the piston with a pulse
which is a small departure from a monochromatic signal,
i.€., a quasimonochromatic pulse. A suitable model is a
Gaussian envelope containing # cycles of the carrier within
+ 1 standard deviation, where # is not too small. Hence we
take

F(t) = exp[( — 1 2/2){w/mn)* )expliwt }.

Using the notation defined in the previous section, we com-
pute

PR, Z,T)
—6(1—R ]exp( —_[—;;;lifz—])exp[i(f'— KZ)}

1 Rcosgp—1

+ wJ:d‘p( I+R’—2Rcosqv)
_ 2

Xexp( —j%)exp[i(T—KS)], (©)

where S=({Z2+ 14 R? — 2R cos }*/% On the axis this
simplifies to

_ —(T—KZ)
wi0,Z T)= exp( ——————2[1,_") )cxp[:{T KZ))
—(T—KZ'? o o
— exp( == Jespli - K271,
(10)
where Z'=(Z? 4 1)'/2.
In the farfield
Ve, 1) = —K;n_;.[ dg cos @
—~{r+Ksin@cos @)
xexp( 2(mn)? )
Xexplir + K sin Ocos @) (11)
for 8 #£0, and from (6)
A 2\
¥el0 )= (' - )up( 2Hmn)? )BXPM 2

for 8 = 0, where r=wt — kr as in {8).
Computations were made with K = 10.0, as for the cw
study in the previous section, and # = 3 (again to model the

experimental work). We consider first the farfield limit (11}
and (12}, whose amplitude is shown in Fig. 4(a}. At 8 = 0itis
virtually identical to the driving envelope

|F ()] = exp| — (! )*/2(mn))
apart from a very slight broadening. From Eq. {12) we sce
that this is a consequence of the quasimonochromaticity of
the pulse, which makes 7/{rn)* much less than 1 for values of
r such that the Gaussian is significantly large.

The variation of |¥;| with r=={wt — k7) is due to the
envelope; that with @is due to the diffraction and is similar to
that for cw as shown in Fig. 2(a). The matin difference is that,
as shown by Fig. 4(a} and (b}, the dislocations occur only for
r=(wt — kr) = 0, instead of for all times as in the cw case,
because 7 does not factor out of the pulse wavefunction (11)
and (12). However, Re ¥(8, r}is a continuous odd function
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{a)
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{d)

[ %]

FIG. 4. Reduced farfield pulse wavefunction: {a) amplitude; {b) equiphase
lines at 0 mod #/4—the heavy lines at /2 mod 2 are for comparison with
the cw case shown in Fig. 2{b); (c) real part; and (d) imaginary part.
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of r for all &, which is why the dislocations occur exactly at
7 = 0 at angles such that Im ¥,(@, 0) = 0. Figure 4 shows
that these angles are close to the cw null angles, as we expect
from the continuity in n of (11) and (12) and the fact thatagm
pulse (n large) is a small departure from its cw analog
{n — oo ). [This argument could be formalized by expanding
the Gaussian in (11) producing effectively the perturbation
theory.”] We found the precise angles of the farfield disloca-
tion trajectories by computing Im ¥,(6, 0) to a relative accu-
racy of 107¢ at a sequence of angles closely spaced around
the cw null angles. From a graph, the values of & giving zeros
of Im ¥.(#, 0) were found to be 22.67° and 44.88°. As a
check, the method was also used to confirm the cw null an-
gles to be 22.53° and 44.55". The dislocations travel at angles
shifted by very small but discernable amounts (=~0.7%) from
the ¢cw null angles; this shift would decrease if the pulse
bandwidth were decreased.

The localization of the zeros has important conse-
quences for the equiphase lines, changing the degenerate
comb singularities of Fig. 2(b) into the two point singularities
of Fig. 4{b), which have exactly the canonical pattern shown
in Fig. 10 of Ref. 1. The effect of the phase singularities on
the actual wavefunction is shown in Fig. 4{c) and (d). Consid-
er the imaginary part of the complex wavefunction, as shown
in Fig. 4{d), near 8 = 60". Between (wt — kr}= 410 we
have three crests and two troughs. Near & = 45° the central
crest comes to an end and the troughs on either side coalesce
into one central trough. Thus we have lost one crest and one
trough in a symmetrical fashion, and the remaining crests
and troughs have moved in to take up the vacated space.
Near 8 = 23" the process repeats itself with crests replaced
by troughs; the central trough comes to an end and the two
crests on either side coalesce into one central crest, so that we
lose another crest and trough symmetrically.

The real part of the wavefunction, Fig. 4(c}, shows ex-
actly the same behavior, but here the crest and trough pairs
disappear antisymmetrically. One can associate one wave
front with one crest/trough pair (e.g., one could cait the
crests the wavefronts) and one sees that wave fronts come to

_an end near the phase singularities, as discussed in the Intro-
duction. This occurs along circular loops about the axis such
that there is one more wave front passing outside the loop
than there is passing inside it.

We have seen that in the farfield the dislocations are
static, which we define to mean stationary relative to the
carrier wave, and occur exactly at the center of the pulse.
Now we consider how they got there from the nearfield,
where they were “born” and whether they are always static
and at the center of the pulse. To this end we computed the
nearfield wavefunction from (9) and (10) for times T {=wt)
between 0 and 45. In Figs. 5-8 we display the amplitude,
phase, real, and imaginary parts, respectively, of the com-
plex wavefunction. The arrows indicate for reference where
Z=T/K |i.e.,z = ot /k ), which is where one would expect
the geometrical pulse center to occur along the axis. Inside
the near/far boundary (situated at Z~~1.4} the diffraction is
so complicated that it is impossible to say where the real
pulse center is, but outside this boundary a meaningful pulse
center becomes visible. It is useful to compare the pulsed
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wavefield with the continuous wavefield as shown in Fig. 3.

At T =0 [Figs. 5-8(a)] the wavefield is very similar to
the cw field but with the features less pronounced, i.e., the
valleys are only just visible and the axial null is replaced by a
minimum at a height above zero, but in about the same place
as the cw null. The equiphase lines are a smoothed-out ver-
sion of the cw case without the singularity. At T=0 the
pulseis centered (geometrically) on the piston face and at any
distance away from the piston the amplitude is only just be-
ginning to grow. The smoothness of the wavefield suggests
that the interesting diffraction phenomena in the cw field
actually take time to build up. We shall see that as time
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1) T=250

(R T=2350

FIG. 5. Nearfield pulse wavefunction: amplitude. The | in Figs. 5-8 indi-
“Tcates the “geometrical pulse center.” o T

progresses the wave fronts become twisted and tangled as the
pulse propagates.

This can be understood by recalling, as first shown by
Schoch,?® that the field can be regarded as a plane-wave
component if the field point is “over” the piston plus a field
radiated by the rim—the two terms, respectively, in Eq. (2).
The latter field is dominated by *“replica pulses”?’~—see Ap-
pendix B. The two components arrive at different times. At
early times when the radiated pulse is near the piston, the
centers of the component pulses are well separated and they
do not interfere much. As time progresses and the radiated
pulse moves away from the piston the component pulses
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overlap, and hence interfere, more strongly, leading to more
prominent diffraction effects and hence more convoluted
wave fronts. [Recall that the geometrical distance traveled
by a pulse in Figs. 5-8 is equal to the distance of the arrow (1)
on the Z axis from the piston.] The transient buildup of the
radiated field has been discussed in these terms before, main-
ly in the context of suddenly switching on a cw drive,?*?°
although not illustrated as we have done. Note, however,
that our pulse envelope is smooth and infinitely extended,
rather than having a sharp leading edge.
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FI1G. 7. Nearfield pulse wavefunction: real part.

At T = 5[Figs. 5-8(b}] the wavefi¢ld is developing more
of the cw structure and the equiphase lines are moving in
toward the axial cw null.

By T = 10 {Figs. 5-8ic]] the axial minimum has fallen
to zero, and the equiphase lines coalesced, to produce a dislo-
cation. At the end of this section we prove that the disloca-
tion passes through the position of the axial cw null. We have
not investigated this region in great detail, but we assume
that a dislocation loop has been born by expanding from a
point on the axis; the wave front has punctured and the
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puncture opened into a circular hole. Figure 7(cj shows the
first crest coming to an end near the axis [compare with Fig.
8{b), which is otherwise very similar],

At T= 15 [Figs. 5-8(d)] the zero of amplitude just off
the axis is more clearly visible [in Fig. 5(d)], along with a new
dip just in front of the piston. We see from the phase map,
Fig. 6{d), that the dislocation near the axis has moved slight-
ly further away from the axis {and the equiphase lines have
rotated around it}, and a new pair of dislocations, of
strengths + 1, have been born just in front of the piston face,
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FIG. 8. Nearfield pulse wavefunction: imaginary part.

almost exactly at a minimum of the cw amplitude. Figure
8(d) shows the crest just in front of the piston ending on one
dislocation and then reappearing on the second. A pair of
dislocation loops have been born which then climb apart,
producing an annular tear in the wave front. Notice that the
second birth occurs well into the tail of the pulse, and the
first dislocation has dropped well back into the tail also. The
center of the pulse is slightly behind its geometrical position,
and seems to remain so until the farfield, where as we have
seen it occurs at {wr — kr} = 0.
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At T = 20 [Figs. 5-8(e]] we see a total of four disloca-
tions, all dropping further into the tail of the pulse. Remem-
ber that in the farfield there are only two dislocations, which
occur at the center of the pulse. The upper dislocation of the
pair has moved back onto the piston face, where it will disap-
pear {dislocations can only appear or disappear in pairs, or
on a boundary, since their total strength is conserved'}, and a
new dislocation has appeared in the valley of the incipient cw
farfield null discussed earlier. Notice how the equiphase
lines are beginning to kink along the valleys of the cw ampli-
tude.

By T =25 [Figs. 5-8({)] the two dislocations on the
piston face have disappeared, but the remaining two have
not moved very much. The center of the pulse is well beyond
the near/far boundary, but the dislocations are still dropping
back further into the tail. However, the equiphase lines are
kinking very sharply along the second valley, which must
portend something interesting. Figure 7{ f) shows the two
dislocations and the kinking of the wave fronts quite well.

At T= 30 [Figs. 5-8(g)] one immediately notices [see
particularly Fig. 6{g)] that the second dislocation (at larger
R Jhasjumped a long way, leaving the equiphase lines kinked
the other way. The wave fronts have been torn and rejoined
to the next one along; hence the name *glide” by analogy
with the motion of dislocation lines in sheared crystals.’ The
equiphase lines around this dislocation now take on the ca-
nonical pattern as in the farfield, but the dislocation is still in
the tail of the pulse.

At T=35 [Figs. 5-8(h]] the second dislocation has
moved with the pulse off the figure, but even by T=40
[Figs. 5-8(i}} the first dislocation has not moved much. Fig-
ures 5(i) and 6{i) show just how far into the tail it has got.
Finally, at T'= 45 [Fig. 6( j) only], the first dislocation to be
born finally begins to catch up with the pulse center, which it
succeeds in doing only asymptotically. This dislocation
drops so far into the tail of the Gaussian envelope pulse that
numerical errors begin to affect the equiphase lines apprecia-
bly because of the very low amplitude.

We conclude this section by proving that an axial dislo-
cation produced by any real positive definite pulse envelope
can only occur at a cw null position. Inserting

Ft) =flwt)e
into (3) gives, in the notation of Sec. II,
W(0,Z, T)=f(T—KZ}""~ %2 _ f(T — KZ}e""~ %2,

where Z,=(Z ? + 1)"/2 For ¥ tobe zero the two terms being
differenced must have the same amplitude and the same
phase mod 27, For real positive f the phase condition is iden-
tical to that for a cw null {in which case f==1); hence the
proposition that the dislocation can only occur at a cw null
position is proved.

The time of the dislocation at the null position (0, Z ) is
given by

fIT—KZ})=fIT-KZ,)

For any real /> 0 that is symmetric and monotonic decreas-
ing away from the origin the unique solution at finite Z is

T=KZ'=K\Z+Z)/2,
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Le, t = [z + {27 +a’)'"*) 2

(where Z ' was introduced in Sec. II). We see that the disloca-
tion time is the mean travel time to the axial null from the
center and edge of the piston. Within the class of pulses con-
sidered, the time (f) is quite independent of pulse shape or
length, and aise of the carrier frequency; it depends only on
the piston radius. At the single axial null in our model the
dislocation occurs at T = 7.96, which is consistent with the
computed figures,

IV. BIRTH, DEATH, AND SKIP OF DISLOCATIONS

The study discussed in the previous section, of the near-
field wavefunction over a fairly large region of space at wide-
ly spaced time intervals, has shown the general behavior of
the dislocations. In this section we discuss some of the inter-
esting events in more detail.

A, Birth of a pair of dislocation loops

This occurs near the piston face at R~0.4 between
T =10and T = 15, as shown by Fig. 6{c) and (d): the mecha-
nism is simply equiphase lines “pushing through™ each
other.

B. The incipient distocation

At T = 20 there is a fourth dislocation close to the edge
of the piston [i.e., at R~1, see Fig. 6{e}] whose existence is
rather transient. Closer study reveals that it appears on the
baffle plane just outside the piston, moves in an arc around
the piston edge, and disappears on the piston face, as shown
in Fig. 10. We conjecture that if K were increased so that
there were three farfield nulls, then this dislocation would
play a much more significant role and run off into the far-
field.

C. The rapid dislocation glide by skip

Between T= 25 [Fig. 6{ f)] and T = 30 [Fig. 6(g)] the
dislocation at larger R jumps a long way, suggesting that
some special mechanism, other than simple dislocation
glide, might be involved. Figure 9 shows the process in
greater detail; we have confined our attention to the equi-

phase lines of the wavefunction, because these convey the
mos! information about the dislocations.

Before the jump [Fig. 9(a) and (b)] the structure becornes
very complex. The equiphase lines kink more and more
sharply so that they almost coalesce along a line, resulting in
the birth of a new pair of dislocations of opposite signs ahead
of the dislocation that is about to glide, at some time between
T = 25.5 and 26.0. This pair then separates rapidly along the
glide trajectory. Figure 9(a) shows the dislocation that is
about to glide rapidly at the left, plus the newly born pair.

One of the pair of new dislocations approaches the
original dislocation [Fig. 9(b}]. These two dislocations have
equal and opposite strengths, and between T = 26.2 [Fig.
9(b)] and T = 26.5 [Fig. 9(c)] they meet and annihilate, leav-
ing just the second member of the newly born pair as shown
in Fig. 9(¢). The original dislocation has “skipped" over the
backward-moving member of the newly born pair and ended
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FIG. 9. The skip event. The figure shows equiphase lines (O: s WA
i M——— = —— —; £/, £ I/ } and the dislo-

]

cations are marked by dots. The axes are rotated for compactness. Near the
center of (a) a pair has been created; one of the pair approaches the original
dislocation, which has opposite sign, {b) and annihilates it (c), leaving one
dislocation, indistinguishable from the original, which appears to have
“skipped over” a birth—death cvent and thereby glided very rapidly.

up as what is really the other member of the pair. We have a
continuous trajectory made up of (say) positive strength dis-
Iocations moviiig forward and fiégative strength dislocations
moving backward.' The process is analogous to the interac-
tions of elementary particles and their representation by
Feynman diagrams.

After the jump the equiphase lines become progressive-
ly less sharply kinked and show the canonical structure.’ We
followed the dislocation as it slowly and smoothly caught up
with the pulse center, and there is no evidence of any further
jumps.

V. THE DISLOCATION TRAJECTORIES AND
PERTJRBATION THEORY

Figure 10 summarizes the information gathered so far
by plotting the trajectories of the dislocations, i.e., the paths
which they trace out as they move, The times at which they
pass certain points are indicated, and the directions of mo-
tion are indicated by the arrows. The trajectories are super-
imposed on contours of the cw amplitude for the carrier of
the pulse. This shows that, to a fair approximation, the dislo-
cations are born near the two minima of the carrier ampli-
tude and then travel away from them near to the bottoms of
valleys [indicated by the curvature of the contour lines—see
also Fig. 3{a)]. Two of the dislocations pass over the two
saddle points and then run down the two valleys which lead
into the farfield. Only these two “valley systems” are used—
that joining the two amplitude minima is not.

That the dislocations in gm pulses should travel along
lines close to which the amplitude of the carrier is, in some
sense, minimal is not surprising. One may regard the effect of
the modulation as pulling the already fow cw amplitude
down to zero pulse amplitude at some specific time. How-
ever, this is merely an a posteriori justification, not a theory
of gm dislocations—one problem with trying to build a the-
ory along these lines is the imprecision of the concept of
valley (see also Ref. 7).
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FIG. 10. The dislocation trajectories in the nearfield (solid), superimposed
on the carrier amplitude contours at 0 mod 0.2 {dotted), with local maxima
marked by + . The bars on the trajectories indicate the positions of the
dislocations shown in Fig. 6, and the times at some points are explicitly
shown. B and D indicate, respectively, births and deaths of dislocation pairs
atintenior points, and the arrows show the directions in which the trajector-
ies are traversed.

The method of study we have used is costly because of
the computer time required to evaluate the pulse diffraction
integral nany times. We therefore evaluated the wavefunc-
tion only at rather widely spaced times and so incurred the
risk of missing an interesting event that happened between
two of these times. Our crude semi-empirical method, which
consisted of computing the wavefunction at fixed times and
then searching for dislocations by eye, could be refined by
programming the computer to perform a multi-dimensional
search for zeros. Apart from being algorithmically complex,
such a search would only be reliable (or worthwhile) with a
much smaller time interval than the five units we used here,
so making it even more costly. With three nontrivial space
dimensions it would probably be infeasible.

A better method of studying gm. dislocations is pro-
vided by the perturbation theory developed by Wright and
Nye.” This regards a quasimonochromatic pulse as a small
perturbation of a continucus wave, and expands the wave-
function in a perturbation series in the pulse bandwidth.
Truncating this series after the first order term and equating
to zero gives nontrivial predictions for the behavior of the
dislocations. Using the notation of Ref. 7 (except that their
wavefunctions are the complex conjugate of ours) the results
are most succinctly expressed in terms of the amplitude
M [r, w)and phase ¢{r, @) of the cw field, which may be repre-
sented as

M (r, w) expji[at — @ (r, )]},
where r denotes spatial position, and we indicate all frequen-
cy dependences explicitly. We denote derivatives with respect
to frequency @ by primes, and evaluate all functions at the
carrier frequency w,. The surprising conclusion is that, to
lowest order, the dislocation trajectories are contained in the
set of points S satisfying

M'r,w) =0, M, wy)>0. (13)

This result is independent of the pulse shape, although it is
only valid in the gm limit (as the bandwidth tends to zero). It
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states that dislocation lines in gm pulses travel along the sur-
JSaces where the cw amplitude at the carrier frequency is mini-
mal with respect to changes in frequency. This prediction has
been checked against a simple analytically soluble two beam
model,” and against experiment,'* and found to work very
well.

Wright and Nye” show that the dislocations produced
by a Gaussian envelope pulse will explore the whole of S, but
that generally the extent of 5 traced out will depend on the
shape of the pulse envelope. They also give formulae for the
time at which a dislocation passes a given point on its trajec-
tory, which again depends on the pulse shape, and it is here
that the main subtlety of the perturbation theory appears. It
is also worth remarking that it should be possible to apply
the perturbation theory to features of qm pulses other than
dislocations.

When the result (13) for the dislocation trajectories was
applied to the present model, the results agreed within the
plotting error with those shown in Fig. 10. This provides
further confirmation of the perturbation theory, and also
confirms that if we have missed any dislocation trajectories
empirically then they are also missed by the perturbation
theory-—a coincidence which seems highly unlikely. A pre-
liminary study of the times predicted by the perturbation
theory suggests good agreement, but we shall not pursue this
here. It is interesting to note that our Gaussian pulse enve-
lope contained only three carrier cycles within + 1 standard
deviation of its center, which means that it is rather far from
monochromatic; however, the perturbation theory still
works well attesting to its robustness!

Two apparent coincidences emerge from the perturba-
tion theory. The first is that the lines M’ = 0 lie very close to
the bottoms of valleys (when M ” > 0} and the tops of ndges
{when M * < 0) of the surface formed by the graph in r space
of M {r, w,) for some fixed ® = w,. This observation implies
that the main effect of a small change in frequency is locally
to shift M rigidly in space without any other significant
change in the values of M. The second apparent coincidence
is that @"|r, ) is very small on S, and seems to be quite

wavefield. In the two-beam model discussed in Ref, 7 all odd
frequency derivatives of M and all even frequency deriva-

tives of @ have exactly the same zeros. These relationships
have very important {and useful) consequences for the per-
turbation theory, but their general status is still not clear.

VI. CONCLUSION

‘We have illustrated the theoretical discussions of wave-
front dislocations’**®7 by displaying quasimonochromatic
pulsed wavefields computed accurately from an exact inte-
gral representation of the wavefield of a model circular pis-
ton radiator. Our plots show the nature of the dislocations
themselves, of their births and deaths, and of skip, which
involves a total of three interacting dislocations. The disloca-
tions are born near the minima, and travel along vaileys, of
the carrier amplitude; in fact, any kind of dip in the carrier
amplitude graph seems to give rise to dislocations in a gm
pulse. Our results are consistent with the perturbation the-
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ory,” which predicts that dislocations will travel close to the
frequency minimum surfaces of the carrier amplitude.

This 1s by no means a complete study of the dislocation
structure of this system. We have considered only a single
carrier frequency and a single pulse shape and length. Our
purpose was not to be exhaustive, but rather to examine in
detail some typical realistic wave-front dislocations. The
best approach to more general studies is probably to use the
perturbation theory’ as the basic tool, whereby one computa-
tion gives the approximate dislocation trajectories and times.
Thus it would be feasible to investigate the effects of varying
the carrier frequency and pulse shape. In a similar way it
should be possible to study the behavior of, say, the local
maxima of the pulse amplitude, which might be more imme-
diately relevant to present remote sensing techniques.
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APPENDIX A: THE INTEGRAL REPRESENTATION FOR
THE SOUNDFIELD

We sketch and discuss our derivation of Eq. (2) follow-
ing Wright.>® Certain aspects of this derivation have been
presented before [e.g., Refs. 26 and 17}, and Archer-Hall er
al.'* have recently derived a similar final result for the cw
case. For the general context see the reviews by Harris®' and
Freedman.?

Using the coordinate system of Fig. 1, let p be a vector
parallel to the baffle plane, p, a vector in the baffle plane, and
let the displacement of the piston be decomposable as
G| po)F (t). Then if s is the distance from a source point at p,

" on the baffle plane to the field point at { p,z}, the velocity
potential wavefunction is given by

1 2 G 0 (# — /
I B 5

where F' represents the derivative of the function F. This
exact representation as a double integral over the baffle
plane B is due to Rayleigh.?* It is a Green’s function solution
of the inhomogeneous wave equation, with the integrand
representing the **Huygens’ wavelet” from each point of the
radiator.

It is worth remarking that this problem is different in
principle from that of diffraction of plane waves by a circular
aperture, for which the wavefunction is not known a priori
within the aperture. The two problems become equivalent
only in the high-frequency limit when the Kirchoff approxi-
mation becomes valid—generally it is not only inaccurate®
but-not self-consistent.”?

{A1) is conveniently rewritten as the convolution inte-
gral
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Hpar)= | df BipasiFie—s/e (A2)
where
Blpes)= L[ [atp, T jay

is the impulse response,®! which we evaluate analytically.

The circular symmetry of the system is introduced by
setting G{ pg) = G ( po) with py = |po|. Transforming to cir-
cular polar coordinates such that p - p, =pp, cos @ and
noting that

oy~ soy) = S100 - 61 /| 5|,

where [ 8, ] is all real solutions of ' — 5(8} = 0, the angular
integration may be performed and after a little trigonometry
gives

H{pzs) = H(psouls’' —2),

wheres, = (52 — z%)"/?is the distance between a source point
and the projection of the field point onto the baffle plane, u is
the unit step function, and

H{p.so) = %J:* G oo po (A4)

w1 [2opel® = (P + ph= P12
Using these formulae, {A2) may be re-expressed as
Hpzt)

= —cJ: dsoH(p,so)gTF[r — (55 +22)"%/c]. (A5)

The integrand is clearly the contribution of a circular line
source S of radius 5, on the baffle plane, centered on the foot
of the perpendicular from the field point.
For a rigid plane piston of radius a we have
G ( pg) = ula — p,) and (A4) may be evaluated analytically to
give '
Hip,so) =ula —p —so} + ulso ~ | p — a)

W pat)=Ble —plcFit —z/c)
+ir+a§2 p—a —s
T ho-a So [(208) — (@ —p* — 3)*1"?
XF[t— (2 +55)%/e].

To avoid the (integrable) singularity at both ends of the
range, the integration variable is changed to @ defined by

sz =a*+p’—2apcosp

to give formula (2) of the text.

APPENDIX B: REPLICA PULSES

These were introduced by Freedman®’ as a means of
understanding the structure of a radiated soundfield, and it
is instructive to see how they emerge from our analysis for a
general circularly symmetric piston radiator. Integrating
(A5) by parts, assuming either & {c) = 0 for any real radia-
tor, or F{ — o) = 0 for any real pulse, gives

W pat)=cFlt —z/c)G | p)
we dsy G ool 1= 6 + 2]
(B1)

"Now if the whole baffie plane vibrates rigidly, s that

G(po) =1 for all p,, then H{p,5,) = 1 from (A4}, and the
second term in {B1) vanishes. Hence the first term in (B1)
represents a plane-wave pulse emitted by the point on the
baffle plane directly below the field point, and the second
term represents the contribution from the rest of the radia-
tor, a decomposition first effected by Schoch.?®

The largest contributions from the integral in (B1) wiil
come from discontinuities of £ such as arise from the edges
of the piston. Each discontinuity produces a “replica pulse,”
which is (generally) a distorted and delayed version of the
primary pulse represented by the first term in (B1). Outside
the piston {p>a) there is no primary pulse because
G {p) =0, so the dominant form of the soundfield consists
purely of replica pulses.

, Xullp+a) = slhipse) (A6}
where
2_ 2 2
h(p,s,,]:—l—-i-iarcsina P 2,
2 g So

Explicitly, as s, varies the following three cases arise:

{i} if p>a and 0<s,<p —a, or 5,>p +a, then the
source line 5§ is outside the piston P and H { p,5,) = 0;

(i) if |p — a}<s5,<p + a then S is partly inside P and
H{(pso)=h{p.so;

(iii) if p < @ and 0<sy < @ — p then §is completely inside
P and H ( p,s) = 1 (as for an infinite plane radiator).

The form of the impulse response as a function of g is
well illustrated in e.g., Refs, 9 and 19: it has different behav-
ior as the projection of the field point lies inside ( p <a}, out-
side ( p > a) or on the edge of ( p = a) the piston.

Notethatk (pp + a) = 0; 4 (2,0) = §; and defining € to
be the modified unit step function used in Eq. (2) gives
h(p,lp — a|) = Bla — p) for all p. Then inserting (A6) into
{A5) and integrating by parts gives
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The replica pulses appear particularly clearly on the
axis of a circular piston, wherep. = 0. In the limitp — 0, (A4}
gives

H (0,5) = G {so) = @ — Sohs
so that aH (0,50) = — 8{a — s}
o5,

and (B1) reduces to the simple axial form {3). In this high-
symmetry position the two replica pulses merge into a single
replica represented by the second term in (3). It is an undis-
torted copy of the primary pulse, but inverted and delayed: it
corresponds to the “edge wave” from the rim of the piston.
On moving into the farfield, the canceling effect of the re-
plica differentiates the primary pulse (assuming F to be at
least once differentiable) to give the farfield form

W0,2,t )~ (a®/22)F 't — 2/c) as z— o,

which is the axial form of (6).
The high-frequency limit of a cw field may be under-
stood in terms of geometrical rays, some of which emanate
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from the edge of the radiator. Dehn?®® has applied this idea to
the cw field of the circular piston, and Kaspar'yants™ to its
transient switch-on. Edge rays underly Keller's powerful
geometrical theory of diffraction,* which is much used in
radio propagation problems. It is from the edge rays that the
replica pulses contributing to a pulsed field arise. Stepanis-
chen’® has shown that the replica pulses produce interesting
transient behavior at the cw nulls of a circular piston radia-
tor, and Robinson et al ' have used empincally time-shifted
replica pulses to find amplitude extrema. Beaver'? displays
computed wavefunctions showing the two replica pulses
produced by the two opposite edges of a rigid circular radia-
tor, and observes that
“*As the pulses move outward. . .the radiation zone on
the piston becomes larger, and the discontinuity effects
of the rims eventually overlap the main pulse, produc-
ing interference. The pulse amplitude is then more simi-
Iar to the cw case. However, distinct nulfls cannot form
because complete interference is not possible.” (Our ita-
lics.)
While fixed nulls are certainly unlikely in any wavefield with
nontrivial time variation, we have seen that moving nulls,
which we call wave-front dislocations, certainly do occur in
.qm pulses. This should apply to Beaver’s pulse types 11 and
IV, although not his types I and 11, to which his remarks
were perhaps intended to be restricted.
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