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TWINKLING EXPONENTS IN THE CATASTROPHE THEORY OF RANDOM SHORT
WAVES

M.V. Berry
{(H.H. wills Physics Laboratory, Bristol)

ABSTRACT

The difficulty in obtaining a theoretical description of the
statistics of random short waves arises from the presence of °
ray caustics, which cause intensity moments to diverge. The
divergences are determined by the result of a competition
between singularities, which contribute exponents calculated
using catastrophe theary.

1. INTRODUCTION

The applicaticns and illustrations of catastrophe theory in
physics are now many and varied, and have been recently and
extensively reviewed in several books (Poston and Stewart 1978,
Gilmore 1981} and articles (Stewart 1981). 1In this paper I
will concentrate on one group of topics, centred on the origin
and applications of scaling laws in the theory of short waves
and explain how these form the basis of a theory of the
statistics of the waves when they encounter randomness.

There are several reasons why it is appropriate to write
about this subject. The first reason is that although the
theory is subtle it nevertheless provides an explanation of a
familiar phenomenon: the intense twinkling of starlight.

The second reason is that the theory embodies in a novel way
two themes with which theoretical physics has been much
precccupied, namely scaling and nongaussian fluctuations.
Scaling is an expression of the fact that some physical
guantities can depend nonanalytically on others. This is most
familiar in phase transitions (Stanley 1971} where
thermodynamic properties are nonanalytic functions of
temperature at critical points. In this paper the scaling laws
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will concern the short-wave limit, in which the wavenumber
k(= 27/wavelength) becomes infinite. Nongaussian fluctuations
occur in random variables or functions governed by processes
with a high degree of mutual correlation, so that the central
limit theorem cannot be applied., Familliar examples are the
stable distributions of probability theory (Jona-Lasinio 1975},
and certain fractal neises (Mandelbrot 1982). My example is
unfamiliar in this context and involves large fluctuations for
which statistical quantities {moments of wave intensity) may
scale in ways dominated by competition amongst singularities
(i.e. the catastrophes).

The third reason is that the theory makes essential use of
concepts characteristic of catastrophe theory. This essential
use is to be contrasted with the use 'in principle' which has
been so common when catastrophe theory is invoked outside
physics {(and which has given rise to controversy - see Sussmann
and Zahler (1975}, Zahler and Sussmann (1977} and subseguent
correspondence in Nature 270 (1977) 381-384, 658), The
characteristic concepts in question are firstly, the structural
stability of certain universality classes of singularity, and
secondly the hierarchy of normal forms representing the
singularities in each class.

The fourth reason is that this group of subjects is one of
the less well known applications of catastrophe theory. The
subjects are still in their infancy, and it is likely that much
remains to be discovered by imaginative investigators.

The plan of this paper is as follows. Section 2 contains a
brief account of the catastrophe theory of waves. Section 3 is
devoted to the scaling laws expressing the nonanalyticity of
short waves., These are essential preliminaries to section 4,
where at last randomness is incorporated into the asymptotics,
thus introducing the central idea of singularity-dominated
strong fluctuations by deriving scaling laws for moments of
wave intensity.

2. SHORT WAVES AS DIFFRACTION CATASTROPHES

Consider a menochromatic wave with wave number X,
represented by a scalar wavefunction ¢{(C;k}, where C is an
abbreviated notation for any quantities C ,C2.... on which the
waves depend, such as time, positien cooréinates, or parameters
describing diffracting objects or refracting media. In the
langquage of catastrophe theory, C are control parameters. ¢ will
be assumed to satisfy a linear wave equation with boundary
conditions. This framework is very bread, including optics,
quantum mechanics, acoustics, elasticity and small-amplitude
water waves.,
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The short-wave limit is k-+=. It is nontrivial because ¥ is
a nonanalytic function of 1/k, with an essential singularity
at 1/k=0. 1In optics, for example, it is not possible to
express monochromatic electromagnetic wave fields as Taylor
series in the wavelength with geometrical optics as the leading
term. Thus the connection between wave and ray optics (and,
similarly, between gquantum and classical mechanics) is much
more complicated than the connection between special relativity
and Newtonian mechanics, which is simply a matter of expanding
in powers of v/c (relative wvelocity of coordinate frames
divided by speed of light).

Large-k asymptotics must give the correct mathematical
description of three physically obvious facts. Firstly, ¢(C;k)
must be constructed in terms of the trajectories of the
corresponding Hamiltonian problem {for example rays of light).
Secondly, on the caustic or focal set, that is on the envelope
of the rays representing the wave, { must rise to high values,
diverging as k>, And thirdly, the scale of diffraction
fringes in C space must vanish as k-+w.

A crucial element in formulating asymptotics in accordance
with these three criteria is the recognition that a wave
corresponds not to a trajectory but to a family of trajectories;
one is reminded of Dirac's {1951) remark: ‘'presumably the
family has some deep significance in nature, not yet properly
understood". Different trajectories may pass through different
peints C, and more than one trajectory may pass through a given
peint C. To label the trajectories in a family we employ
variables s= SysSgeeann In the terminology of catastrophe

theory, s are state variables; they may represent, for example,
peints at which trajectories intersect an initial wavefront, or
directions of trajectories at an instant of time. 'The different
trajectories through a peoint will be denoted by sV(C) m=L,2...).

The trajectories s¥ (0) are determined by ray dynamics.
These are governed by equations derived from a Hamiltenian
function (whose operator generalization generates the wave
equation satisfied by $(C;k}). Here it will be necessary only’
to invoke the fact that ray dynamics may also be derived from a
variational principle, which may be expressed as follows: there
exists an optical distance function (or acticon function) &(s;C).,

whose stationary values su(c) are the rays, Thus

%E-(s;c) =0 vi if s=s"(@. (1)
i
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An elementary example of this way of formulating ray
dynamics is the evolution of rays from a curved wavefront W in
a plane filled with homogeneous isotropic medium (figure 1).

C=X)Y

S

2

Fig. 1, Optical distance ¢{(s;C) from s on a wavefront W to
control peoint C; alse shown are three trajectories, for
which ¢ is gtationary.

C corresponds to position X,Y in the plane, s is a coordinate
on the wavefront, and ¢ is the distance to C from s on W. It
is clear that (1) simply expresses the condition that in these
circumstances rays are straight lines normal to W,

In cetastrophe terminology, (l) states that rays are
determined by a gradient map (figure 2} from s to C.

state space s control space C

s'(C)
s2(() ‘

s3(C) /

rays s“{C)

Fig. 2. Multivalued gradient mapping from state space to

control space, induced hy rays su(C).
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The caugtices are envelopes of the ray family described by
¢(s,C) and are defined as singularities in C space of the
gradient map (1), that 1s hypersurfaces across which the number
of rays suddenly changes. The condition for this is that ¢ 1is
stationary te higher order, so that in addition to (1) the
equation

2

det {25335 } =0 {2)

1773
must hold. This is illustrated for our simple example in
figure 3, which shows the family of rays normal to W. At
points such as A, three rays pass through each point; at
points such as B, one ray passes through each point. The
separater set is the caustic, in this case a cusped c¢urve whose
points satisfy the focal condition, which follows from (2), of
lying on the locus of centres of curvature of W.

Fig. 3. Cusped caustic formed as envelope of trajectories
{normals) from wave-front W; three trajectories reach
A, one reaches B,

Caustics organize the multivaluedness of the ray family. 1In

the space sXC the different sclutions ) join to form a
smooth surface, called the critical manifold, whose foldings
over the control space C correspond toc the rays. This is
illustrated for our example by figure 4.

The reason for introducing the function ¢(s;C} is that as
well as generating rays and caustics it also generates wave-
functions ¢{C;k) in the short-wave limit k=, A substantial
body of asymptotic analysis leads to the follewing integral

representation.
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Y

Fig. 4. Caustic of figure 3 formed by projecticn of critical
manifold in s,C space,.

d's a(s;Cle

/2 [ n ik¢(s; C) (3)

yi{c;k) = [k
2T,

In this equation, n is the number of state variables and a is

a smooth function of s and C dependent on the ray family. The
integral (3) generalizes a number of mode expansions, Kirchhoff
diffraction Integrals and Fourier-transform representations
{whose variety is a consequence of arbitrariness in
interpreting s), which all become equivalent in the short-wave
limit. The derivation of such appoximaticns and their
correction terms was put on a firm basis by Maslov, in work
reviewed by Kravtsov (1968}, Duistermaat (1974} and in the book
by Maslov and Fedoriuk (1981), Intuitive presentaticons have
been given by Berxry (1976, 198l) and Berry and Upstill (1980).
Physicists will find (3) reminiscent of Feynman-path integrals,
which are exact representations of ¢ as a 'super-superposition’
in which s is infinite-dimensional and ¢ a functional; this
point of view is well presented by Shulman 1981,

For large k the integrand in (3) is a rapidly-eoscillating
function of s and direct evaluation of the integral is
impractical, It is natural to attempt an approximate
evaluation by the method of stationary phase, which consists in
expanding to second order about its stationary points, which

are preclsely the rays sp(c) defined by (1). This gilves
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a(s;Clexpl{ikd(s;C) +ia n/4}
y i
¥(C;ik} xz Get 324 (s;0) “
H FERCE !

13 s=su(C)

where a ie an amplitude and au is the signature of the matrix
2
3 ¢/Bsiasj. Thus ¢ appears as a superposition in which each

ray contributes a wave whose phase ls precisely the stationary
value of the optical distance function,

Although (4} gives a useful description of many interference
effects, it suffers the fatal defect of failing just where we
shall be most interested in ¢, namely on caustics., This is
clear from (2}, which implies that the approximation (4)
diverges to infinity as C moves onto a caustic because of the
vanishing of the denominators of its terms. Now when k = =
this divergence must surely occur: it simply expresses the
infinite concentration of rays at a caustic. But we are
interested in large-k asymptotics rather than the trajectory
limit, and so seek to determine exactly how the divergence
occurs as k increases. Thus near caustics (4) is too crude
an approximation to the integral (3).

It is at this point that catastrophe theory enters to
provide two remarkable simplifications of the problem for the
important case {which occurs ‘almost always') when the caustic
has the property of structural stability. This means that a
small smooth deformation of ¢ (i.e. a diffeomorphism such as
would be produced by changing the nature or positions of
diffracting objects) will cause a smooth deformation of the
caustic. In figure 3, for example, the cusp will remain a cusp
under small changes in the form of W. The central theorem of
catastrophe theory (Poston and Stewart 1978, Gilmore 198l) is
that the world of caustics is partitioned into universality
classes, Any two caustics in the same class can be transformed
into each other by diffeomorphism of their ¢'s. It is these
universality classes (or in mathematical terminclogy,
equivalence classes) that constitute the catastrophes. The
classification of catastrophes, begun by Thom (1975), has been
carried much further by Arnocl'd (1975)., Figure 5 shows the
forms of the caustics for the catastrophes whose codimension K
{essential number of control parameters C) satisfies K £ 3.

The first way in which this classification enables the
diffraction integral (3) to be simplified follows from replacing
all ¢(s;C) in a given universality class (labelled }) by one
normal form oj(s:c). The transformation of ¢ into ?j is

achieved by diffecmorphism of s and C. From this point of view,
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catastrophe theory is the classification ¢f normal forms; table
I is a list of normal forms for the first few catastrophes
(Arnol'd 1975 lists many more). Making the same transformation
in (3), and replacing the facter a and the transformation
Jacobian by unity {because these are smooth functions and near
a caustic the contributing s values lie close together), we
cbtaip, instead of the infinitely many integrals corresponding
to all possible ¢, the following finite set of diffraction

catastroehes

iké_ (s;C)
. _ kK ,n/2 n j
Wj(C,k) = ( o } Jd s e . {5}
C;
fold C c1
cusp
AN
swallowtail
¢
<,
Cy
CZ
G
elliptic hyperbolic
umbilic umnbilic

Fig., 5, The elementary catastrophes of codimension K £ 3.
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The polynomial exponents in the integrands represent the
irreducible topological complexity of the collisions of

stationary points su(C) of ¢j (i.e. of caustics) as the

parameters C vary. Diffracticn catastrophes can be very
complicated functions of C. Consider, for example the cusp.
From table I, the quartic polynomial ¢cusp {which on using {1)

can easily be seen to correspond to the cubic eritical manifold
of figure 4) gives

w

?(Cl,cz) = (k/2ﬂ)1/2 f ds exp{ik(s4/4+C252/2+cl s)} (6)
cusp -
Table I
Name Symbol K $(s:C)

fold A, 1 s3/3+cs
cusp Aj 2 s"/4+Cp52/2+C 5
swallowtail Ay 3 sS/S+C353/3+C 52/2+C15
elliptic umbilic Dy 3 s§-3sls%-C3(s%+s§)-Czsz-c151
hyperbolic umbilic D& 3 s?+s ~C381852-Cos9=C15)
butterfly Bg 4 56/6+Cqs“/4+C353/3+C252/2+c1sl
parabolic umbilic Dg 4 5?+51s§+chs§+C3sf+czsz+C]sl

Standard polynomials ¢ for the elementary catastrophes with
sedimension K £ 4

2
Photographs of the intensity pattern of |?cu5p1 , and a

computer simulation based on computing contours of (8), are
shown in figure 6. This function was first studied by

Pearcey (1946). The simplest diffraction catastrophe - the
fold ~ was studied by Airy (1838). The more complicated
elliptic umbilic diffraction catastrophe was studied in detail
by Berry, Nye and Wright (1979). The computation of the
oscillatory integrals (5) is growing inte a small industry
(see, for example, Connor and Farrelly 1981, Connocr and Curtis
1982, and Upstill et al 1982).
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Fig. &, Cusp diffraction catastrophe; a) experiment;
b) magnification of a); c¢) computer simulation made by

(Cl,C2)| 2 calculated from (6).

shading contours of |?
cusp

3. SCALING

The second way in which catastrophe thecry can simplify the
asymptotic diffraction Ilntegrals follows from the fact that the
normal forms ¢j(s,c) are guasi-homogeneous polynomials in the

variables s with coefficients linear in the parameters C. This
has the consequence that the asymptotic parameter k can be
scaled out of {5), so that the diffraction catastrophe ¥j for

any value of k can be expressed in terms of ¥, for any other
3

value (e.g. k=l}). The explicit scaling law is (apart from
possible logarithmic modifications to be mentioned later)

o
y (Ci;k)=k5j'i’ (ck 35 b, (7)
3 j
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where the separate control parameters have been denoted by C

.

i
Table II lists the values of the exponents Bj and cij' and
also the additional exponent
K
v, 2 Lo (8)
ooy 4d

for catastrophes with codimension K £ 4. The method for
obtaining the expohents is simply to first rescale s to eliminate
k from the C-independent terms in the exponent of (5) and to
then rescale the Ci to eliminate k from the other terms. It is

easy to confirm that when applied to (6) this procedure yields
the correct cusp exponents in table II.

Table II

catastrophe B o4 Y

fold 1l/6 01=2/3 2/3
cusp i 1/4 01=3/4,02=1/2 5/4
swallowtail | 3/10 01~4/5,05=3/5,03=2/5 9/5
elliptic umbilic 1/3 61=2/3,02=2/3,03=1/3 5/3
hyperbolic umbilic 1/3 01=2/3,02=2/3,03=1/3 5/3
butterfly i 1/3 01=5/6,05=2/3,03=1/2,04=1/13 7/3

parabolic umbilic 3/8 0;=5/8,02=3/4,03=1/2,0,4=1/4 17/8

Exponents governing scaling of wave amplitudes and fringe
spacing as k + =

In mathematical terms, the scaling (7) is a precise
expression of the nonanalyticity of wave functions near
caustics, as k+», In physical terms, the exponent 8, describes

the short-wave divergence of wave intensity |‘P.I2 at the caustic

singularity (C,=0): the intensity scales as k B3 . The
exponents Uij escribe the shrinking of the diffraction fringes

in thg C:L control-space direction: the fringe spacings scale
as k~ +3 . The exponent Yj describes the shrinking of the
K-dimensional hypervolume of the main diffraction maximum:
this scales as k-Yj. Bj is the ‘'singularity index' introduced

by Arnol'd (1975) and computed for a large number of cases by
Varchenko {1976); Uij and Yj (the 'fringe index') were

introduced by Berry (1977}.
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To illustrate with a quantum-mechanical example the way in
which the scaling laws can quickly lead to interesting physics,
consider an isotropic source emitting particles with mass m and
speed v in a gravitaticnal field with acceleration g (figure 7).

| .
caustic
3 =

fringe spacing A

Fig. 7. Section of paraboloidal caustic formed by particles
issuing from a source under uniform gravity.

The corresponding parabolic Newtonian trajectories envelop a
caustic which is a fold catastrophe in the form of a paraboloid
{this is the 'bounding parabcleid' of elementary gunnery).
Within the paraboleid, two rays pass through each point, and
their interference gives rise to diffraction fringes in space.
What is the semiclassical separation 4 (figure 7) of the bright
fringes nearest the caustic? The answer can be obtained by
realizing that A may depend on m,v,g and Planck's constant .

Since h corresponds to k_l in the scaling laws, table II gives

AJh2/3 for the fold. Elementary dimensional analysis now leads
to
l/3
A = afhz/ng) ‘ (9)

where a is dimensionless, This does not involve v and so the
spacing of these quantal fringes is, curiously, unaffected by
altering the de Broglie wavelength h/mv of the particles (this
is a case where the semiclassical limit is not quite the same
as the short-wave limit). A more refined analysis (Berry
1982a) gives, for the constant, a=3.53897, which for neutrons
in the earth's gravity gives A=0.026mm - an almost-macroscopic
quantum effect.

Chillingworth and Romero-Fuster {1983) have proved an
interesting relation between Yj and B,, namely

3

.= (K.+l}(l-Bf.) - 1 1o
YJ ( j Y ( B]) (lo)
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where K, is the codimension of the j'th catastrophe. For the

b

catastrophes in table 1II the relation can be checked directly.
For some higher catastrophes, the Yj and B, as calculated by

3
Berry (1977) do not satisfy (10) and this is connected with the

phenomenon of modality which must now be briefly discussed.

‘A remarkable feature of Thom's early classification of
catastrophes was that the list of universality classes eof given
codimension was finite. If the number of state variables s-the
corank - is unity, there is indeed only one singularity for
each value of K. But if the corank is two then a new
phenomencn appears when K=7: the finiteness of classification
breaks down, and universality classes are parameterized by one
or more continuous moduli, denoted a. Singularities with
different a are not equivalent under diffeomorphism, although
they may be topologically equivalent.

If the moduli a are treated as additional control parameters
and their indices Uij are computed and included in the

computation of v, from equation (B}, then the relation (1O} is

J
satisfied. But this procedure although mathematically

impeccable, is physically unsatisfactory, because the oij for

moduli are always found to be negative or zero, so that as k-
diffraction fringes do not shrink along modal directions in
parameter space.

An example is the singularity z , whose normal form is

11

2
.- C )=535 +55+as 54+C s . +C,.5. +C.5.85

? (8)5,5i8,Cp ... Cgl=s]s,¥5,4a5,5,9C 5 +C s ) +Cy8) 5,

(11)

2 3 2 3 4
+C45152+C55152+C652+C752+Cas2+C955.

Removing k in (5) from the first two terms by rescaling Sy/5,
gives B=B8/15. The rescaling Cl----C9 to eliminate k from the

last nine terms gives a series of positive oi whose sum 1is

=21/5=63/15, which with K=9 does not satisfy (l0). If now the
modulus a is rescaled, the corresponding index ca=~l/15, 50

that diffraction fringes expand along the a direction as k-,
When this is included to give y=62/15, and K increased to 10,
then (l0) is satisfied.
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Another example is Ry whose nommal form may be written

+as2 +C s +C 52+C 52+C s

4 4
¢ s),818,C) .. C)=5,485,%as5,8,C 5, 351%C48;

(12}

2 2
+C55152+C65132+C7sls2

Rescaling the first two terms gives B =1/2, and rescaling the
last seven terms gives y=7/2 which with K=7 fails to satisfy
{10)., 1If now a is rescaled, its index is Ua=0, so that

diffraction fringes neither expand nor shrink in the a-
direction as k+#«, Of course this zero index cannot alter the
value of y, but if a is counted as a control parameter, thus
increasing K to 8, then (l0) is again satisfiled.

These arguments show that although {10} can be confidently
employed to relate Bj and Yj for nenmodal catastrophes,. it

should not be relied on for modal ones if Yj is taken to

represent the index governing fringe shrinking. This is an
indication of the fact that in diffraction physics moduli a
have a significance different from that of control parameters
C. In scme cases, modality requires (7) to be modified by
logarithmic factors, as discussed by Varchenko (1976}, 1
emphasise, however, that in the great majority of applications
of shortwave scaling the catastrophes involved are nonmodal, so
that both (7) and {10) may be employed without regard to the
complications introduced by modality.

Diffraction catastrophe scaling laws and exponents are
strongly reminiscent of those occurring in the theory of phase
transitions (Stanley 1971, Fisher 1967}, with k== corresponding
to T + Tc' There too one starts with integrals (for partition

functions rather than wave functions) whose quadratic
approximation yields the wrong behaviour c¢lose to singularities
{thermodynamic critical peints rather than caustics). Moreover
there exist exponent-equalities analogous to (10}, and
variables may be relevant (analogous to control parameters) or
irrelevant or marginal {analogous to moduli).

But there are differences between the two sorts of scaling.
Diffraction exponents are always ratiocnal numbers, whilst
thermodynamic exponents need not be. Diffraction integrals can
be reduced to low-dimensional integrals, and scaling
accomplished in a finite number of steps, whilst partition
functicns involve infinite dimensions and it is their recursive
transformation, via the renormalization group {Wilson 1975 -
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see alsc Pfeuty and Toulouse 1977), which generates the scaling
laws.

4. TWINKLING OF RANDOM SHORT WAVES

When refracted by atmospheric turbulence, the steady light
from a star acquires a fluctuating intensity that we perceive
as twinkling. When reflected or refracted by irregular
undulations on a water surface, sunlight forms fantastic
patterns of moving bright lines on the sides of beoats, under
bridges and on the bottoms of swimming pools. Because of the
unpredictability of the air turbulence or the undulating water,
cne may speak of the fluctuating light intensity as a random
function and seek to comprehend its statistics. The wavelength
of light is small in comparison with the smallest cells of
atmospheric turbulence or the smallest ripples on water, so
that these problems lie in the domain of random short waves.

Wave propagation in random media has given rise to an
extensive literature {as illustrated by the other papers in
this volume, and reviewed by Uscinski 1977 and in a more
general context by Zimap 1979) as has wave reflection from
irregular surfaces (Beckmann and Spizzichino 1963, Bass and
Fuks 1979). 1In spite of intense study, these problems have
proved remarkably resistant to analytical solution. This is
the case even for the simple phase screen model Mercier 1962,
Bramley & Young 1967, Salpeter 1967) in which a random spatial
phase modulation is imparted to the wavefronts of an initially
plane wave which then propagates freely; the phase fluctuations
are converted by diffraction inte intensity fluctuations which
are the object of study. Until recently the only tractable case
was that of weak scattering, which could be treated by
perturbation techniques such as the Born approximation.

Now, however, a clear picture is emerging of the short-wave
limit, {i.e. the limit k=, based on the realization that random
waves must be dominated by random caustics, near which wave
functions ¢{C;k) take the form of one of the diffraction
catastrophes discussed in settions 2 and 3. The caustics give

rise to intense nongaussian fluctuations in the intensity ]w{2.
In the ray limit k==, the caustics are singularities of y{not
softened by diffraction), and the intensity fluctuations are
infinitely strong. It is important to realise that these
singularity~dominated strong fluctuations are produced by
natural focusing of the rays when the fluctuations in

atmospheric refractive index, ox in the height of the water
surface, are themselves gentle (or even Gaussian-distributed).
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The large fluctuations are described by the moments Im of the

probability distribution of the wave intensity, defined by

_ 2m
I f <l p] s, {13)
where < > denotes averaging over an ensemble of random media

or undulating surfaces. Il is the average wave intensity and

is not large when k- because the caustic singularities are
integrable,. Im 2 2 diverge as k+«, behaviour to be contrasted

with that of a Gaussian random wave (Rey and Imy independent
random variables with zero mean), for which Im=mI and which is

independent of k. Nongaussian fluctuations in the twinkling
light from Sirius were measured by Jakeman, Pike and Pusey
{(1976). 1In precatastrophic studies of the second moment,
Shishov (1971) and Buckley (1971), established that 12' ink as

k3=, In what follows I shall outline the leading k-asymptotics
of I, for general m; a fuller treatment is given in the

original paper (Berry 1977), and an important development has
been made by Hannay (1982, 1983, 1985).

What catastrophe theory provides is the understanding of
the nature of the divergence of Im as k=, A crucial step is

realising that the ensemble (of phase screens, or atmospheres,
for example}, over which the average in (13) is taken, can be
smoothly parameterised by a large number of variables which
can be considered as extra control parameters C. Each choice
of C 'thus gives an atmosphere, or an irreqular surface. For
example, the deviation of an irregular surface from a plane,
or the variations in refractive index of air, may be described
by Gaussian random functions, which are superpositions of
infinitely many sinuscids whose phases are the extra controls
(giving a control space in the form of an infinite~dimensicnal
torus). Averaging consists of integrating over these C with
smooth probability density P(C) of realisations of members of
the ensemble, so that

1= Jdcp(c) lv i | 2. (14

Now, for large k this enormously augmented control space is
dominated by caustics on which ¢ is large; because of the high
dimensionality of C, catastrophes of very high codimension can
occur. The integral (l4) is dominated by the caustics, and it
is natural to assess the separate contributions of each
universality class of singularity, that is to discover the
k-dependence of the contribution Imj of the j'th catastrophe
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to the m'th moment. The assumption here is that contributions
of different catastophes to (l4) can ba separated.

To estimate Im the diffraction catastrophe scaling laws

3

are employed as follows, The localized control-space regions
of high intensity corresponding tc the j'th catastrophe give
2mB .

contributions whose 'strength' is {w{2m ~ k“"™3§ and whose

‘extent' is kuyj where Yj and Bj are the exponents of section

3. Thus

2ZmB. - v,
3 J

~ok (15)

I .

nj
This estimate is confirmed by a careful scaling of the integral
(14).

Thus each catastrophe contributes a power-law divergence to
the n'th moment, provided the exponent ZmBj—yj is positive.
Obviously In is dominated by the catastrophe(s}? for which this
expenent is largest, so that the asymptotic behaviour is

Y]
I+ AK " as ko, (16)
m m

where
max
v I U (2mB -y .) (17)
m J ] Y]

will be called the twinkling exponents. In the competition to
dominate Im' which catastrophe wins? This is fully discussed

by Berxy (1977). fThe main result is that the codimension X(m)
of the winning catastrophe increases with m: higher moments
are dominated by higher catastrophes. This is physically

reasonable, because high moments of lez are dominated by large
rare fluctuations at the light detector, and these correspend
to the close passage of high-codimension diffraction
catastrophes.

The value of the twinkling exponent vm depends on which

catastrophes are permitted to enter the competition, and this
in turn depends on physical circumstances. For waves
prepagating in two space dimensions, wavefronts are one-
dimensional and so¢ only catastrophes with cerank unity {i.e.
one state variable s- cf.sectien 2) can compete. These are
the cuspoid singularities, and (17) gives, for the twinkling

exponents,
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Vi = max X(2m-K-3) (18)
K 2(K+2)

The first few exponents are listed in table III. The value
u2=0 reflects the fact, already mentioned, that 12 grows as

fnk rather than as a power, As no, vm*m and the codimension

K (m) of the dominating catastrophe grows as K (m)+ 2 vm.
max max

Table III
m 2 3 4 S5 & 7 8 9 lo 11 12 13
XK 1 1 2 2 3 3 3and44 4 4 and 5 5 5
v, © L 3 5 3 123 113 5 fo 45
3 4 4 5 8 3 3 7 7

Twinkling exponents Yo and codimension K for catastrophes of

corank unity winning competition to dominate intensity moments

I .
m

For waves in three space dimensions, wavefronts are two-
dimensional and so catastrophes with corank unity and two may
compete, The difficulty now is that many corank- two
sinjularities exhibit modality (discussed near the end of
section 3} and the classification of modal catastrophes is
incomplete. Nevertheless, a study of the completely-classified
singularities with K g 11 shows that for given m the quantity
2mB 'Yj increases with X and then decreases, so that there is

3
still one (or sometimes two) dominating catastrophe{s). The
resulting twinkling exponents and the dominating catastrophe(s)
are listed in table IV, It is clear that the corank-two
singularities soon dominate those of corank unity.

An interesting unsolved problem for wave propagation in
three space dimensions ig: how does v behave as m+<? The

3

answer would require knowledge of the asymptotics of Bj and ¥

as Ko,

For coranks unity and two, the existence of a maximum in
2mBj-—¥j for finite K, on which the whole concept of dominating

singularity depends, came as a pleasant surprise. It is not at
all clear whether this feature would persist for singularities
with corank 23, that is for wave propagation in spaces of
higher dimensicnality. Perhaps there is a critical
dimensicnality, above which 2mBj+Yj does not have a maximum.

Progress on this problem is frustrated by lack of systematic
classification of high-corank catastrophes.
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The central result (lé) of this theory is that intensity
moments diverge as k-=, with twinkling exponents Yo which are

universal for a given class of competing catastrophes. This
universality means that v, are independent of the statistics of

the random medium or undulating surface. But the coefficients
A, in {16) are not universal and do depend on the nature of the

randomness. Hannay (1982, 1983, 1985}, in a powerful analysis,
has calculated the Am for the corank-unity catastrophes

involved in diffraction from a one-dimensional random phase
screen. He finds that for certain exceptional moments Im

(where lem=7 is the sguare of an odd number, i.e. m =
m=2,3,5/5.5,8....) namely those at which the dominating
catastrophe changes (see table III} the power-law divergence is
multiplied by a factor &nk. For the particular case where the
phase screen has Gaussian statistics and m=2, he obtains
results in agreement with the earlier calculations of Shishov
(1971} and Buckley (1871).

In optics, the twinkling exponents predicted by (16) can be
tested by measuring the moments using light of different
wavelengths, because

. - tim @ (2nIm)

m koo d (&n k) ° (19)
Such a test has been carried out by Walker, Berry and Upstill
(1983) with just two wavelengths of laser light refracted by
randomly rippling water. The experiment was very difficult
because the high moments Gepended on rare events and so their
values took a long time to stabilise. Figure 8 shows the
measured exponents compared with the predictions given by
various classes of catastrophes. The best fit is given by cusps
with v, calculated using only one of the control directions
{acrosd the cusps), and is consistent with the visual
observation that in the experiments the detector plane was
dominated by lines where it was almost touched by the cusped
edges of caustic surfaces in space. This question of a 'partial
asymptotics', for cases where caustics are so asymmetrically
deformed (e.g. elongated by paraxiality} that not all control
parameters contribute to the Yj involved in scaling the

intensity moments, is very subtle and needs further study.
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Fig. 8, Twinkling expcnents v (after Walker, Berry and Upstill

1983), Circles and error bars: experimental; curve a:
unrestricted competition amongst catastrophes of
coranks unity and two (table IV); curve b: competition
restricted to corank-unity (cuspoid) catastrophes
(table III); curve c: exponents from fold catastrophes;
curve d: exponents from nongeneric transverse sections
of cusp catastrophes; curve e: exponents from
nongeneric transverse sections of elliptic and
hyperbolic umbilic catastrophes: curve f: exponents
from nongeneric transverse sections of Xg catastrophes.

Finally, I wish to point out that there is an important
class of problems involving waves and randomness for which the
shortwave asymptotics is not characterised by singularity-
dominated streng fluctuations. This occurs whenever the
randomness has a self-similar, i.e. fractal structure
(Mandelbrot 1982) extending to infinitesimal length scales,
Then the limit k-+= probes ever finer scales and the randomness
never appears smooth on a wavelength scale. Caustics do not
form and instead it is expected and found that the wave
statistics as k#= will depend on a fractal dimension D
describing the self-similarity of the randomness.

Two such cases have been studied so far, both concerning the
phase~screen model for waves propagating in two space
dimensions. Such a phase screen is characterised by the
deviation h(x) it produces it initially rec¢tilinear wavefronts
normal to the incident beam. In the first case ('diffractals'),
Berry (1979) and Berry and Blackwell (198l) studied the
propagation of monochrematic waves and quasimonochromatic

pulses when the wavefront and thus the araph of *he Dantiey
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h{x) is a D-dimensicnal fractal curve (for example one of the
Weierstrass-Mandelbrot functions studied by Berxy and Lewis
1980); such curves are continuous but not differentiable, so
that rays (normals) do not exist and a fortiori caustics do not
exist., In the second case {'subfractals'), Jakeman (1982ab)
studied monochromatic waves evolving from wavefronts for which
h(x) was smooth but its derivative dh/dx is a D-fractal curve;
thus rays exist but caustiecs do not (because the curvature does
not exist).
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