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1. INTRODUCTION

For exploring and teaching the principles of nonlinear dynamics, or
chaology [1], it is common to make use of mathematical models {e.qg.
discrete mappings), which are relatively easy to analyze but abs-
tract, and also simple machines (e.a. a conical pendulum whose mag-
netic bob is deviated by several fixed magnets), whose motion can be
readily observed but which are hard to analyze. Here I describe a
way to retain the advantages of both: a machine that displays unpre-
dictable behaviour and also inspires a series of mathematical medels
illustrating KAM tori, bifurcation of periodie orbits, Hamiltonian
chaos, stable fixed points and strange attractors, leading eventually
to the discovery of the source of the unpredictability, which turns
ocut not to be obviocus.

The machine, which I call 'the bouncer', is illustrated in Fig.la.
R is a rotator consisting of two light hollow balls containing mag-
nets. Its axis Ay swings to and fro at the top of a pendulum,
pivoted at A,,whose bob is the heavy driving ball B. The regular
swinging of D is itself driven by an electromagnet, located in the
base B and switched by a circuit that senses each approach of a
magnet inside D. As well as rotating inertially and being swung by
D, R occasionally bounces because its balls are repelled by a magnet
M, situated just above A5 on the pendulum. As a result of these in-

Fig.l a) The bouncer; b}
geometry and coordinates in
frame where the axis A1 is
fixed.
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fluences R rotates in an apparently irreqgular manner, clockwise and
anticlockwise, on time scales from several seconds {the driving pe-
riod} to several weeks (i.e. until the battery is exhausted).

The bouncer is manufactured in Taiwan, and sold in the U.XK. as
'space ball' and in the U.S. as 'space trapeze'.

To model the system we move to the frame in which the axis Ay is
at rest (Fig.lb), and let the rotator's single degree of freedom be
the angle #(t) that it makes with the vertical. In this frame, M
swings about Ay on a circular arc with angle ¢(t}. Because P is
heavy it is a sufficient approximation to consider its motion

unaffected by that of R, so ¢(t) is a periodic function, which we
model as

¢(t) = A sin 27t. {1)

By observation, the driver amplitude A is about 920°. Equation (1)
defines the unit of time as the driving period (actually about
1.85s). The phase space for R's motion has coordinate § and {angular)
momentum p=df/dt, with ranges (<f<w (except for the model of section
5) and -e<pito Motion depends on the torques acting on R, and
these will be specified in four increasingly sophisticated models.
For each model the long-time behaviour of orbits will be displayed as
discrete mappings on surfaces of section corresponding to integer
times t (i.e. when the driving pendulum is vertical with
¢ increasing).

2. THE FIRST MODEL: NO DISSIPATION,COMPULSORY BOUNCING

To find the simplest model giving chacs we first assume, in flagrant
disregard of observation, that M's repulsion is strong enough to

cause R to bounce at every encounter, i.e. at times tB such that

3(tB)=¢(tB)mod1r. (2)
These bounces are assumed elastic and so they reverse the relative

angular velocity, thus relating momenta p, and p_ after and before a
bounce by

P+(tB) = = P_(tB)+2d¢(tB)/dt. (3)

Lack of dissipation implies that between bounces P is constant and
¢ changes linearly, i.e.

Blt) = gltp) + p (ty) (t-t;). (4)

Fig.2 Orbits_  of first
model with A=50" showing a
typical orbit - (1), an

unstable 2-bounce periodic
orbit (2), and a stable
2-bounce periodic orbit
{3). The sinusoids are
¢{t) modmw




Motion according to these rules resembles that of the clapper in a
swinging bell or, in terms of a recent theory of thermal conductivity
[2],that of the one-body ding-a-ling model on a circle, with infi-
nitely massive dongle. Some orbits are shown in Fig.2

An essential ingredient in studying the stability of orbits is the
phase-space deviation matrix M between any two times ty and t, ;

this i1s defined as
M=3(6, ,p,)/ 8(8,.p, ) (5)

Because friction has been neglected, detM=l and the surface-of-
~section mapping is area-preserving. Between bounces, motion is
integrable and hence neutrally stable, so we must study M for
intervals which include a bounce time t_; for such an interval an
elementary calculation gives B

TrM = - 2{1+X} (6)
where
x=ma®b(eg/ac? = -(2mPrg(ey)

(7}
- -
P ftBi d¢itB)/dt p tB d tB)/dt
with Tat.z--tI

The bounce is locally stable if and only if the eigenvectors of M
lie on the unit circle, i.e. if |TeM] <2, or, ~2<X<0. It follows that
bounces from outside ({opposite signs for d¢ /dt® and §-¢ near the

and where {1} has been used.

bounce) are always locally unstable, and so’ periodic orbits made up
of sequences of such bounces (e.g. 2 in Fig.2) are globally unstable.
Outside bounces therefore constitute a source of chaos. On the other
hand, the stability of bounces from inside (i.e. the same signs for
da?/dtt and @-¢ near the bounce) depends on circumstances.

To study this, consider the simplest pericdic orbit consisting of
bounces from inside {3 in Fig.2). This has two bounces and period 1
and corresponds to a fixed point on the surface of section, with

8=xn/2, p= 2(x+2a) (8)
Its total bounce matrix Mz has

TrM, = 244X (K42} {9)

and (7) with T=1/2 gives X as
X = -7 A/ (x+24). (10)

It .follows that the orbit is stable if O<A<A__ where A__ = 27 /(x~-4)

= 1.07261.33° (with marginal stability for The singlgramplitude A=/
(7% -2) = 0.3992=22.87°. This is illustrated by the surfaces of
section in Fig.3. As A increases through A it becomes unstable and
there is a bifurcation, whose stable prod%ct is visible in Fig.3b.
(Longer periodic orbits bouncing from inside, corresponding to slow
motion of R with many swings of M between bounces, are all unstable,
except for very small amplitudes AgL4”.)

An obvious feature of Fig.3 are the large chaotic areas, showing
that even this very simple model gives eternally irregular motion
for a wide range of initial conditions. The chacs is however bounded
above and below by invariant curves. These are associated with R



Fig.3. Surface of section
mappings for the first
model .

a) has A=0.6(<a__), 0< B¢,
25¢p<25 , and shows the
stable fixed point (8} (2
bounce orbit)and associated
KAM invariant curves and
islands;b} has A=%/2 (>A__),
0<f<¢<wm,-30<p<30, and slicws
that (8) is now unstable,
but there is a new period-2
stable fixed point (4 bounce
orbit). Both figures show
large chaotic areas (each
generated by a single
orbit), and also adiabatic
invariant curves for large
enough |p] .

rotating so fast that M hardly moves between bounces, and suggests an
adiabatic approximation in which the changes n1¢ are considered as
continuous.

In obtaining the approximation, the starting-point is the Euler-—
~Maclaurin type summation formula

11
T (F(23)-F(23-1)) ~ & (F(2ne1/2)-F(1/2)), (21)
=1

applied to the following exact relation, obtained from (3) and

involving the bounce times tn: :

I
Py, = P, * z%§§¢(t2j)/dt—d¢(tzj_l)/dt). (12)

The result is an approximate conservation law relating even numbers
of bounces:

Pan = 9ltynsy/p)/at ~p, - afle, ) /de. (13)
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To convert this to a conserved phase-space function K(#,p) on the
surface of section, it is necessary to calculate the times t2 *1/2
half-way between pairs of bounces 2n and 2n+l separated by an ingegér
time. After elementary geometry this gives

K(g,p) = p -2mA cos{(™/2-01m, (14}
p - 2mA
as the approximate constant of motion. Fig.4 shows those contours of
K which connect §=0 and f=7% . Comparison with Fig.3a shows
qualitative agreement for all the invariant curves and guantitative
agreement for large |p| {where (14) ought to work). The approximation
underestimates the size of the chaotic area.

Fig.4 Contours of the
approximate adiabatic
invariant (14) for A=0.6,
0<f<m, -25¢p <25.

3 THE SECOND MODEL: INTRODUCING INDECISIVENESS

Because M has only finite strength, its repulsion does not cause a
bounce at every encounter with R. We incorporate this feature of
indecisiveness through a potential energy V depending on the angle

between R and M and appearing in the rotator's Hamiltonian, which in
units corresponding to a moment of inertia of unity is

H(8.p) = p /2 + V(g-$(t)). (15}

The repulsion is strongly localized near angles for which R passes M,
so that the function V has the form shown in Fig.S5. Each narrow
potential barrier has height 01/2; for energies exceeding o*/2, the
system passes ‘over the barrier' and there is no bounce: for
energies below Q~/2, a bounce occurs. The parameter Q, whose value
thus determines whether or not there will be a bounce, has a simple
physical interpretaton: the relative angular velocity whigch must not
be exceeded if an encounter is to result in a bounce. Motion there-
fore takes place according to egs.(2-4) with the extra condition that
tB is a bounce time only if

[pteg)-apie ) /at| <. : (16)
Some orbits are shown in Fig.6; which should be compared with Fig.2.

This second model therefore has two parameters: the magnet's
strength @ and the swing amplitude A. The limit Q— wcorresponds to
the first model {guaranteed bouncing), and the limit Q—0corresponds
to the free rotator. For the bouncer, experiment (see section 4)
indicates that Q~5.

Bouncing occurs only if R passes M in a phase space bounce zone,
for which according to (16}, (1; and (2)




|pr2r/(8 -6*)] <o (17)
As Fig.7 shows, the form of these zones depends on Q/2#A. 1In
\/k 2 Fig.5. Angular potential

energy v describing
repulsion where R passes

Q/Z close to M. -dV/3d§ gives the
impulsive angular torgue
which may or may not result
in a bounce, according to
(16).

i T 2 3 4ar

9 Fig.6. Orbits of the second

model with a= =«/2, q=8,

2 showing an orbit too fast to

bounce {1) and three indec-

'/,,’5—, 3 isively  bouncing orbits

h’ / < < (2-4). (orbit 2 bounces

5,)?—/ = [, e several times in  rapid
-

succession). The sinusoids
are 9{t) modw .

particular, if Q<27A there are bounce-free 'holes' near p=0, which
which will play a crucial role later.

It is clear from {(17) and Fig.7 that momenta|p]>Q+27A lie outside
the bounce zones and so correspond to free rotation {with constant P}
unaffected by M. For all momenta |p | <Q+27A there are some ranges of
¢ which do lie in a bounce zone, so all initial conditions in this
range (except segments of the line p=0 for Q<2wa) will eventually
bounce, albeit scmetimes with many non-bouncing encounters corres-
ponding to R passing M in one of the clear zones of Fig.7. If there
are no closed orbits or adiabatic invariant curves {cf.Fig.3) lying
entirely within a bounce zone, then the whole area |P[ <Q+27A is ex-
pected to be covered chaotically by a single orbit. As Fig.8 con-
firms, this is indeed the case for realistic bouncer parameters, and
begins to explain the observed irregular motion. (the stable pericd-
-2 fixed points in Fig.3b lie just outside the bounce zones, and
leave this chaos unaffected.)

As Q increases, bounces become more likely, and there will be a
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transition to the orbits of the first model. It would be interesting
to explore this in detail (I have not done so).

gL

ez

Ly

4. THE THIRD MODEL;

Fig.7 Phase-space bounce
zones (chaded) for A=75° and
a) Q=5 (<217A),0<8<2%,-15.9
<p<15.9; b)Q=10(>2RrA),0<H<27C
-21.9 <p<21.9

Fig.8 Surface of section
mapping for the second mod-
el, with A=%/2, =6, 0<@<mr ,
-20<p<20. The region |pi|

< Q427 A=15.87 is slowly
covered by a single orbit,
with chaotic wanderings se-
parated by long segquences of
bounce-free rotations
(straight segments}.

INTRODUCING DISSIPATION

Retween bounces, R slows down visibly, and if M is removed it comes
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to rest in some fixed orientation in spite of the swinging of its
axis A4. This shows firstly that dissipation is important and
secondly that air frietion, inhibiting df/dt, dominates bearing
friction, whiech inhibits d(ﬂ-@)/dt. Ignoring all other sources of
dissipation (e.g. eddy currents) we incorporate air friction by a
linear torque, which when combined with the bounce torque from M gi-
ves the equations of this third model as

dp/dt = - Kp - 9V(4-$(t)) /38 ; df/at = p. {18)

K is a friction constant and constitutes a third parameter {the
others are A and Q). (With this linear law the inertial forces
arising from the transition to the accelerating frame with Ai fixed
do not contribute to the torque.)

To measure K for the bouncer, we disconnect the driving battery,
remove M and use the following damped-rotator equation, which can be
derived from (18) with v=0:

aé(t)/dat = df(0)/at - K(B(t)-6(0)). {19)

For t»® this gives K = dB(0)/at/[8( Y-B(0)], easily measured by ti-
ming the first few rotations and counting the total number of turns
before R comes to rest. The result ig K~0.3. To measure (Q we
replace M {battery still disconnected) and again use {19), this time
counting the number of turns before the first bounce.

Between swings of the driver, i.e. for time steps of unity, the
Jacobian determinant of the deviation matrix {(5) is detM = exp(-K),
independently of any bounces that may have occurred. Therefore the
mapping on the surface of section is area-contracting and all orbits
must tend to an attracting set in the phase plane. In order to
correspond to the apparently perpetual irregqular motion of the
bouncer, this would have to be a strange attractor [3,4], and it was
confidently expected that computations with realistic parameters
would reveal such a structure.

As Fig.9 shows, however, this confidence was misplaced: instead
of being strange, the attractor is a fixed point. Different initial
conditions, or different values of K, lead to different fixed points,
but never a strange attractor.

Fig.9 Surface of section
mapping for the third model,
with A=7/2, Q=5 and K=0.3,

0<f<xwr ,-20<p<20 showing at-

p.g;l_-{ ;:_,QE _-~; ] -.‘ﬂ;m, traction to a fixed point
) Co o ’ . {filled circle). Note that
Q/2rA=0.51

6 —-

To understand this unexpected behaviour we note firstly that the
parameters for which it occurs satisfy (<2wA, and secondly that the
attracting fixed points all have p=0, i.e. R at rest. Referring to
Fig.7a we see that these points lie outside the phase-space bounce
zones, and occupy segments of the & axis which are invariant lines of



11

fixed points, stabilized by friction. The points therefore corres-
pond to R near vertical {(if a~7/2) with M passing too fast to cause
a bounce.

To test this interpretation we eliminate the bounce-free zones by
choosing A>X/2 and (increasing the strength of M so that (Q>2TA. Then
computation always gives a strange attractor as Fig.l0 illustrates in
a striking way. But the parameters for which strange attractors
occur are unrealistic, so these computations fail to explain the
observed persistent irregularity of the bouncer.

Fig.10 Surface of section
mapping for the third medel,
with A=2%/3,0Q=00 and K=0.9,
0<@<m ,0¢p<35, showing the
characteristic folded and
multisheeted (fractal) str-
ucture of a strange
attractor

5 THE FQURTH MOPEL; INTRODUCING ILL-BALANCE

In the third model it was tacitly assumed that R was perfectly
balanced and so could remain at rest in neutral equilibrium at any
orientation, in particular those for which bouncing need not occur.
The fact that the physical device does continue bouncing suggests
that its operation depends on the inevitable symmetry-breaking
associated with lack of balance of its rotator. Indeed, experiments
with M removed show that R always slowly rotates so as to come to
rest in a near-horizontal orientation. Therefore there is a weak
gravitational torque turning R towards a bounce zone and because
A~T/2 this destabilizes the line segments of attracting fixed points
of the third model. We incorporate this effect by a £ -dependent
potential Asinf . to give the equations of the fourth model as
(ef.18)

dp/dt = - AcosB -Kp - V@ -$(¢)) /36 ; ab/at = p. {20)

Now there are four parameters: A, A, O and K. I estimated the
value of Aas 0.015 but this is not critical. Any tendency to set
horizontal {at & =3w/2 if A> 0), however slight, leads at last to
perpetual irregular bouncing, as Pig.ll shows. For +the realistic
parameters of Fig.lla, the many-sheeted structure of the attractor is
not very clear. Increasing K and A (Fig.llb) emphasizes the sheets
and gives an attractor with an unfamiliar 'fingered' appearance {see
{5] for a faintly similar attractor, also occurring in a highly-
~damped driven impact system).

1f, as is probable, the ill-balance of commercial bouncers arises
from imperfections in manufacture, the stable orientations of their
rotators can be expected to be distributed randomly over all angles.
Only those machines for which the stable orientation lies in a hounce
zone will display persistent irregularity. For A=x/2,0=5 this és a
restrictive condition: it selects orientations within 12.4° of
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Fig.1ll Surface of section
mapplings for the fourth
model, with A=%/2,0=6 and
a)k=0.3, A=0.015, 0<8<2K,
-20<p<20; b} K= 1 A=0.2
0<@<2r ,~12<p<12. In (aﬁ for
which the parameters are
realistic, the bounce-free
segments of the axis p=0 are
visible as horizontal lines
along which the system slow-
ly drifts before entering a
bounce zone and being thrown
onto one of the sheets of
the attractor

horizontal, and leads to the prediction that most commercial machines
will eventually stop bouncing and settle down with R swinging back
and forth in a fixed orientation. This indeed happens (often only
after many minutes); the manufacturers appear to regard it as ine-
vitable, and in their operating instructions ascribe it to ‘quali-
tative principle'! The theory can be easily tested with a horizon-
tally-balanced (persistent) bouncer by unbalancing one of its balls
with a light weight, to make it tend to hang vertically.
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