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Interpreting the anholonomy
of coiled light

M. V. Berry
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Circular birefringence of purely geometric origin was recently
predicted’ and observed® in helically coiled monomede optical
fibres, and widely reported™* as a successful application to photons
of a general theory™” for phase shifts in adiabatically transported
quantum states. However, earlier similar observations®'® had been
interpreted not by quantum mechanics but simply as a classical
anholonomy, namely paraliel transport of the polarization''.
Indeed, because the magnitude of the effect is independent of the
wavelength of the light as well as Planck’s constant, it might seem
that ‘classical’ here means that not only quantum but also wave
effects can be neglected. Here, I argue that these experiments, and
their discrete analogues, are most appropriately described at the
level of classical electromagnetism; the parallel transport law can
then be derived (rather than assumed® ") and nonadiabatic polariz-
ation changes calculated.

In the quantum description', photons in right- or left-
circularly polarized light are assumed to be in the eigenstate of
positive or negative helicity defined by the local tangent vector
t(s) of the fibre (Fig. 1). Because the input and output ends of
the fibre are parallel, the eigenstate is transported round a closed
loop in ¢ space and thereby acquires the geometrical phase shift
appropriate to spin one, namely® minus or plus the solid angle
{1 subtended by the loop at the origin of t space. These opposite
phase shifts ) imply' that the direction of linear polarization
will be rotated by (1, and it is this gyrotropy that was
observed %1%, '
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Fig. 1 Geometry of helically coiled optical fibre.

Underlying this successful prediction there are, however,
several uncertainties. In the absence of any obvious governing
Hamiltonian it is not clear why the phase continuation rule of
the general theory® is applicable. Even if it is, the fact that the
two helicity states are degenerate suggests that the application
could equally be made to any superposition of them, yielding
different results. {Relativistic arguments'? do yield the phase
continuation rule, and also uniquely select the helicity states,

"but are inapplicable within fibres.) Moreover, it is hard to see

how this type of quantum description can provide estimates of
the probability that the coiling will produce nonadiabatic transi-
tions to the opposite helicity. In any case, the high photon flux
in all the experiments so far carried out makes a quantum
description unnecessary.

At the level of geometrical optics (shortwave limit) it is
known'>! that in a medium with smoothly-varying refractive
index w the electromagnetic field vectors are parallel-trans-
ported along a light ray. This result should, however, not be
invoked to explain experiments with monomode fibres, because
their fields cannot legitimately be described by ray optics.

In classical electromagnetism the field is governed by Max-
well’s equations, with u depending only on perpendicular dist-
ance p from the fbre axis. Using the ideas of coupled local
modes and the weak-guidance approximation'®, we can write
the transverse electric fielé¢ E at position s along the fibre as a
superposition of fields linearly polarized along the fibre normal
n(s) and binormal b(s)'®; this is an adiabatic approximation
{with s playing the role that time does in quantum mechanics),
valid for gently coiled fibres. Thus,

E(p, s) =exp {iBs}f(p) ci{s)n{s)+ cy(s}b(s)] {1

where B and f(p) are, respectively, the propagation constant
and modal amplitude appropriate to the straight fibre. Substitu-
tion into Maxwell's equation gives, after some analysis (to be
published elsewhere), the following effective Hamiltonian evoi-
ution equation for the polarization coefficients ¢, and ¢; in terms
of the fibre curvature x and torsion 7:

N (61(5)) (K’(S)/Zﬁ iT(S))(C.(S)) 2)
— =
35 \¢a(5) —it{s) 0 (%)
This simplest possible theory neglects radiative leaking, coupling
to reflected modes and al! elasto-optic effects.

Now 8 =~2m/A where A is the light wavelength in the fibre
cladding, and «~' and 7' are both comparable with the fibre
bend distances, so in lowest approximation the term x%/28 is
negligible and the torsion terms dominate. Then, for initial linear
polarization in direction & (relative to n), (2) gives
5

c;(s)/ ci(s)=tan (a—J ds'('r(s')) (3)

-0

This is precisely the parallel transport law for E, giving, after
one complete helical turn, a polarization rotation equal to the
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Fig.2 Antiadiabatic rotation of polarization E by three reflections
in metal mirrors.

solid angle'®

-+
Q=27— J ds'r(s")
-
Moreover, (2) resolves the degeneracy in favour of the helicity
. states: local eigenmodes (again neglecting x?/28) are circularly
polarized, that is, ¢,/ c, = +i, and acquire opposite phase shifts
F{} round the turn.
Nonadiabatic transitions are induced by the curvature term
Kz/gﬂ. In lowest order this gives the probability for a change

from (say)+to —, as
] 3 2
J dsk?(s) exp {2:‘ J d.s'r(s')} /16;3’ (4)
- -0
For a helix uniformly wound on a cylinder of radius R so as
to produce phase shifts ¥, this can be written as

P =[0/2m(2-0/2m)] sin? /(1 - Q/25)}/168°R*  (5)

Even for R~ ] mm this never exceeds 107*. For planar bends
(7=0) there is no polarization rotation, and the eigenmodes of
(2) are linearly polarized with a tiny bend-induced shift «?/28
in the local propagation constant of the mode polarized along n.

It has been suggested (J. N. Ross, personal communication
and ref. 17) that the coiling of t can be accomplished by (at
least three) discrete reflections, the resulting sudden changes in
t being simulations of adiabatic change. But ideal mirrors
(infinite conductivity} do not conserve helicity; they reverse it,
and with this ‘antiadiabaticity’ the solid angle (@ must be
accumulated with t replaced by —t on alternate segments of the
light path'”. If the light beam is reversed after three successive
reflections, each changing its direction by 90° (Fig. 2}, the
predicted polarization rotation (see also ref. 18, pages 84-86)
is also 90°. Real metal mirrors (finite conductivity) do not quite
reverse helicity: the ‘nonadiabatic’ probability for preserving
the original helicity is

Pr=

P++=1/(2;F"|2) (6)

which for silver with u =0.2+3.44i is 0.042.
The simulation of true adiabatic change with discrete reflec-
tions can be achieved only by total internal reflection in a

Fig. 3 Adiabatic rotation of polarization E by three internal
reflections at the critical angle.
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dielectric with index p at the critical incidence angle i=i =
sin~'(x"!) (this follows from Fresnel's formulae'?). For glass,
i, = 45°, s0 that rotation of 90° can be accomplished by successive
reflections in three 45° right prisms arranged as in Fig. 3.
However, i, is not precisely 45° (because u # 2}, and this will
cause nonadiabatic helicity switching, with probability

P,_=(u®sin?i—1)/(p*tan’i-1) (siniz>p™) (7

For i=45° and glass with p =1.5, P,_=0.1.

The arrangements in Figs 2 and 3 form the basis of robust,
simple and (nonadiabatic conditions notwithstanding) convine.
ing lecture demonstrations of the anholonomic transport of
polarization.
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