LETTER TO THE EDITOR

Classical non-adiabatic angles

M V Berry and J H Hannay
H H Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK

Received 18 December 1987

Abstract. If a family of tori in phase space is driven by a time-dependent Hamiltonian flow in such a way as to return after some time to the original family, there generally results a shift in the angle variables. One realisation of this process is in the cyclic adiabatic change of a classical Hamiltonian, and the angle change has previously been shown to separate naturally into a dynamical part and a geometrical part. Here the same geometrical angle change is extracted when the return is achieved non-adiabatically, and the 'dynamical' remainder calculated. Two examples are given: the precession of a spin and the rotation of phase-space ellipses.

It is known [1, 2] that the cyclic adiabatic change of an integrable Hamiltonian induces in the angle variable(s) a change $\Delta \theta$ which separates naturally into the obvious dynamical change $\Delta \theta_d$ (the time integral of the frequency), and an additional geometric change $\Delta \theta_g$. This is a classical analogue of the geometric quantum phase [3] arising naturally in the adiabatic cyclic change of a quantum Hamiltonian. As has recently been pointed out by Aharonov and Anandan [4], the same geometric part can be extracted from the phase change that occurs in a general, non-adiabatic, cyclic evolution of a quantum state, to leave a quite simple 'dynamical' remainder. Our purpose is to show that $\Delta \theta_g$ can be similarly extracted from the general, non-adiabatic, cyclic change of an action torus, with a simple remainder.

For simplicity we analyse a system with one freedom and later generalise to more. Consider an action-angle coordinate system on the phase plane, i.e. $I(q, p; X)$, $\theta(q, p; X)$ where $X = (X_1, X_2, \ldots)$ is a set of parameters with which the coordinate system can be changed. The action contours are loops (one-dimensional tori) with area $2\pi I$, and the angle is the canonically conjugate variable (whose uniform distribution is defined by the density $\delta(I - I(q, p; X))$).

The purpose of setting up this variable coordinate system is that we are now to imagine a flow in the phase space generated by a Hamiltonian $H(q, p, t)$ which causes an initial family of closed curves (tori), marked in the flow, to be carried through a cycle so as to return after time T (figure 1). At all times $0 < t < T$ there is a parameter $X(t)$ for which the curves coincide with the action contours of $I(q, p; X(t))$. This process defines a classical cyclic evolution; it is not necessary that H change slowly, or cyclically, or that the marked initial curves coincide with its contours.

Since by Liouville's theorem the area of a curve cannot change as it is transported, the action coordinate for any carried phase point is constant, $\dot{I} = 0$, and the cyclic change means $X(T) = X(0)$. In contrast, the angle variable (of a carried phase point) will generally vary in this process, and, in particular, when an initial curve has returned after time T the individual points will be shifted by an angle (the same for all points on that curve) which we now determine.
Following [1] we write the rate of change of angle of a phase point as the sum of contributions from its motion in phase space and from the changing coordinates I, θ:

$$\dot{\theta} = \frac{\partial \mathcal{H}}{\partial I} + X \frac{\partial X}{\partial \theta}$$ \hspace{1cm} (1)

where

$$\mathcal{H}(\theta, I, t) = H(q(\theta, I; X(t)), p(\theta, I; X(t)), t)$$ \hspace{1cm} (2)

and $\frac{\partial X}{\partial \theta}$ is the rate at which the angle at fixed q, p changes with parameters. Integrating (1) we obtain $\Delta \theta$, which does not depend on θ, as a sum of two terms that individually do depend on θ. These dependences can be eliminated by averaging round each contour of constant action; we denote this averaging by

$$\langle \ldots \rangle = \int dq \int dp \delta(I - I(q, p; X)) \ldots = \frac{1}{2\pi} \int_0^{2\pi} d\theta \ldots .$$ \hspace{1cm} (3)

Thus we obtain

$$\Delta \theta = \Delta \theta_d + \Delta \theta_s$$ \hspace{1cm} (4)

where

$$\Delta \theta_d = \int_0^T dt \frac{\partial \mathcal{H}}{\partial I}$$ \hspace{1cm} (5)
and
\[\Delta \theta_g = \oint dX (\partial_X \theta) = \oint \langle d\theta \rangle \]

(6)

where \(d\theta \) is the angle variable derivative 1-form in parameter space.

By design, then, the angle shift has been divided into a geometric part \(\Delta \theta_g \)—the same as that arising naturally in the adiabatic change of a Hamiltonian \([1, 2]\) and involving the parameter-space 1-form \(d\theta \)—and a remaining 'dynamical' part \(\Delta \theta_d \)—involving not the instantaneous frequency as in the adiabatic case but its average \(\langle \partial \mathcal{H} / \partial I \rangle \) round the action contour. Thus (4) is the classical analogue of Aharonov and Anandan's division \([4]\) of a non-adiabatic quantum phase change into a geometric part occurring naturally in adiabatic change \([3]\) and a remaining dynamical part.

Useful formulae for \(\Delta \theta_g \) will now be obtained by introducing the parameter-dependent generating function of the canonical transformation from \(q, p \) to \(\theta, I \):

\[
S(q, I; X) = \int_q^{q'} dq' p(q', I; X)
\]

(7)

We note that this allows (1) to be reinterpreted \([2]\) as a Hamilton equation in action-angle variables: the changing \(X \) introduces a time dependence which contributes to the transformed Hamiltonian a term \(\partial S / \partial t \), whose \(I \) derivative can be shown to equal the extra term \(\dot{X} \partial_X \theta \) in (1) (the proof proceeds by reducing both quantities to \(S_{IX} - S_{II}S_{Xq} / S_{Iq} \)).

Expressing \(S \) in action-angle variables by

\[
\mathcal{S}(\theta, I; X) = S(q(\theta, I; X), I; X)
\]

we have \(d \mathcal{S} = dS + pdq \) and hence in (6)

\[
\langle d\theta \rangle = \langle d(\partial S / \partial I) \rangle = d(\langle \partial \mathcal{S} / \partial I \rangle) - \frac{\partial}{\partial I} \langle pdq \rangle = -\frac{\partial}{\partial I} \langle pdq \rangle
\]

(9)

where \(dq \) is the coordinate displacement of a torus point with fixed \(\theta, I \) accompanying an infinitesimal parameter change. (The torus average \(\langle \partial \mathcal{S} / \partial I \rangle \) vanishes because \(\partial \mathcal{S} / \partial I \) is periodic in \(\theta \).)

Thus

\[
\Delta \theta_g = -\frac{\partial}{\partial I} \oint \langle pdq \rangle = -\frac{\partial}{\partial I} \left(\oint pdq \right) = -\frac{\partial}{\partial I} \langle A(\theta, I) \rangle
\]

(10)

where \(A(\theta, I) \) is the phase-space area swept out during the circuit (i.e. over time \(T \)) by the point labelled \(\theta \) on the torus \(I \) (figure 2). The torus average \(\langle A(\theta, I) \rangle \) is independent of the \(X \)-dependent choice of origin of \(\theta \). An alternative expression is obtained by writing the first circuit integral in (10) as the flux, through the parameter-space circuit, of the 2-form \(-\partial((dp \wedge dq))/\partial I \) (cf \([2]\)).

If the system has \(N \) freedoms, there are \(N \) actions \(I = \{I_i\} \), \(N \) angles \(\theta = \{\theta_i\} \) and hence \(N \) angle shifts \(\Delta \theta = \{\Delta \theta_i\} \) \((1 \leq I \leq N)\). The \(l \)th dynamical and geometric shifts are given by (5) and (10) with \(\partial I \) replaced by \(\partial I_l \) and \(A(\theta, I) \) replaced by the symplectic area

\[
A(\theta, I) = \sum_{l=1}^{N} \oint p_i(\theta, I; X) \, dq_i(\theta, I; X).
\]

(11)
The form (10) for the geometric angle implies a concise expression for the semi-classical quantum phase obeying the relation [2] \(\Delta \theta_g = -\hbar \partial \gamma / \partial I \). This evidently yields

\[
\gamma_g = (A(\theta, I))/\hbar
\]

(12)
a formula which could be rederived \textit{ab initio} from the non-adiabatic quantum mechanics of Aharonov and Anandan [4] by using the semiclassical wavefunctions associated with moving tori (see, for example, [5]).

Our first example is the precession of a spin \(J_r \) (with unit direction \(r \)) according to the law

\[
\dot{r} = \omega \wedge r.
\]

(13)
The phase space is a sphere of radius \(J \), and the flow is a rigid rotation with instantaneous angular velocity \(\omega \). This is a Hamiltonian system whose canonical variables \(q, p \) are azimuthal polar angle relative to a fixed direction \(\hat{z} \) (coordinate) and \(J_z \) (momentum); the Hamiltonian is

\[
H = \omega(t) \cdot J = J\omega(t) \cdot r.
\]

(14)
The action contours are chosen to be circles of colatitude \(\alpha \) (imagined as painted on the sphere) with direction \(a \) (called polar) as axis (figure 3). We define the action \(I \)
Letter to the Editor

1/27 times the area of the antipolar spherical cap bounded by the contour, i.e.

$$I = J(1 + \cos \alpha) = J(1 + a \cdot r).$$

(15)

Let $\omega(t)$ be such as to take a on a closed circuit, thereby fulfilling the conditions of our general analysis. If in addition $\omega \cdot a = \text{constant} = \omega \cos \chi$, then (13) can be shown to model the free motion of a spinning top (the sphere) whose axle a is forcibly cycled. (Two special cases are: ω parallel to a and changed slowly (adiabatic); and ω = constant (simple precession).)

From (5) the dynamical angle shift is

$$\Delta \theta_d = J \frac{\partial}{\partial I} \int_0^T dt \omega \cdot r = J \frac{\partial}{\partial I} \int_0^T dt \omega \cdot a \cdot r \cdot a = \omega T \frac{\partial}{\partial I} (I - J) \cos \chi = \omega T \cos \chi.$$

(16)

The geometric angle shift is the solid angle Ω swept out by the axis a. This was anticipated by a physical argument [1] and derived elsewhere [6,7]. Here we obtain it from the formula (10) with the area $A(\theta, I)$ built up from individually torus-averaged elements, that is

$$\Delta \theta_g = -\int \frac{\partial}{\partial I} (dA).$$

(17)

For dA it is sufficient to consider the triangle $r, r + b \wedge r d\theta_b, r + c \wedge r d\theta_c$, where $b \, d\theta_b$ and $c \, d\theta_c$ are two infinitesimal rigid rotations of a painted action circle. The torus-averaged area (J times solid angle) of the triangle (correctly signed) is

$$(dA) = \frac{1}{2} d\theta_b d\theta_c \int_{\text{sphere}} d^2 r (b \wedge r) \wedge (c \wedge r) \cdot (-r) \delta(a \cdot r + 1 - I/J)/2\pi$$

$$= -\frac{1}{2} d\theta_b d\theta_c [-a \cdot (b \wedge c)(I-J)]$$

$$= -\frac{1}{2} d\theta_b d\theta_c (b \wedge a) \wedge (c \wedge a) \cdot a(I-J).$$

(18)

Thus $-\partial(dA)/\partial I = d\Omega$ and $\Delta \theta_g = \Omega$, as claimed.

For simple precession ($\omega = \text{constant} = \omega \hat{z}$), $T = 2\pi/\omega$ gives a cyclic evolution and $\Omega = 2\pi(1 - \cos \chi)$, so $\Delta \theta = 2\pi$, reflecting the fact that the tori have been rigidly rotated about a, leaving points in their original positions. The quantum version of this particular case is a slight generalisation of one considered by Aharonov and Anandan [4]. We have $J = \hbar(j(j+1))^{1/2}$ ($2j$ integer) and, for an arbitrary initial state, the following evolution generated by (14):

$$|\psi(t)\rangle = \sum_{m=-j}^j a_m \exp(-im\omega t)|m\rangle$$

(19)

where $|m\rangle$ is the eigenstate with $\langle m|J_x|m\rangle = m\hbar$. This is also cyclic for $T = 2\pi/\omega$, with total phase shift $\gamma = 2\pi j$ (up to 2π), and hence a geometric phase γ_g given in terms
of the dynamical phase γ_d by

$$\gamma_\text{d} = 2\pi j - \gamma_\text{d} = 2\pi j + \frac{1}{\hbar} \int_0^{2\pi/\Omega} \text{d}t \langle \psi|H|\psi \rangle$$

$$= 2\pi \left(j + \sum_{m=-j}^{j} m|a_m|^2 \right) = 2\pi (j + \langle \psi|J|\psi \rangle/\hbar).$$ \hspace{1cm} (20)

Corresponding to the torus I is an eigenstate of the component of J along a, with eigenvalue $I - j\hbar$ (= integer $\times \hbar/2$), so that the expectation value in (20) is $(I = j\hbar) \cos \chi$. Thus

$$\gamma_\text{d} = 2\pi [j + (I/\hbar - j) \cos \chi] \to 2\pi [J + (I - j) \cos \chi]/\hbar \text{ as } j \to \infty.$$ \hspace{1cm} (21)

It can be shown that $2\pi [J + (I - j) \cos \chi]$ is the torus average of the signed areas swept out by θ points during the cycle, i.e. $\langle A(\theta, I) \rangle$ in (10), so that the semiclassical relation (12) is confirmed.

In our second example the tori are rotating ellipses in phase space. The initial tori, with area $2\pi I$, can be written

$$I = (aq^2 + 2bqp + cp^2)/2(ac - b^2)^{1/2}$$ \hspace{1cm} (22)

with a, b, c constant and satisfying $ac > b^2$. The Hamiltonian

$$H = \omega(p^2 + q^2)/2$$ \hspace{1cm} (23)

makes them rotate rigidly and non-adiabatically in $T = 2\pi/\omega$.

We find $\Delta \theta_\text{g}$ and $\Delta \theta_\text{d}$ by attaching values of θ to points moving rigidly with the tori (i.e. in circles). The transformation (7) gives, with (22),

$$q = (2Ic)^{1/2}(ac - b^2)^{-1/4} \cos \theta$$

$$p = (2I/c)^{1/2}[-b(ac - b)^{-1/4} \cos \theta + (ac - b^2)^{1/4} \sin \theta]$$ \hspace{1cm} (24)

whence averaging over θ gives

$$\langle \partial \mathcal{H}/\partial I \rangle = \frac{\omega}{2} \frac{\partial}{\partial I} \langle p^2 + q^2 \rangle = \frac{\omega(a + c)}{2(ac - b^2)^{1/2}}.$$ \hspace{1cm} (25)

Thus the dynamical angle shift (5) is

$$\Delta \theta_\text{d} = \pi(a + c)/(ac - b^2)^{1/2}.$$ \hspace{1cm} (26)

The geometrical shift (10) involves the areas $A(\theta, I)$ (figure 2), in this case circles whose torus average is

$$\langle A(\theta, I) \rangle = \pi \langle p^2 + q^2 \rangle = \pi(a + c)I/(ac - b^2)^{1/2}$$ \hspace{1cm} (27)

so that

$$\Delta \theta_\text{g} = -\pi(a + c)/(ac - b^2)^{1/2}.$$ \hspace{1cm} (28)

Note first that $\Delta \theta_\text{g}$ is of course the same as that calculated elsewhere [1] for an adiabatic rotation (and shown to be equal to $-\pi(a + a^{-1})$ where a is the axis ratio of the ellipses) and second that $\Delta \theta_\text{d}$ and $\Delta \theta_\text{g}$ cancel exactly for this rigid rotation which, as with simple precession, leaves phase points back where they started.
Note added in proof. Anandan [8] has a similar argument to ours.

References