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Classical Chaos and
Quantum Eigenvalues

M. V. Berry

The connection between classical and quantum mechanics (i.e., the semi-
classical limiting asymptotics as # —» 0) must be subtle and complicated,
because classical mechanics itself (i.e., the classical limit # = 0) is subtle and
complicated: the orbits of systems governed by Hamilton’s equations of motion
may be predictable {regular) or unpredictable (irregular) depending on subtle
details of the form of the Hamiltonian H({g},{p})."""" A natural question
is: how does the “chaology™ of classical orbits reflect itself in the corresponding
quantum system? Sometimes this question is put in the form: what is quantum
chaos? '

There are many approaches to this question. One is to study the dyramics
of quantum systems which are classically chaotic, that is, to study nonstationary
states. There have been many studies of mathematical models of such quantum
evolution"*'® which have found important recent application in interpreting
experiments on the microwave ionization of hydrogen atoms.”''"**" Another
approach is to look at stationary states and concentrate on the form of the
wave functions: these are remarkably different for eigenstates corresponding
to regular and chaotic systems.!"*'®

Here, however, we concentrate on the energies of stationary states, and
ask how the distribution of eigenvalues {E,} = E,, E., ... of a quantum Hamil-
tonian H = H{{4:},{#]}) reflects the chaoclogy of the classical trajectories
generated by the classical H, in which {g;} and {p;} are variables rather than
operators. Of course the energies {E,} depend on #. We consider only the
nontrivial case where the number of freedoms N exceeds unity.

Ideally one would like an explicit asymptotic expression giving {E,(#)}
with an error that decreases as # — { faster than the mean level spacing. Such
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an expression has been found only for classically integrable (i.e., nonchaotic
systems'®®?? and is a generalization of the familiar WKB theory for one
dimension, For integrable systems with NV freedoms, there are N constants of
motion (including the energy) which confine motion to N-dimensional tori in
the 2 N-dimensional phase space.'”” In lowest order, quantization selects the
energies E of those tori whose N actions are separated by multiples of #, i.e.,

Ey = H{[L; = (n, + a;/ 4} 1]} (11.1)
where {n;} = n,, ..., ny are the quantum numbers, {I;} are the actions
I= § p;dg; (11.2)
Yi

round the irreducible cycle ¥, of the torus, and the «, are constants (Maslov
indices'*). Obviously equation { 11.1) works only when tori exist. In the chaotic
extreme, motion is ergodic and there are no constants of motion apart from
E: therefore there are no tori and the semiclassical rule (11.1) cannot be
applied: so far nobody has found a semiclassical quantization rule for chaotic
systems.

In these circumstances one must seek less precise information, in the form
of average properties of the distribution of energies. These spectral averages
can be defined semiclassically, because as # ~ 0 infinitely many levels crowd
into any fixed energy interval however small. The simplest spectral average is
the mean spectral density {d(E)). This is the average of

d(E)=Y 8(E - E,) =Tr8(E - H) (11.3)

and is given semiclassically by the “Weyl rule™'?"

dQ(E)/dE

(d(E)) = N (11.4)
where {} is the phase volume given by
Q(E)=J d”qjd”, ie.,
(H<E)
dQ/dE = f ™ I d™ps[E - H({a}, {pD] (11.5)

The Weyl rule formalizes the old idea of “one quantum state per volume h"
of phase space.”
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The result (11.4) tells us nothing about quantum chaos, because the
classical volume Q(E) is insensitive to the regularity or chaos of the orbits.
This is disappointing, but nevertheless two useful pieces of information can
be obtained. First, the mean level spacing (d)™' is of order #", thus, for
example, in a classically small energy range of size h there are many levels
(of order ™" ~"); this will be important later. And second, a rough quantiz-
ation rule can be found by realizing that the integral of d(E) is the spectral
Staircase

E

JV'(E)EZB(E—E,,)=J. dE’' d{E") (11.6)

=00

where 6 is the unit step; the rule, expressing the idea that the smooth curve
of the average staircase might intersect the steps halfway, on average, is then

(n+3) = (V(E)) = QE) K" (11.7)

The above rule is rough because it fails to describe the fine-scale fluctu-
ations in the levels (in graphs of the E, as a function of a parameter on which
H depends, these fluctuations appear as avoided crossings‘**2*'). To describe
these fluctuations it is necessary to employ statistics which (unlike {d) and
(M) involve correlations between nearby levels, that is, on scales #". Such
fluctuation measures have been devised in random-matrix theory'*” and applied
to sequences of excited resonance levels of atomic nuclei. The fluctuation
statistics depend not on the raw spectrum levels {E,} but on the “unfolded™

spectrum of levels {x,} which have been scaled so as to have unit mean spacing.
Thus

X+ 3= (N(E,)) (11.8)

[without the fluctuations, equation (11.7) shows that x, would be simply n].
Two particularly useful statistics are the probability distribution P{S} of the
level spacings {S, = X,., — X}, and the spectral rigidity**-3%

x+L/2
A(L) = <minl J’ AN () — A - Bg]2> (11.9)

L x—-L/2

{this is the least-squares deviation of the staircase from a straight line, over a
range of L mean spacings, averaged over an interval of energies x that includes
many levels). P(S) is useful in describing spectral correlations on the finest
scales—i.e., between neighboring levels—and A(L) is useful for describing
how spectral correlations depend on range—i.e., large or small L.
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When spectral statistics are computed for sequences of levels of Hamil-
tonian systems with classical limits, a remarkable “experimental™ fact emerges:
the statistics display universality and the spectral universality class depends
on the chaology of the classical orbits. The universality classes are:

{(a) Classically integrable systems. Here the spectral statistics are those
of a Poisson—i.e., uncorrelated random—distribution of levels." ™" At first
sight it is surprising that the quantum conditions (11.1) can give rise to a
random sequence, but the surprise dissipates with the realization that neighbor-
ing levels E,, E,., can have very different sets of quantum numbers {n,;}. For
Poisson statistics,

P(S) =exp(-9) and A(LY=L/15 (11109

(b)Y Classically chaotic spinless ( or integral-spin) systems with time-reversal
symmetry. Here the spectral statistics are those of the Gaussian orthogonal
ensemble (GOE), which consists'?” of real symmetric matrices whose elements
are Gauss-distributed so as to make the statistics of the ensemble invariant
under orthogonal rotations. Only real symmetric matrices are involved because
time-reversal symmetry implies that the wave functions are real. For the GOE,
to a close approximation,

P(S) zgs exp (— =S/ 4) (11.11)

and

A(LYL/15 (Lx1)
(11.12)

1
- —91;21‘ ~0.00605 (L 1)

(c¢) Classically chaotic systems without time-reversal symmetry, This is in
a sense the generic case which best justifies the label “‘quantum chaos.”
Time-reversal symmetry {T) can be broken most simply by magnetic fields,
either smoothly-varying®® or consisting of a single (Aharonov-Bohm) flux
line.® Here the spectral statistics are those of the Gaussian unitary ensemble
(GUE),”” of complex Hermitian matrices whose elements are Gauss-
distributed so as to make the statistics of the ensemble invariant under unitary
transformations. For the GUE, to a close approximation,

2

P(S) =§i—§exp (—45%/ ) (11.13)
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and

AL - L/15 (L»1)

(11.14)

»E]-—L+005902 (L»1)
272

Before anticipating that a system without T wiil have GUE statistics, care must
be taken to determine whether it has any geometric symmetries, because these
can act so as to mimic T-symmetry and generate levels with GOE statistics;
in the theory of this “false time-reversal symmetry-breaking”®* it is shown
that for GUE the system must possess no antiunitary symmetry operator A @39
(commuting with H) and satisfying A’=10r AA*=1(Tis represented in
position representation by the operator A = complex conjugation). A set of
numbers recently discovered to have GUE statistics is the imaginary parts of
zeros of Riemann’s zeta function'?®; this is surprising and suggestive.””

(d) Classically chaotic systems with half-integer spin and with T (or, more
generally, chaotic systems with an antiunitary symmetry satisfying Al=-1).
Here there are so far no numerical experiments {I am planning one now) but
the spectral statistics are expected to be those of the Gaussian symplectic
ensemble (GSE),'*” of quaternion real Hermitian matrices whose elements are
Gauss-distributed so as to make the ensemble invariant under symplectic
transformations. For the GSE, to a close approximation,

18 g4

53 €Xp (—645%/9) (11.15)

P(S) =

and

A(LY=LJ1S (L« 1)
(11.16)

->14£—+007832 {L»1)

That completes the list of universality classes. But I now reveal that life
is really not so simple, and describe two ways in which universality is com-
promised. First, most classical systems are neither purely regular nor purely
chaotic,'”” but exhibit mixed (or, in the jargon, “KAM™) behavior in which
some orbits are regular and some predictable, depending on initial conditions.
Such cases are important in quantum mechanics because they correspond to
the anbharmonically coupled oscillators describing vibrating molecules and to
atoms in strong magnetic fields occurring astrophysically. It is natural to expect
that in lowest approximation the spectral statistics will interpolate between
those of the Poisson and the appropriate random-matrix universality classes,
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to a degree which depends on the relative phase-space volumes of regions of
regular and chaotic motion; a theory along these lines®® is supported by
numerical experiments.””® Second, even for purely regular or purely chaotic
systems the domain of universal behavior is limited to energy ranges not
exceeding a quantity of order #; for the rigidity A(L}, this means that univer.
sality holds when L < L., ~ #~*M™", so that in the semiclassical limit the
domain of universality shrinks to zero in energy but nevertheless extends over
infinitely many levels. When L > L., numerical experiments'*®' (so far restric-
ted to integrable systems) show, and a theory® (for both integrable and
chaotic systems) explains, that A(L) does not continue to increase as in
equations (11.10), (11.12), (11.14), and (11.16)}, but saturates at nonuniversal
values characteristic of the particular system.

In spite of these caveats, the universality of semiclassical spectra is a
remarkable phenomenon that demands explanation. One class of theories**'*?
considers the energies to depend on a parameter ¢ which is regarded as akin
to a time variable, and the “motion™ of the eigenvalues { £,{¢)} on the E axis
is put into correspondence with the statistical mechanics of particles on a line,
These theories can be made to generate random-matrix behavior but the
derivations rest on statistical assumptions about the matrix elements of the ¢
derivatives of H between different eigenstates. It is desirable to understand
spectral statistics directly, without introducing parameters or extra statistical
assumptions. Some progress has been made, as will now be described.

The behavior of P(S) as § - 0 can be related to the codimension K of
degeneracies when the system is embedded in an ensemble of similar
ones, *?'2*" where K is the number of parameters that must be varied to
produce a degeneracy: for separable systems K = 1, for real symmetric matrices
K = 2,for complex Hermitian matrices K = 3, and for quaternion real matrices
K =5. The result is

P{8) ~ §k-1 As S=0 (11.17)

and this agrees with equations (11.10), (11.11), (11.13), and (11.15). But K is
only roughly related to the classical symmetries (subtleties arise from barrier
penetration™) and a semiclassical understanding of P(S) is still lacking.
The behavior of A(L), on the other hand, is rather well understood"’® in
terms of a semiclassical theory. According to equation (11.9), A(L) is a
quadratic functional of the spectral staircase (11.6). This can be expressed as
its average (N) [equatior (11.7)] plus a series of correction terms which are
oscillatory functions of E. Each such correction comes from a closed orbit of
the classical system,'***” and gives an oscillation with energy period #/T,
where T is the time period of the orbit. So values of L « L., corresponding
to energy scales « f, correspond to very long orbits. In particular, any fixed L
corresponds as # - 0 to periods of order #™*V~". But for these very long
orbits there exist universal sum rules'*® which depend on the classical chaology,
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and it is these that enable the theory®® to reproduce the random-matrix results
(11.10), {11.12), and (11.14) [but not yet relation (11.16)]. When L » L ..,
the previously-mentioned breakdown of universality occurs and is explained
by A(L) depending only on short closed orbits which, or course, differ from
system to system.

Much work remains to be done in understanding semiclassical spectra,
The most pressing and also fundamental problem is to discover whether the
semiclassical sum over the closed orbits or a chaotic system can be extended
(orinterpreted, or analytically continued®”’) so as to describe the finest spectral
scales such as those embodied in P(S) (or even—we are entitled to hope—a
complete quantization formula). Then there are *crossover” phenomena
associated with the breakdown of universality when L ~ L_,,. Finally, higher
spectral statistics, depending more than quadratically on N(E), should be
studied semiclassically. It is likely that from the program outlined in the last
two sentences there might emerge a statistic which, for chaotic systems, depends
on the Kolmogorov-Sinai'’’ entropy which is so important in classical
chaclogy.
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