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RANDOM RENORMALIZATION IN THE SEMICLASSICAL LONG-TIME LIMIT
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Discord between the semiclassical and long-time limits is illustrated by the trace of the propagator for a particle of spin
J?=B%j( j + 1) with Hamiltonian J2? X constant, The trace can be expressed in terms of §;(t/7) where ¢ is a dimensionless
propagation time and S;(r) = L/ _iexp {imrm®}. The long-time limit is 1 — oo (j fixed), and the semiclassical limit is j — oo
(¢ fixed); in these limits the trace can be expressed as (different) finite sums generating patterns in the complex plane which
although intricate are limited in complexity. But in the combined limit j — o, ¢ — oo {7 =#/f fixed) the pattern of S,{r) for
typical T is an infinite hierarchy of spirals with infinitely many scalings related by a chaotic renormalization map; the pattern

is infinitely sensitive to the arithmetic of =,

1. Introduction

The remarkably complicated behaviour of the
sum

S(r)= i exp {imrm?)} (1)

m=1

as j increases with 7 held fixed, has been dis-
cussed by several authors [1-4]. Here I will
explain how this behaviour illuminates the well-
known fact (see e.g. [5-7]) that for most quantum
problems the semiclassical and long-time limits
are discordant, in the sense that the result depends
on the order in which they are taken. What will be
shown is that all the complexity of S;(7}-includ-
ing randomness — appears when the two limits are
taken simultaneously, in a problem whose classical
mechanics is trivial.

The classical problem concerns a spin J driven
by a Hamiltonian H(J), so that the evolution

equation is
J=wHXJ. (2)

This conserves the length J of J, and the sphere
with radius J is the phase space for the motion,
which is that of a system with one freedom whose
canonical variables are the azimuthal angle ¢ (co-
ordinate) about the z axis, and J, (momentum). If
H does not depend on time, it too is conserved;
thus the spin moves around the energy contours
on the J sphere, and the system is trivially integra-
ble. Attention will be restricted to the simplest
nonlinear Hamiltonian of this type, namely

H=J%2I, (3)

where 7 is the (constant) moment of inertia of the
spin {this Hamiltonian describes, for example, the
26000 years precession of the Earth’s rotation axis
in the Moon’s gravity, or that of a crystal nuclear
spin in an electric field). From (2), J precesses
round circles of latitude, with frequency w =J,/1.
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All orbits are therefore periodic, and the shortest
period, corresponding to J,= +J, defines a char-
acteristic time of the system:

T =2al/J. (4)

In quantum mechanics both J and J, are
quantized:

JP=h%(j+1) (0<j<c0)
and (5)
J,=mh (—jsmsj).

With the Hamiltonian (3) the energy eigenvalues
are E, =m2h%/21, and in the basis of m-states
the operator determining the evolution of a quan-
tum state for time T is

(m|¥m"y = exp {-iE,T/h}$,,,
=exp { —ikTm*/21}8,,... (6)
The simplest characterization of this propagator,
and hence of the quantum evolution, is its trace,
that is
i
Tr#%= ), exp{—-ihTm?/2I}. (7}

m=—j

If we measure time in units of T (eq. (4)), that
is in terms of

1= T/Tmin’ (8)

and substitute the quantum number j for 4 from
(5), Tr % can be written as

Tr =1+ 287(r), (9)
which has the same form as (1) with

r=t/yi(j+ 1) =1/ (10)

In principle Tr % could be measured. One way
is to start with a beam of spin-f particles (for
example nuclei with high spin), all in the same
(arbitrary) state |m,), and divide it into 27+ 1
identical beams, still in the state |mg). Then
transform the mth beam from |m,) to |m) (there
exists a unitary operator — different for each
|y —which does this); this gives beams in states
| =/ | —j+1)...|m)...|j) Let this collection
of coherent beams propagate for time T in the
Hamiltonian H, so that the mth beam acquires
the phase factor in (6). Now transform each of the
phase-shifted beams back into the original state
|my) (another unitary operation) and recombine
them. The amplitude of the recombined beam will
be proportional to Tr %. (A different way to real-
ize §,(r) is with optical diffraction gratings [1],
and experiments of this type are now being carried
out.)

The behaviour of (1) as j— oo also appears [8]
to control the quantum-classical discordance in
the long-time behaviour of the kicked plane rota-
tor (which, unlike a three-dimensional spin, can
have any value m of angular momentum quantum
number). In the same context, the statistics of the
phases in (1) (that is wrm?mod2mn) has been
investigated [9].

S{7) (and also Tr#) is a complex number
which it is helpful to regard as the sum of j unit
vectors in the complex plane. Now we will discuss
the geometry of the sum in three limits.

2, Long-time limit

This is ¢t — o0 with % (and hence j) fixed.
Therefore the number of unit vectors j in §,(7) is
constant, and the parameter 7 increases (eq. (10)).
But S(7) is periodic in 7, with period 2, so that
Tr % is periodic in T with recurrence time 2 j7,; .
Thus any quantum state recurs, in contrast with
classical phase-space distributions which need not
(each individual orbit is periodic, but different

orbits have different periods). If j is large (semi-
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Fig. 1. Trace of the spin-j propagator over a quantum period, ie. the complex number representing the sum §,(7) (eq. (1)) for
0<r<2 forfa) j=2;(b) j=3;(c) j=35; (d) j=10. The rightmost points have 7 =0 and the points 7 =1 are indicated by dots.

classical conditions), the quantum period is large
(for the Earth’s rotation, j ~ 10%, so the quantum
recurrence time for precession is about 2T, ~
10% years).

Evidently we need only study Tr% over a
quantum period, thatis for 0 <7< 2. When 7=10,
all j vectors in S; are in line, and S;(0)=/. As 7
increases, the vestors in (1) roate at different

speeds and the end-point S,(7) of their sum winds
up. The windings continue until 7 =1, when S,(1)
=0if jis even and 1 if j is odd. Thereafter the
sum unwinds until =2 when §,(2) = .

Some of these windings are shown in fig. 1.
They are surprisingly intricate, even for j = 3, and
the intricacy increases rapidly with j (that is,
semiclassically). Nevertheless, the complexity of

each pattern is strictly limited by the fixed value
of j.

3. Semiclassical limit

This is j— ¢ (i.e. A — 0 with J constant) with
¢ fixed, Therefore the number of vnit vectors | in

S,(7) increases, and by (10) the parameter 7 de-
creases proportionately, The crudest approxima-
tion is then to regard m as a continuous variable,
so that §,(t/J) becomes the convergent integral

Sj(t/j) = fowdm exp {imtm?/j }

= e/ (/) (1)
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Fig. 2. Semiclassical spin propagator, ie. the complex number representing S;(¢//) for 1 < <100, for (a) 1=10.1; (b) 1= 0.8; (¢}
=17, (@ 1=21; (e) t =301 In (f), ] <j < 10000 and ¢ = 4.



M.V. Berry / Random renormalization for a spin

30

20

ImS
ImS

ImS

L

o

=3

&

I

=

-

i

=1

-l

=2

@
=3 < = =3 )
o f= [Tal =] w
1 —~ —~ o~ ~
1 : 1

(=]

o~

ol

o

(=]

(o}

1

=]

-

1

=]

o

]

3+ .

|8 V]

i
=) W = 1 < o =) =) = 1= =) =3 = o o
a ~ I ~ ] ~N = o @ " =4 ) S A
— ) v i | 1 —~ — ~ ~
1 1 1

Re SlOD

50

-100 =50

-150

100
ReS

50

-100 -50

-150



M.V. Berry / Random renormalization for a spin 3

When combined with (9) this gives the same result
as the simplest semiclassical trace formula, which
is the phase-space integral

1 2 J .
Tr#= mfo d¢f7Jszexp{—1H(J)T/h}.
(12)

The prediction from (11) is that the point repre-
senting §;(1/f) recedes along the 45° line as j—
co. This is, however, only a rough approximation,
because the recession is accompanied by fluctua-
tions that are more complicated for larger f. One
way to see that these fluctuations must occur is to
note that the phase difference between successive
terms comprising a given sum (that is, for given j
and ¢} is small only whilst m <j/¢. The sum of
the remaining terms j/t<m<j cannot legiti-
mately be approximated by an integral; the final
terms m=j—n (n<j) differ in phase by the
constant 2w, so that the point representing S,(¢//)
ends by cycling polygonally round the point given
by (11) rather than converging onto it.

As fig. 2 shows, these effects combine to pro-
duce pictures that are surprisingly varied and
complicated, especially for larger z. Nevertheless,
the complexity is limited. This can be understood
in terms of a more comprehensive semiclassical
approximation in which corrections to (11) are
obtained (see [1]) by Poisson transformation of

(L
Tr %= e"™/*(j /1)
Int(z)
X|1+2 Y exp{inn®/t}| (13)
n=1
These corrections can be interpreted [1] as contri-
butions from the classical closed orbits with period
T. Semiclassically (i.c. as j— co) the terms oscil-
late rapidly as ¢ varies, and the jumps as ¢ passes
each integer n—corresponding to the entry into
the sum of the nth closed orbit — have width Az =

(n/j)'/2. But for fixed ¢ the number (Int(7)) of
closed orbits is finite (and independent of j),
guaranteeing that, as claimed, the complexity of
Tr4% is limited - this time by the fixed vaiue of
Int{z).

4. Renormalization limit

This is the combined limit 1 — oo and - o
with 7=1/j fixed (ie. T a fixed fraction of the
quantum recurrence time 277 . ) and O0<r<1.
Now the number of terms in both the original
series (1) and the closed-orbit expansion (13) in-
creases limitlessly, and we can expect complicated
behaviour. And fig. 3 illustrates that the behaviour
is indeed complicated: as j increases, the point in
the complex plane representing S,(7) traces out a
pattern of curlicues [10] forming a hierarchy with
ever-increasing scales. The details of the curlicues
depend delicately on 7.

It is natural to seek to understand the hierarchy
with the technique of renormalization, that is re-
peatedly transforming S,(7) to a sum of similar
form. Of several renormalization schemes, the most
efficient is based on the transformation (derived in
[1] and accurate in the limit j — c0)

exp {inF"(1,)/4)
[F()]

xKl+Int(1/"'o)5}F(.,.0)('Tl(TO))’ (14)

Sj('ro) =

whose ingredients will now be explained. F{r,) is
the truncation factor (fig. 4) by which the number
of terms in the transformed sum is reduced rela-
tive to that in the original sum, namely

v ifr<1/2,
F(r)={(1-1)(1+{1/(1-1)} mod1) (15)
if r>1/2.

Fig. 3. Semiclassical long-time spin propagator, i.e. the complex number representing S;(r), for some typical values ol 7: (a)
7=2"13 (1 < j < 8000); (b) renormalization of (a) using (14) (3000 vectors); (¢} == (2000)~ 1% (1 = < 8000%; (d) renormalization
of () (634 vectors); () T=(20000)"1/? (1 < < 40000); (f) renormalization of (e) {1474 vectors) (these pictures are kindly supplied

by I. Goldberg).
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Fig. 4. Truncation factor F{7) (eq. 15) in the renormalization
(14) (from [1]).

The terms in the new sum are magnified by # 1/%,
The derivative F'(r,) appearing in the phase fac-
tor in (14) is an integer. The symbol K denotes the
operation of complex conjugation applied to what
follows it. Finally, the new sum involves a differ-
ent 7, related to the old by the renormalization
map (fig. 5)

(1/7)mod1

if Int(1/7,) is even,
1-(1/7)modl

if Int(1/7) =3,5,7,..., (16)
({1/(1 7)) mod1}/
(1+ {1/(1 = =)} mod1)

if Int(1/7,) =1.

m{m) =

Iteration of the transformation (14) simplifies
the sum in a manner that depends on the arith-
metic of 7. The simplest case is when 7, is ra-
tional. Then a finite number k of rencrmalizations
with the map (16) leads to 7, =0 or 7, =1, and
hence to a finite hierarchy [1] of curlicues with
S;(7) either linearly increasing (*“quantum reso-
nance” [11]) or repeatedly retracing a finite pat-

Fig. 5. Renormalization map 7,( %) (eq. {16)) (from [1]}. (Fixed
points are intersections with the diagonal )

tern, respectively. The next simplest case is when
7 is a fixed point of the map (16). Then the
asymptotic S,(7)) has infinitely many scales re-
lated by self-similarity with the single scaling 7;;
the curlicues form a fractal (with dimension 2 [1]).

Most interesting, however, is the case of typical
7. for which renormalization depends on the
ergodic properties of (16). Because this map is
everywhere hyperbolic it is both ergodic and

T(n)

1 L 1 b
0 1000 2000 3000 4000 5000
n

Fig. 6. Erpodicity and chaos in 5000 iterations of the renor-
malization map (from [1}).
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chaotic, as illustrated in fig. 6. Therefore the fractal
curlicues for typical 7, possess not only infinitely
many scales but also infinitely many scalings
forming a random cascade of renormalizations,
The scalings are distributed over the range 0 < ¢ <
1 according to the invariant measure of the map,
which is a simple function of 7 [1].

Each renormalization gives a smaller sum with
bigger terms. Thus renormalization is a coarsening
transformation, removing the finest curlicues at
each stage (fig. 3). Repeated renormalization must
eventually produce a sum with just one term, no
matter how large j is. For almost all =, the
number of renormalizations that produces this
result can be shown [1] to be 0.653 In j. (The fact
that a sum with j terms can be comprehended
with In j operations must refiect the null algorith-
mic complexity [12] of both quantum and classical
evolutions for this spin problem.) Of course a sum
with one term is trivial, so that this “renormaliza-
tion to the finish” is a powerful tool [1, 4] for
estimating the size of the original sum as the
product of the accumulated magnifications; the
result is that |S,(r)| =2 for almost all 7.

5. Discussion

The semiclassical and long-time limits can be
regarded as approaches to the origin of the plane
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Fig. 7. The plane of asymptotic parameters ;j~!, ¢~!, with
dots illustrating the history of the random renormalization of
the propagator, starting near the origin which is a powerful

singularity.

with coordinates =%, ¢~! (fig. 7), along the ;!

and 71 axes respectively. In both these extreme
cases the limiting propagator can be expressed as
a finite sum. But these two limits are special; more
general is the rencrmalization limit, in which the
origin is approached along a line with slope 7.
Then the chaos in the renormalization reveals the
origin to be a dragon’s lair, so singular that the
propagator is infinitely sensitive to the slope of
approach. A generic point close to the origin re-
normalizes outwards along directions that change
randomly.

One might call this behaviour “quantum chaos”,
but that would merely add provocation without
illumination.
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