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The phase of a quantum state changes rapidly as parameters X =
(X;,X,,...) are varied near a degeneracy X*, reflecting the monopole
singularity of the underlying phase 2-form V(X) at X*. The singularities
may be sources or sinks of V. We study them numerically and display
them graphically for two families of hamiltonians whose degeneracy
structure is typical. First is a particle moving along a line segment with
kinetic energy quartic in the momentum (‘quartic-momentum square
well’); the X are incorporated into the boundary conditions. Second is a
charged particle moving in a domain D of the plane which is threaded by
a magnetic flux line of strength &, with wavefunction vanishing on the
boundary 0D (‘Aharonov-Bohm billiards’); the X are « and parameters
specifying 0D; V is not invariant under gauge transformations of the
vector potential generating the flux. For Aharonov—Bohm billiards we
study how the spatial patterns of phase of wavefunctions change round
circuits near degeneracies; these patterns also have singularities
(wavefront dislocations) that appear and disappear by colliding with
each other and with dD. -

1. INTRODUCTION

Attention has recently been directed to the geometric phase y acquired when a
quantum state |n(X)) is driven round a cycle C in the space of parameters X =
(X;,X,...) on which it depends (Berry 1984, and other papers collected by
Shapere & Wilczek 1989). A more fundamental quantity is the phase 2-form V(X),
whose flux through C gives 7.
Y= —JJ V(X). (1)
2§=C
In terms of the state |n),
V(X) = Im {dn| A|dn), (2)

where d denotes differ.entia,tion in X space. If |») is an eigenstate of a parameter-
dependent hamiltonian H(X), with eigenstate E,(X), then

_ {n|dH|m) A {m|dH|n)
VX)=Im 3 T—T.) : (3)

m#n

In this case the cycling of [n) can be effected by the adiabatic cycling of H. If there
are three parameters, the wedge products in (2) and (3) can be written as a cross
product of gradient vectors in X-space:

dAAdB =V, A AV, B-dS, 4)
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where dS is the vector area element. Then the 2-form can be written as a vector:
V=v-ds. (5)
V (or V) is a gauge field in parameter space, invariant under the transformation,

[n(X)> — In(X)) exp {in(X)}, (6)

for arbitrary u(X). The singularities of V occur at degeneracies X* involving the
state |n), and are of monopole type, diverging as |X-X*|"2.

In this paper our main aim is to show by numerical calculation for two
hamiltonians that V does have the predicted monopole form near degeneracies.
The hamiltonians must be complex hermitian rather than real symmetric;
otherwise V vanishes (cf. equation (3)). In physical terms this means there must
be neither time-reversal symmetry (T) nor any other antiunitary symmetry
(Robnik & Berry 1986) throughout X. There may, however, be surfaces in X where
H(X) has T, provided that symmetry is broken in a transverse direction, because
then the components of V in the surface can be non-zero.

Degeneracies are harder to find in systems without T because (in the absence of
any unitary symmetry, e.g. geometric) they have codimension 3, whereas with T
they have codimension 2 (Von Neumann & Wigner 1929). The nearby phase
structure is also richer: without T, v is given (in suitable coordinates) by half the
solid angle subtended by C at X*, whereas with T the only possible phases are
vy =0 and y =mn. In this sense we are generalizing an earlier study (Berry &
Wilkinson 1984) of degeneracies (diabolical points) in systems (triangle quantum
billiards) with T.

Our subsidiary aim is to examine a different sort of phase singularity, namely
dislocations in the spatial phase structure (N ye & Berry 1974) of quantum states
in position representation, as the state is varied close to a degeneracy.

2. QUARTIC-MOMENTUM SQUARE WELL

This is a family of one-dimensional systems which we have studied before (Berry
& Mondragon 1986), whose degeneracies have the codimension of the typical case,
but which can be solved analytically. A quantum particle with wavefunction
¥, (@;X) = {(x|n(X)) moves on the interval |x| < 1. Its hamiltonian operator is
defined by asy,

with parameters X = (a, b, ¢,d) incorporated in the boundary conditions

[;;(J_rl)]_[cﬂd ia][wn(in]
"1 [ £b —ctid]lyL (1))

When d # 0, H is complex; when d = 0, H is real.

For all X, H is symmetric about x = 0. Therefore the eigenstates have even or
odd parity. Within each class the degeneracies all have d =d* =0. In the
subspace a,b, ¢ of real hamiltonians, degeneracies lie along infinite lines. The nth
of these corresponds to degeneracies between the nth and (n+1) st states, so
that each state degenerates twice ; once each with its upper and lower neighbours.

(8)
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Ficure 1. Phase 2-form V for the state |2) near its degeneracy with |3). for the quartic-
momentum square well. The singularity has parameters X* = (a*, b*, c*,d*) = (11.2, 68.6,
—30.6,0) and energy k* = 6.8. V lies in the subspace a,c with fixed b = b* and d = 0.
(a) Contours of |V]; (b) lines of V; (c) directions of V on a circuit surrounding X*.

Thus the degeneracies have the typical codimensions: 3 in the full space of
hermitian hamiltonians and 2 in the subspace of real ones.
Here we work only with the even states

Yr(x; X) = N(u cos kx+ v cosh kx), (9)

where the coefficients x, v, the normalization constant N and the eigenvalue k all
depend on a,b,c,d. Thus V can be evaluated directly from the definition (2).
As there are four parameters we can fix one arbitrarily (we choose b = 68.6)
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FicUuRE 2. Monopole character of the singularity in figure 1, demonstrated by the unit slope of
the doubly logarithmic plot of || against 72 where r = [(a-a*)? 4+ (c- (:"‘)2]2 is distance from
X* in the subspace b = b*, d = 0. The lines represent approaches to X* along the indicated
directions.

and study the phase 2-form as a vector V in the space of the other three
(a,c,d). When d = d* = 0, H is real, so that (cf. (2) and (4)) ¥ has no d component;
it lies entirely in the plane a, ¢ containing the degeneracies.

Figure 1 shows V in the a, c-plane for the state [2) near its degeneracy with |3).
The singularity is obvious, and figure 1 ¢ shows that it is a sink rather than a source.
Figure 2 shows that the singularity has the expected monopole divergence.

Figure 3 is a wider view that also shows the other degeneracy involving |2},
namely that with |1). This degeneracy is a source of V.

3. AHARONOV-BOHM BILLIARDS
3.1. Hamzltonian

A quantum charged particle moves in a domain D of the plane r = (x,y), and
is reflected specularly at the boundary 0D. Threading D at r = 0 is a single line
of magnetic flux of strength a (in quantum units). The parameters X are those
specifying the form of 0D, together with a. Wavefunctions yr,,(r; X) = {r|n(X)) are
governed by the hamiltonian

Hy, = —[V,—iA(r; X)), =E, ¥, inD)

(10)
Y, =0 on D, J
where the vector potential A4 satisfies
V, A A = 2nad(r). (11)

It is the magnetic flux that breaks T and makes H complex hermitian rather than
real symmetric.
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Fioure 3. As figure 1 but also showing the degeneracy between |2> and |1), at
X* = (3.7, 68.6, 1.17, 0) and k* = 4.0.

The hamiltonian (10) and (11) was introduced by Berry & Robnik (19864) as a
model for quantum chaology (Berry 1987) in the absence of T. Their technique for
diagonalizing H was based on the conformal transformation of D to the unit disk
(an Aharonov-Bohm billiard which can be solved exactly). It works best if the
transformation is a low-order polynomial. The lowest order for which 0D has no
geometric symmetry is 3, which generates the boundary,

xz+iy = e+ Be?f 4+ Ce®0t (0 < 6 < 21), (12)

parametrized by B, C, ¢. The domain of allowed values of B, C' is bounded by the
requirement that 0D must not self-intersect. We fix ¢ = I, so our H has the
3 parameters X = (B, (,a). The conformal method for solving quantum billiards
was devised by Robnik (1984) who applied it to the case without flux (i.e. with T)
and ' = 0 (heart-shaped billiards, with reflection symmetry).
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The vector potential 4 must satisfy (11), but this still leaves it undetermined by
the addition of the gradient of a single-valued scalar function. We resolve this
gauge freedom by choosing 4 in a way that makes conformal calculations easiest;
parallel to 0D at the boundary. Then A is the velocity field of fluid swirling
irrotationally in D down a plughole at r = 0. It is a surprising fact, first noted in
arelated context by Aharonov & Anandan (1987), that the quantum phase 2-form
V (equation (2)) is not invariant under parameter-dependent magnetic gauge
transformations. If 4 is changed to

A(r; X)=A(r; X)+V, A(r; X), (13)
V transforms to
V'(X) =V(X)+dA {n|dAd|n). (14)

This result is derived, and its physical significance explained, in Appendix A. Of
course V is still invariant under the gauge transformation (6), which is of a different

type.
3.2. Degeneracies and phase 2-form

When the magnetic flux « is non-zero, degeneracies for the non-symmetric
billiards (B and C both non-zero) have codimension 3 so all parameters X =
(B,C,a) must be explored. For each X, a matrix must be diagonalized. This
makes the search for these degeneracies very time-consuming, so we looked only at
the lowest 15 levels. We found 10 degeneracies. Symmetries reduce the co-
dimension and thereby make the search simpler. We found 49 degeneracies
associated with symmetry. The existence of each degeneracy was confirmed by
checking the monopole divergence of the 2-form (cf. figure 2).

Two levels can degenerate more than once. Figure 4 shows an example when
a = 0, that is for the non-magnetic billiard. The degeneracies involve states |7) and
|8>. The elliptic contours of the level separation show the conical structure
recognized by Teller (1937).

In computing the 2-form we used the sum-over-states (3) rather than the
simpler-looking formula (2), because it was easier to calculate derivatives of H (in
terms of derivatives of the matrix generated by the conformal technique) than to
define a continuation for the state |n) and compute its derivatives; moreover each
diagonalization automatically produced the extra states |m) needed to evaluate
(3). In no case were more than 30 states required in each evaluation of (3) to ensure
convergence of V to the accuracy shown in the figures to follow. Even so,
calculations of V were slow because to calculate the nth level with an error less
than 5% of the mean spacing required the diagonalization of a 5n X 5n (complex)
matrix.

Figure 5 shows two examples of V near a degeneracy. In 5a— the degeneracy is
the right-hand one in figure 4, so H is real symmetric. In 5d—f the degeneracy
(involving states |14) and |15)) has non-zero a so H is complex hermitian.

Figure 6 is a wider view of figure 5a—c which also shows the other degeneracy
in figure 4. In contrast to figure 3, which also shows two degeneracies, both
degeneracies involve the same two states and their monopoles are both sources
of V.

Each of the figures 5 and 6 took about 70 hours of cpU time on a VAX730
computer.
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Ficure 4. Contours of level separation E4(B,C)—E,(B,C) for quantum billiards with o = 0,
showing degeneracies at X* = (B*, C* a*) = (0, 0.227, 0) and (0.204, 0.242, 0). The loops
near the degeneracies are ellipses.

3.3. Phase dislocations in wavefronts

Here we study the phase of quantum billiard wavefunctions y,(r;X) as a
function of position r = (z, y), as X makes a cycle C near a degeneracy X*.

When H is real (e.g. when there is T), ¥, is real as well and so its only phases
are 0 and ©. Phase structure is then embodied in the nodal lines, which divide D
into nodal cells. Because a degeneracy has codimension 2, it can be enclosed by C,
around which nodal cells must change sign. When C is small we can write either
of the degenerating states as

Ya(r; X(0)) = cos (30) Y4 (r) +sin 30) y(r) (0 <0 < 2m), (15)

where 6 is an angle parametrizing C and ¢, and ¢y are two degenerate states
at X*. :

The way the nodal patterns change with 6 has been illustrated for the
(integrable) square billiard (Korsch 1983) and for (non-integrable) triangle
billiards (Berry & Wilkinson 1984). Here we show in figure 7 the states during the
rightmost degeneracy in figure 4. As with the other examples, the rearrangement
of nodal cells (black into white) is accomplished not simply by sliding round within
D but by topological changes involving crossing of nodal lines (at 6 =~ 95° and
0 ~ 103°).

When H is complex, the phase structure is much richer. Writing

Ya(r; X) = p(r; X) exp {ix(r; X)}, (16)

we see that the phase structure is embodied in the wavefronts y = const. X mod 2.
These form a pattern with singularities at the nodal points p =0 (where y is
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Ficure 6. As figure 5a—c but showing both degeneracies in figure 4.

undefined). The singularities are called phase dislocations (Nye & Berry 1974, see
also Berry 1981). Dislocations in Aharonov—-Bohm billiards were studied by Berry
& Robnik (1986b) for fixed 0D and varying flux «.

Here we fix « at a degenerate value a* and study the wavefronts as 0D,
determined by parameters B, C in (12), is cycled round the degeneracy between
states |[14) and [15), for which the 2-form is shown in figure 5d—f. Figure 8 shows

FIGURE 5. (a)—(c) Phase 2-form V for the state |7) near its degeneracy with |8), for the quantum
billiard (12) in the plane a = 0. The singularity is at X* = (B*, C*, a*) = (0.204, 0.242, 0).
In this subspace, H is real symmetric, so V lies in the BC-plane. (a) Contours of |V|; (b) lines
of V; (c) directions of ¥ on a circuit surrounding X*. (d)—(f) As (a)—(c) but for the state |[14)
near its degeneracy with [15), for the Aharonov—Bohm billiard in the plane a = 0.382; the
degeneracy is at X* = (B*, C*, a*) = (0.309, 0.223, 0.382); in (¢) ¥ is shown projected onto
the BC-plane, with the heavy line showing where the component along « changes sign.
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Ficure 7. Rearrangement of nodal cells around the degeneracy between states |7) and |8 of the
quantum billiard (12), at X* = (B*, C*, a*) = (0.204, 0.242, 0). The labels give the values
of the mixing angle in (15).

an overview of the phase patterns round the cycle. The wavefronts are not labelled
by their phase values because these depend on the phase continuation rule
used to transport the state; under the parallel-transport rule the labellings of
the wavefronts at the beginning and end of C would differ by the geometric phase
¥ (here m because C lies in a plane including X*). Note that wavefronts meet the
boundary perpendicularly (unless y has a saddle there); this was explained by
Berry & Robnik (1986b) as a consequence of choosing the gauge in which 4 is
parallel to 0D.

It is clear from figure 8 that the phase pattern and its changes round C are
complicated. Dislocations can appear and disappear in two ways, illustrated in
figures 9 and 10 and now described.

The first way is by annihilation and creation of pairs within D. Such an event
conserves the dislocation strength in a circuit (in r-space) surrounding it.
Dislocation strength is an integer, defined as the total phase change of the
wavefunction round the circuit, divided by 2r. Individual dislocations almost
always have strength + 1. If the circuit is 0D, the total dislocation strength S of
the billiard is given by the boundary integral

tod
S(X) = %L dTEIm In{n(r)-V, ¥,(r(7);X)}, (17)

where 0 < 7 < 1 parametrizes 0D and n is the normal to 0D at 7.
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[1]  326.25°

Ficure 8. Pattern of wavefronts around the degeneracy at X* = (B*, O*, a*) = (0.309, 0.223,
0.382) between states |[14) and |15). C is a circle in BC-space with radius 1072, centred on
B*, C* and parametrized by the angle shown in the pictures; « is fixed at a*. The numbers
in square brackets give the dislocation strength defined by (17). Wavefronts are shown at
intervals of im.

Figure 9 is a magnification of the part of C that includes the last two pictures
in figure 8. Two dislocations are created near 337.5°; one of these annihilates
with a third near 356.25°. A more detailed view of these processes is shown in
figure 10a. Similar events have been discussed in connection with acoustic
piston radiators (Wright & Berry 1984) and ocean tide waves (Nye et al. 1988).

The second way of making dislocations appear is for two to be created on 0D and
then move off it, one inside D and the other outside. Of course the process can also
occur in reverse. Creations and annihilations of this type cause S to change by +1.
It is not possible for a single dislocation to migrate across 0D because in that
process the wavefronts could not remain perpendicular to 0D as they must. Nye



274 R. J. Mondragon and M. V. Berry

o\

315° 320.75° 326.25°
329.125° 337.5° 343.125°

<< i{ $
348.75° 352.25° 356.25°

TicurE 9. More detailed view of the sequence of wavefront patterns including the upper part
of the last two pictures in figure 8. Two dislocations appear inside D near 337.5°; two
dislocations annihilate inside D near 356.25°; two dislocations disappear on 0D near
326.25°.

et al. (1988) give an elegant topological argument showing that the birth of a pair
of dislocations must be accompanied by the birth of a pair of saddles of the phase
function y (only then are both dislocation strength and singularity index
conserved). In the present problem the saddles separate along 0D after the
creation event.

Figure 9 shows that two dislocations annihilate on the boundary near 326.25°.

The more detailed view in figure 10b also shows the associated boundary saddles
(dotted).

We thank Dr J. H. Hannay for helpful discussions. R.J.M. thanks CONACYT
(Mexico) and the H. H. Wills Physics Laboratory for support.
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APPENDIX A. CHANGE IN PHASE 2-FORM UNDER MAGNETIC GAUGE
TRANSFORMATION
As a result of the transformation (13) the wavefunctions, which are the solutions

of (10), transform to
Yalr; X) =, (r; X)exp{id(r; X)}. (A1)

This superficially resembles (6), but here the phase factor occurs only in position
representation rather than multiplying the Hilbert space vector representing the
state. Thus the phase 2-form (2) transforms to

V'(X) =Im ffdr dy¥ Adyr,
—Im J dr (dy —iy* dA) A (dyr, +ivp, dA)
— V(X)+ Re f f dr (fr, Ay 4y dyr,) A dA
— VX)+ f f drdly, | A dA

= V(X)+d/\”dr|¢n|2d/1, (A 2)

which is the result (14).

The reason why the 2-form, and hence the geometric phase v, is changed by the
transformation generated by A(r; X) is that the parameters X depend on time, so
that 4 generates an electric field through its rate of change and so can be expected
to produce physical effects. These can be eliminated by completing the gauge
transformation and allowing A to affect the scalar potential U (r;X) (in (10) U
describes the infinitely hard wall at 0D). The transformation is

dX, o4
dt oX,

U(r;X) = U(r;X)—% A(r;X)=U— (A 3)

The complete gauge transformation (13) and (A 3) has no effect on the total
phase change vy, produced by cycling X, because its effect on the time-dependent
wavefunction is to introduce the same phase factor asin (A 1) (whether the change
in X is adiabatic or not) and this is single-valued in a cycle of X. But the change
in the scalar potential U changes both the instantaneous eigenstates |n(X))> and
the energies £, (X) . Thus both the geometric and dynamic phases will change, and
the changes must compensate.

We calculate the change in the dynamical phase y, from

Vo= f " EX), (A 4)

0

where 7' is the duration of the cycle. In the adiabatic limit 7' is large, so the
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parameters change slowly and the effect on the energies of the gauge term in
(A 3) can be evaluated by perturbation theory:

T dx, oA
v, = —J dt (En—mat—‘f f dr ax"””'z) = yqt+ jﬁ (nldAn). (A 5)

The change in the geometric phase is obtained from (14) and (1):

y == [an caladmy =y~ cuai. (A 6)

This shows that the changes do indeed compensate.

Because of the lack of magnetic gauge-invariance of the 2-form, there is some
arbitrariness in the division of the phase change vy,., into geometric and dynamic
parts. Of course this does not destroy the physical significance of the geometric
phase, which must always be included unless a special (post hoc) choice of magnetic
gauge is made. Aharonov & Anandan (1987) discuss this gauge dependence of
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Fiaure 10. More detailed views of the events in figure 9, with wavefront
interval &m; (@) inside D; (b) on 0D.

v in the general non-adiabatic case. They propose a redefinition of y that would
make it invariant under magnetic gauge transformations, by adding a term

T
*J At X @)U (r; X(1))In(X(2)))- (A7)
0

This proposal has the disadvantage that it prevents y being written as an integral
(line or surface) in parameter space, so that the geometric phase is no longer
geometric, at least in the sense we mean here.
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