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Lecture 1

My aim is to give a self-contained account of the geometric phase,
which is helping to sweep clean a comer of quantum mechanics that was
for a long time dusty and obscure. The treatment will be thoroughly
elementary - there will be no fibre bundles and Chern numbers - but
nevertheless in the spirit of Einstein's injunction: physics should be
made as simple as possible, but not simpler.

I do not intend to give comprehensive coverage of what has be-
come a large subject, and so will omit entirely several major topics that
have been treated elsewl‘lere, such as nonadiabatic corrections (ref [1] )
and the reaction of quantum systems on their environment {2]. Nor will
I give a complete list of references, because with the assistance of
Richard Lim I am compiling a comprehensive phase bibliography that
will be freely available, and because a reprint collection [3] has just been
published.

Details of many of the arguments will be left as exercises for the
student. In these notes such exercises will be denoted by (E).

The geometric phase is based on two ideas: adiabaticity and an-
holonomy. Adiabaticity here refers to quantum physics on the border
between statics and dynamnics. Statics is concerned with things, that is
persisting entities. In quantumspeak these are eigenstates of the Hamilto-
nian describing the system's environment. Dynamics is concerned with
happenings, in this case those induced by changes in the environment.
On the border are things in environments that change slowly; such
changes are the province of adiabatic theory.

Anholonomy is a geometric concept: the failure of some quanti-
ties to come back to their original values when others, which drive
them, are forced to return, The failure derives from nonintegrability of

the driving law. In this lecture I will concentrate on an example of
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anholonomy, introducing it as pure geometry in a way that generalizes
easily to quantum mechanics.

Let a vector ¢, lying in the surface of a sphere, be transported
round a circuit C (fig.1.1). "Transported” means that the unit radius
vecfor r, to which e is artached, is forced round a loop (#(t) with
HT)=r(0)) and "in the surface” means e-r=0. The law of transport is
parallel transport: e never twists about r, After the circuit, it is found
that ¢ has rotated, by an angle &(C) that we wish to calculate. &(C)
embodies anholonomy: e has not returned, even though r, which drives
it, has.

This parallel transport anholonomy is easy to demonstrate. Hold
a pointer at arm’s length above your head and pointing forwards. Move
your arm down till it is horizontal, then rotate it sideways through a
right angle, and finally bring it back up again, taking care never to twist
the pointer. You will find that the pointer now points sideways, that is,
it has rotated, in spite of never having been turned! I have done this lit-
tle trick many times, and yet it still seems magical.

To calculate 8(C) we must give mathematical expression to the
law of parallel transport. Let the orthonormal frame r.ey,e; (with e
any fixed combination of e; and e,) rotate with angular velocity £2,
i.e.

e=0nre (1.1)
(the overdot denotes differentiation). {2 has the general form

Q=ar+br+crar (1.2)

Parallel transport means that £2 has no component along r, so a=0. To
determine b and ¢ we impose the requirement that e remain perpendic-

ular to r, ie. (e-r) =0. This gives {E) b=0, c=1, so
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Q=rnar (1.3)

The law of parallel transport is therefore

e=(rarlane=—e-rr (1.4)
We express the law in a form suitable for later generalization to

quantum mechanics. Define a complex unit vector on the sphere by

9= (e, +ie)V2 (1.5)

Thus ¢*.¢=1 . From the fact that ey, e; separately transport according

to (1.4), it follows easily {E} that

9% 9 =0 (L6)

Now we can calculate the anholonomy &C). Chart the passage of
e1,e3 relative to a local basis of unit vectors u(r) ,v(r) defined at each
point r; (fig.1.2), and so singlevalued round C by construction. For
example u and v could point along lines of latitude and longitude. Let

the corresponding complex unit vector be

a(ry=s(u+iv)2 .7)

The relation between the transported basis ¢(¢) and the local basis
n(r(t)} is {E} that they differ by a phase factor:

#(1) = exp{— 1 8()} n(r(1)) (1.8)

where @ is the angle by which #, ¥ must be rotated to coincide with

€1.63.
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The desired &(C) is the increment of & round C, that is the total
rotation of e1,eq relative to u,v.
We find Susing (1.6):
0= ¢* ¢ =exp{if)(—1i6 n*- n+ n* n)exp{-i6} (1.9)
Now n*.n=1 and so n*.h is imaginary, so that
6 =Im n* n (1.10)

Thus

8(C)=Im [ n* ridr=Im@. n* dn
=—(I2:v -du

(1.11)

where the last equality is a simple [E}.
To obtain the explicit form of 8(C) for any circuit #{f) we use

Stokes' theorem:

(0= JIv
as=C (1.12)

where V is the 2-form

VzImdn*aA -dn=ImVau*aA . Vn -dS
=-Vv -AVu.4s (1.13)

Here dS is an element of area on the sphere, and the integration is over
any surface whose boundary is C. The scalar products - act between n*
and n , and u and v, and the vector products A act between the Vs. Of

course the anholonomy 8(C) is independent of the basis u(r), v(r). A
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convenient choice is the unit vectors corresponding to spherical polar

angles, that is

rae, ran

u= ., V=
[7A €] d (1.14)

where e is a fixed vector and we include the length r of r because it is
convenient to have formulae valid in the whole three-dimensional r
space rather than just on the unit sphere. From (1.12), a straightfor-

ward calculation {E} gives
V=r-d§/i (115

We thus obtain the final result, from (1.12):

6(C)=fds - r1 P
= flux through C of unit monopole atr =0
= solid angle (X O subtended by Cat » =0 (1.16)

Anholonomy is the fact that 8 does not vanish. Its origin is the noninte-
grability of the parallel transport law (1.4).

An amusing observation (by V I Smith) is that (1.16) equates a
plane angle, measured in radians, to a solid angle, measured in steradi-
ans=(radians)2. This shows how unnatural is the decision of the Inter-
national Committee of Weights and Measures (4] that radians and stera-
dians shall be supplementary units in the SI system, with different di-
mensions, rather than being dimensionless as any physicist would think.

With these preparations we can now consider anholonomy in the
transport of quantum siates. Let X ={X.X5...} be parameters influ-
encing the quantum state l¢> of a system. For given X, I¢> is deter-

mined up to a phase, Now let X be varied round a cycle C:
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X=X(@):(X(T)=X(0)) (fig.1.3). We seek the phase HC) accumulated
when I¢> is parallel-transported round C. The definition of transport is
obvious from the analogy with vectors: X is analogous to position r,
and l¢>, a complex unit vector in many-dimensional Hilbert space, is
analogous to the two-dimensional complex unit vector ¢. Parallel trang-

port of l¢> is now defined by generalizing (1.6) to
{#14)=0 (L.17)

To find KC)we develop the analogy further. Let inX> bea
local basis state, defined to be single-valued on and inside C, coinciding
with |g> up to a phase.Thus In> generatizes n, and instead of (1.8) we

now have
190> = expli {OH n(X (8)) > (1.18)
(1.17) gives

y=i<nln>=~-Im< aldn>/d¢ (1.19)

where we have used the fact that <nln>is imaginary (which follows

from <nln>=1. Thus
YO = —Pm{ nid n) (1.20)

(cf. 1.11), and application of Stokes' theorem (cf.1.12) now gives

nO=- [[V
a5 =C (1.21)
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where (cf.1.13)

V = Im{d nald n) (1.22)

and A now denotes the wedge product.

This is the main result. It gives the phase anholonomy HC) as the
flux through C of the 2-form V. Do not be afraid of 2-forms; if you
are mathematically innocent (like me), think of them as objects which
deliver a number when integrated over an area. A more explicit repre-
sentation of the 2-form can be written by defining coordinates X.Xp on
the spanning surface S and expanding In> in an X-dependent superpo-
sition of fixed orthonormal basis states y,>.ie.

In(X)>= };;am(X VX, > (1.23)
(in position representation, for example, m would label position and

am (X would be the X:dependent (complex) wavefunction). Then

V=Im3dae,*Arda,
m

'andeImE[ X, XK, K, &,

(1.24)
So far our considerations have been rather abstract and mathe-
matical. To turn them into physics we have to specify a realistic
mechanism for parallel-transporting the state I¢>. This will be done in
the next lecture, For now I simply mention a case where the abstrac-
tions can be interpreted literally, namely the Aharonov-Bohm effect
[5,6]. Here I¢> is the state of an electron, the parameters X are its posi-

tion in ordinary 3-space, the 2-form V is proportional to the field of a



136 M. BERRY

single line of ordinary magnetic flux, and the anholonomy 7 is the phase

change of the electron round a circuit C of the flux line.
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Fig. 1.1
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Fig. 1.3
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Lecture 2
In 'reality’, quantum states are transported not by.any convenient
mathematical rule but by a Hamiltonian operator H acting via the time-
dependent Schridinger equation. One way [6] to implement the paral-
lel-transport rule (1.17) is to incorporate the changing parameters X
into H and make the changes occur sfowly. Thus we have the slowly-

cycled Hamiltonian

H=H(X()) (02:eT,T 5w, X{0)=X(T)) 2.1
and we can invoke the quantum adiabatic theorem.

This states that the time-dependent Schrédinger equation is satis-
fied by eigenstates of the frozen Hamiltonian H at each instant, multi-
plied by the usyal oscillatory time factor. Thus the adiabatic states
(labelled n) are

|¥,(0) > = exp( — 1 [ 41 E (X (D)7} § (1) > 22

where 1¢,> (assumed nondegenerate) satisfies the eigenequation at £:

HX)Ng,>=E X )¢,> 2.3)

The phase -JdtE,(t)/% of the oscillatory factor is the dynamical phase; it
generalizes the familiar "-a¢" of any oscillatory process, and is present
even if X is held fixed. (Of course the simple form (2.2), in which
I'¥(6)> clings to individual eigenstates I@,> ,is an exceptional case, valid
only in the adiabatic limit T—eo, Otherwise the chaﬁging H couples
different I¢,> via transitions, whose study is the usual business of time-

dependent quantum mechanics.)
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Now comes the central point. Equation (2.2) does not constitute a
compiete specification of the adiabatic state 1'*¥{(s)>, because the
eigenequation (2.3) provides no means to connect its solutions Ig> at
different parameters X: we need a transport law, This is provided by
the time-dependent Schrodinger equation, projected on the subspace
[pp>:

0=< ¥ (DI(H -if ) ¥, (1) >
=< W OHE,~ i1 dexp(—i[[dtE)Ig (1)>
=< PN 0> 0.4)

This is exactly the parallei-transport law (1.17), which we foung
to be nonintegrable. At the end of the cycle, I'¥> as given by (2.2)
therefore acquires a phase from the non-return of [@x(¢)> as well as the

dynamical phase. thus

T
| W (T)>=exp{-i (I)dr E (X (/T )) Hexpliy, (O} ¥,0) > 25
(2.

Here %(C) is the geometric phase, given by (1.21) and (1.22) with
[n{X)> now being any solution of (2.2) that is single-valued in X space
on C and on the chosen spanning surface S.

The reason for calling 7,(C) geometric is that it depends only on
the geometry of C in X space (and on which state »n is being
transported), and not on the rates with which different parts of C are
traversed (assuming of course that the transport is slow). In particular,
yis independent of the adiabatic parameter T, unlike the dynamical

phase which {E] increases linearly with T.
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It is amusing to see how the geometric phase is contained in the
path-integral representation of the evolving state. This was done with
J.Hannay and M.Wilkinson in 1983 but never published (but see [45]).
Introducing the time-ordered product for the evolution over the cycle,
and dividing the time interval into many small steps of duration &=T/N

where N-—3oo, we have

|¥(T)>=Texp{-iH{@/ I F©0)>

N
= [ exp{-i8 H(t )R} 1 ¥ (0)>
k=1 (2.6)

At each # we introduce the complete set of instantaneous eigenstates
Im(X)> of H(#) (single-valued solutions of (2.3}). Thus

1Y (T)>= kljyil.%exp[ -1 SEm(tk)/h]Im(X k) > < m(Xk)lx
x| F(0) > @2.7)
This is exact, but now we invoke the adiabatic approximation to
eliminate terms m #n in all the intermediate sums, where
['H(0)>=In(X(0))> is the initial state. Then all the factors involving the
E,, combine to give the dynamical phase, leaving
| ¥(T) >=1¥(0)>expl - izthn(t)/h} X

=X< n(XN)In(XN_l) > ... < n(XI)In(X0)> 2.8)

Terms in the product have the form

< n(XjH)In(X j) >=< a(X (t+ X (1) >

=(<n+8<ndn>
=1+d8<nln>
~exp[8 < nln>}=exp(—ilm < nldn>) (2.9)

141
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By (1.20), the accumulation of these factors gives precisely 1,(C).
By (1.22), the geometric phase for the n'th state is the flux
through C of a 2-form that we now call V,(X):
Vn(X)=Im<dnlAldn> (2.10)
This is the mathematical object at the heart of the whole subject. It sits
in parameter space, waiting to be brought to life as a phase when H is
cycled. |
Now we describe some interesting properties of V. The first
concems its singularities. To see where these are (in X space), we in-

troduce the complete set of eigenstates m(X)> of H(X).

VnzIrn Y <dnlm>aAa< mldn>
me n (2.1DH

Note the exclusion of the state m=n {E}. From the eigenequation for H

it is possible {E} to derive

i
< m!dn>=-<g—dﬂ}|;il (m = n)
n” “m (2.12)
so that
Vn=Im % <nldHlm>A< mZIdHIn>
= (E,~E,) (2.13)

This shows that the singularities of V, occur where the spectrum of
H(X) has degeneracies involving the transported state In>. Later we
shall determine the precise nature of the singularity.

The other properties of V, concem gauge invariance. In its sim-

plest form, this is the fact that V,, is independent of the choice of single-
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valued eigenstates In(X)>. Different choices are related by a single-

valued X-dependent phase factor, and we have {E}

Im<dn’ Adn’>=Im<drnadn>
ifln'(X)>=expliy(X }n(X )> (2.14)
By contrast, the 1-form <nidn> (cf 1.20) does not possess this gauge
invariance,

Another quantity is invariant under the gauge transformatiion
In>—ln"> To find out what it is, introduce coordinates Xj in parameter
space and write

V=V dXad (2.15)
where Vj; is the antisymmetric second-rank tensor {E}

Vij =2Im < % nl 3jn > (2.16)

What about the real {(symmetric) part of the tensor? It is easy to show
{E} that this is not gauge-invariant, but that the following quantity is:
.=Re< dn(l-in><nl)dn>
8j -0 ), @217
The interpretation [2] of gi is as a metric tensor in X space,
measuring distance ds between states In> at neighbouring points X and

X+dX in the most natural gauge-invariant way:

2
dsz—gijdXide=l-|< aX (X +dX) > 2.18)

(Both tensors, Vjj and gjj also contribute in important ways [2] to the re-

action of the quantum system on its environment, in the form of the dy-
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namics of the X; when regarded self-consistently not as parameters but
as quantum variables.)
In elementary physics the most familiar gauge invariance is that

of magnetic field

B(r)=V A A(r) (2.19)

under the transformation of the vector potential A to A" where

A ’ =A+V rA(r) (220)

and A is a single-valued scalar function of r. This type of gauge trans-
formation has to be considered when studying the geometric phase for a
charged particle whose slowly-cycled environment (parameterized by
X) includes a magnetic field.

We expect %(C) to depend on A because A occurs in the
Hamiltonian. But all physics must be invariant under (2.20), even when
this transformation is parameter-dependent, i.e. A=A(r:X). The effect
of A is to contribute a phase factor to the wavefunctions <rin(X)> in
position representation. This is so similar to the type of transformation
in (2.14) - a phase factor multiplying the Hilbert-space vector - that it
came as a surprise to find that not only the 2-form V, but also %,(C)

itself change under (2.20), the transformation law for V,, being {E}

V (X)=V , +da< nldAln> 2.21)

Physics is saved from inconsistency, however, by the fact that a
parameter-dependent A also generates an electric field (through the slow
change in X) unless it is allowed to transform the scalar potential as

well. In the resulting complete gauge transformation, the dynamical
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phase is changed in a way that exactly compensates the effect of (2.21).

Details are given in [7].
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Lecture 3

At first the geometric phase appears unobservable because its de-
tection based on (2.5) seems to require superposing the system at =T on
its former self (at /=0), which is impossible. There are however at least
two ways in which #%(C) can be - and has been - measured.

The way that was originally suggested [6] was by interferometry.
A system in the state In> (e.g. a coherent beam of particles) is split at
=0 into two subsystems. One is slowly cycled and the other not. Both
subsystems will acquire dynamical phases, say ¥igyn and %qyn , but the
cycled one will, in addition, gain a geometric phase. If the subsystems

are subsequently recombined, the intensity of their superposition is

- : 2
Iec exp{l('yI dyn + ¥, (C)) +expli 72dyn]

ool
=4cos (3100 = Hggn + YaON) 3.1)

Therefore %(C) can be detected as a shift of interference fringes - as in
the Aharonov-Bohm experiments [5].

One can say that the interferometric experiments involve the same
state and two Hamiltonians (one for each subsystemn). The second class
of experiments, on the other hand, involves (at least) two states and the
same Hamiltonian. Let the initial state be a superposition of two eigen-
states bm> and [n> of H(D) :

IYO)>=alm>+aln> (3.2)

This is a non-stationary state, which after the cycle has become, in an

obvious notation,



QUANTUM ADIABIATIC ANHOLONOMY 147

IY{T)>=a,lm> exp[i{‘ymdyn + YOl +

+an>explily o0 + 7,(00 (3.3)

Now measure the expectation value of some operator A that does not

commute with H; we find {E}

< YOIAIFT)>=|af < nlAin>+|a," < ml Alm >+

+2Re an": a, < nlAlm > e:xp[i['}’ndyn ~ Vmdyn + 7 (O~ 7,(O1
(3.4)

The interference term reveals the difference of the phase shifts experi-
ence by the two constituent states, and of course this includes the differ-
ence of their geometric phases.

Many of the experiments that have been carried out {3] involve
the turning of spinning particles. 1 will now work out the underlying
theory, which is useful in several other applications as well. Consider a
particle with spin ! (integer or half-integer), described by the vector of
three (2 [+1)X(2 /+1)dimensijonal angular-momentum matrices ¢ satis-

fying the familiar commutation rule
oAac=ic (3.5)

Let H at each instant be rotationally symmetric about some direction de-
scribed by a vector in the parameter space R=(X,Y,Z) i.e.

H(t)= F{R(t)- o} (3.6)

An example is a particle with magnetic moment 4 in a magnetic field
UR, for which F is linear and R=uB.
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To find the phase 2-form V,(R) (here regarded as a vector in R
space), we use the sum-over-states (2.13), replacing d by V. The states
In> are (2/+1)-component spinors labelled by the component of angular
momentum along R (n runs from - { to +/} and the eigenvalues are
F(nR) where R=IRI. In (2.13) the dependence on F cancels and we
obtain {E}.

) 1 ! <nlolm>a<mlolns>
Vn(R)=_2'Im hy 2
et (= m) 6.7)

Now, the matrix elements are zero unless m=n or m=nx1 [(E} and
the contribution m=n is excluded by the A. Therefore we can take
(n-m)2=1 out of the sum, eliminate the sum-over states and use (3.5) to
get

VR)=-Im<nonoln>="tcnioln>
R R

= aR/R’ (3.8)
where the last equality follows from the fact that In> is an eigenstate of
the component of ¢ along R , in which the perpendicular components
have zero expectation value.

The 2-form is therefore the field of a monopole of strength #,
situated at R=0. The geometric phase is minus the flux through C of

this monopole, that is

YO =—n XQ (3.9)

The simplest case is spin 1/2, for which ¢ are the three Pauli
matrices. This describes (for example) neutrons, whose geometric
phase was measured in an ingenious experiment by Bitter and Dubbers
[8]. They sent a beam of neutrons along the x direction in a helical

magnetic field
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B = B{cos0 ,sin 8 cos(2mx /L),sin 8sin(2nx /L)}
Osx <) (3.10)

The moving neutrons see a B that changes with time, sweeping out a

cone with solid angle {E}

XC = 2n(l ~ cos 9) (3.11)

Their experiment was of the second type described above, with

the initial state being polarized along z.. Thus

1 .
| ¥ () >= (0) = cos(8/2}+ > + sin(8/2)|- > - (3.12)

where

s o [cos(@/Z)) wd e (sin( 8/2) J

sin(8/2) - cos(8/2) (3.13)

are the eigenstates of H =uo-B along the initial direction of B {E]. At
the end of the cycle,

Y (T ) > =cos(8/2yexp{ — i a}l+ >+ sin(B8/2)exp{i a}l- >
_[cos @ —1isin cxcos @
T \~isin fcos & (3.14)

where

o= yBT/ZH + /2 (3015)
(the first term is the dynamical phase). Bitter and Dubbers measured o,
by again passing the beam through a polarizer. Its expectation value is
{E}
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<o, >=< 'P(T)IG) . ‘f)l Y({T)>
= —%«( cos? 8 + cos2asin® 9) (3.16)

They detected £2 (and verified the formula 3.11) through its effect on o
(3.15), by measuring the phase of the oscillations of the cos2¢ term as
B was varied.

The spin-1/2 case has the wider importance that it describes any
2-state quantum system. The restriction to rotational symumetry, and the
generality embodied in the function F in (3.6), are here unnecessary
because the most general 2-state Hamiltonian is (up to a trivial multiple

of the identity)

HZG'R=%(?Zf—iY X—+£Y) 3.17)
An interesting recent application is to the eleciron microscopy of crystal
dislocations [9] in the 2-beam approximation: a dislocation causes dis-
tortion and disruption of micrograph fringes, which can be interpreted
entirely as an effect of the geometric phase.

Another application is to degeneracies. From the sum-over-states
(2.13) it was clear that degeneracies of the transported state In>are sin-
gularities of Vp(X). We can discover the nature of the singularities by'
realising that close to the parameters X* where they occur the domi-
nant contribution m to (2.13) comes from the state degenerating with n
(we assume the typical situation where there is only one such state).
Therefore we have, ldcally, a 2-state problem, for which a linear change
of parameters brings the non-trivial part of H to the form (3.17).
Application of (3.8) for n=1/2 shows at once that the singularity of V, is
a monopole with strength * 1/2. (The sign depends on whether In>

degenerates with the state above or below, and whether the transforma-
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tion to local parameters R is proper or improper. Originally [6] I left
out the latter condition; it was stated correctly by Simon [10].) Mon-
dragon and I {7] have explored the details of the monopole singularities
in several numerical examples.

An important special case of degeneracy occurs when H is real
(for example when the dynamics at each instant has time-reversal
symmetry). Then in the local model (3.17), ¥=0, and circnits C lie in
the XZ plane with their spanning surfaces like hemispheres, which have
solid angle Q=2x (if C encloses the degeneracy). The geometric phase
¥=n2=+(2n)/2=tn therefore contribiites a sign change (which is of
course the only phase change that a real eigenfunction can have).
Elsewhere [2] I have described some early history associated with this
sign change, in the differential geometry of surfaces and in molecular
physics.

Now I want to discuss some experiments involving photons,
whose interpretation has been controversial. These particles have spin
1, so ¢ are 3x3 matrices; the eigenvalues of 6-R are +R, 0, -R.
Photons have no magnetic moment and so cannot be turned with a
magnetic field. But they have the property of helicity: along their
propagation direction ey they may have states with o-¢; =t1 but not
zero. Therefore the photon spinor can be tumed by tumning its
propagation vector k. Chiao and Wu [11] and Tomita and Chiao [12]
had the clever idea of achieving this with the light in a coiled optical
fibre. k is the forward tangent direction of the fibre, and can be cycled
with a coil whose ends are parallel. The geometric phases for the two
helicities would then be (cf.3.9)

1@ =+ G (3.18)

where (2 is the solid angle swept out by e, on its unit sphere.
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Momentarily choosing the z axis along &, we can write the

helicity states as

1 0
l+1>=|0], I-1>=]|0
0 1 (3.19)

Classically these correspond to beams of circularly polarized light,
whose (generally complex) unit polarization vector e, in the electric
field

E =|E |Ree expl{il kz - wt]) (3.20)

is related to the spinor I'¥> by

ey—iey
| >= 0 (W2
ey tiey, (3.21)

The states l+> and I-> correspond to right and left polarization, with
ey=+iey and -iey.

Tomita and Chiao fed their fibre with light linearly polarized in
direction @, L.e. ex=cosq, ey=sine. This is a superposition of the two

helicity states:

exp{ —i a}
| () >= 0 V2 = expl — i al+ > +expli a)l- >
Cxp{ +i a} (3.22)
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They were careful to coil their fibre without twisting it. Because of
this, there was no stress-induced circular birefringence and the two
helicities propagated at the same speed. In other words, the two
components in (3.22) acquire identical dynamical phases (equal to kL,
where L is the length of the fibre). But their geometric phases are equal

and opposite, leading to emergent light with state

I¥Y(L)>
= exp{i kL }(exp{ — i(a + Q}I+ > + expli(a + Q}->) (3 23

This is again linearly polarized, but along o#£2 rather than o

So the effect of the geometric phase is to rotate the direction of
linear polarization by £2. In other words, the coiling induces 'geometric
optical activity' or 'geometric circular birefringence’. Experiment {12]
verifies the effect very accurately. Recalling now the geometry of
lecture 1, we can repﬂrase the description in yet another way: quanturn
anholonomy of photon eigenstates is equivalent to parallel transport of
linear polarization along the fibre.

This raises the question: is the effect quantum or classical?

Several authors have [13,14] argued that it is classical. Chiao and Wu

"would rather think of these effects as topological
features of classical Maxwell theory which originate
at the quantum level, but survive the correspondence
principle limit (A—0) into the classical level".

Further questions now arise; where in Maxwell's theory is the
anholonomy? Why is it so tricky to understand the effect classically, yet
so straightforward quantum-mechanically? 1have answered the first
question [15] by deriving the parallel transport of linear polarization
from Maxwell's equations for a fibre (the result cannot be justified by

appeal to the known parallel transport along curved rays because these
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experiments involve monomode fibres, for which geometrical optics is
not a valid approximation).

The second question is a pseudo-problem, and so in fact is the
whole discussion of whether the fibre effect is classical or quantum,
because for the optical processes considered here the quantum and
classical descriptions are the same! This is the view of Feynman [16]

"The photon equation is just the same as Maxwell's
equations....”

To appreciate the intuition underlying this assertion, consider Maxwell's

equations in a fibre:

D=VAH B=-VAE;
B =y0H; D =g(r)E

(3.24)
Here the dielectric permittivity function £} describes the glass
refractive index which confines the light inside the fibre. These
equations have the form
d (fields) = {matrix linear in V) x (fields) (3.25)
Maultiplying by ik gives
i%d [fields) = (matrix linear in p = ~i% V) x (fields) (3.26)

and makes Maxwell's classical eqﬁations look like Schrédinger's
quantum equation.

To make this interpretation legitimate, we have to ensure that the
operator on the right of (3.26) is Hermitian, Several authors [17-20]

have carried out this programme, but their results are useless here
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because they are restricted to propagation in free space, for which the
permittivity is constant so there can be no guiding of the light. In
discussion with A.Pines I have however found the following exact (and
essentially unique) Schrodinger implementation of the fibre equations
(3.24) (which also allows the magnetic permeability p, to be reptaced
by a function u(r).

Define the six-component spinor

M
¥ (rt)>= "'J
(rt)> [M— (3.27

where

M, =% +i/?H

{3.28)
In termns of the refractive index
. 12
e(F) u(r)
n(r)= e
L) (3.29)
we define the modified momentum operator
T=nYr)p n~Y2(ry (3.30)
and the 'inhomogeneity vector'
1 &(r)
= V1
Cmm og[ wr )) (3.31)

It can now be shown {E] that |'¥> obeys a time-dependent Schrodinger

equation with Hamiltonian

H= -0 lh‘gc)

—itt -0 -MH-o (3.32)
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where o is the following vector of spin-1 matrices:

0001Y0 01i1)({0-i0
c={00-i|,)0 OO0OLli 00
0i0y\-i00/)\ 000 (3.33)

H is manifestly Hermitian.

To apply this 'Schrédinger lookalike' formalism to the fibre
experiments, we replace | ¥(r,t)> by a wavepacket travelling with the
speed of light in the fibre. This allows the replacement

cll = chkin= ha)ek(t) (3.34)
where @ is the frequency of the light and ex(z) the fibre direction at the
place reached by the packet at the time ¢, Then we reject the off-
diagonal terms in (3.32), on the grounds that the inhomogeneity vector
& in (3.31) is perpendicular to that helicity component ¢ which in the
adiabatic (guiding) approximation is along the fibre. Now M4 and M.
are uncoupled in {%¥>, giving the two separate Schrédinger equations

150, My(5) = £ hiw e (1) - & My(D) (335)

This describes ‘photons’ (light particles in the sense Newton
meant) with energy E=%@. The eigenstates with Mz correspond (E} to
light with the two hands of circular polarization. Each of (3.35) also
has an eigenstate with E=-fiw. These ‘antiphotons’ are not new particles
but redundant descriptions of the backward-travelling particles with
positive energy and k reversed (the redundancy can be traced to the fact
that the physical fields are real - ¢f, 3.20).
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With the two equations (3.35) we have distilled from Maxwell's
equations a description of light in a fibre as a stream of spin-1 particles
driven by a time-dependent Hamiltonian of the form (3.6). The
anholonomy (3.18) follows at once, justifying the argument of Chaio
and Wu.

Optical anholonomy of a different sort was discovered long ago
by Pancharatnam [21] in strikingly original work whose significance
went unappreciated until recently [22,23]. Here I have space only for a
brief description. Instead of cyclically changing the direction k of light
in a fixed state of polarization, Pancharatnam was concerned with
cyclic changes in the polarization of light travelling in a fixed direction.

Such light can be represented as a 2-component spinor, whose
state of polarization is an eigenstate of (3.17) determined by the
direction R/R, which is a point on the Poincaré sphere. A polarization
cycle is then a loop C on this sphere, Pancharatnam showed that there is
an associated geometric phase X(C)/2, where (2 is the solid angle
subtended by C at the centre of the sphere, and thereby anticipated our
result (3.9) for n=1/2.

I have given elsewhere [23] the 'reconciliation’ of the
Pancharatnam /2 (on the Poincaré sphere) and the Chiao-Wu-Tomita
£ {on the sphere of directions ex ). It is of course possible to combine
polarization and direction cycles; Bhandari [24] describes how to

calculate the resulting geometric phases.
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Lecture 4
Suppose the cycled Hamiltonian has a classical limit,
corresponding to a system with N freedoms. Then insiead of being an

operator, H is a function

H=H(x:X () (4.1)

where

x=(q.p)=(qy e Gys Py Py) @
is position in the 2N-dimensional phase space. It is natural to expect the
quantum phase anholonomy ¥»(C), and the underlying 2-form Vn(X),
to be mirrored by anholonomy in the classical system. Mystery siill
shrouds the nature of that anholonomy in the general case, but Hannay
[25, see also 26] discovered what it is in the important special case of
systems whose motion at each fixed X is multiply periodic.

Hannay reasoned as follows. A quantum eigenstate for fixed X is

like an oscillator:

|y >=ln>exp{—icwr}, where @ = E /i (4.3)

We have seen that it exhibits anholonomy when X is cycled. Now there
are of course oscillators in classical mechanics too, so we should
likewise expect them to possess anholonomy. Instead of 1¥> we will
have the oscillator coordinate, and instead of In> we will have the
oscillator amplitude. The phase will now represent an angle €. This
may be literally an angle in space - as with a wheel - or, more
commonly, an abstract angle variable [27] chosen to make the motion
uniform in phase space - as with a swinging pendulum. In an
adiabatically cycled system, the anholonomy should show up as a shift in
the total change of €:
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T
6() — 80) = Jdr w(X (£)) + A8(O
0 , 4.4)

The first term is the dynamical angle change, which is the obvious
generalization of w7 for changing @. The second term is the geometric
angle shift, now called Hannay's angle. Of course for multiply-periodic
motion there is more than one angle, the maximum (fully integrable
motion) being N; we shall denote the j'th angle by A6,

By geometric arguments, Hannay found a formula [25] for A 6;
which has spawned a considerable amount of new classical phase-space
geometry [28-30). I reformulated Hannay's derivation, and showed [26]
how, in the semiclassical limit, A 8 j isrelated to the quantum phase.
Here I will not repeat those arguments,but will instead outline 2 new,
general approach to the semiclassical limit of the 2-form, developed last
year after conversations with M.Wilkinson. As well as reproducing
known results this gives a hint of what might happen in the
nonintegrable case, where the motion is chaotic rather than periodic,
and no angle variables exist.

We start with the following formula (intermediate between 1.21
and 1.22):

Vn(X)=Imd/\< nidn > (45)

LS find dln> we differentiate the eigenequation for A (X) :

(dEn—dH)|n>+(En—H)ldﬂ>=0 (46)

where

dH=HX +dX)-HX) 4.7
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Thus

ldn>= lim 1

fm oy (SE,—dH)in>

(4.8)
where £ is necessary to provide a temporary resolution of the essential
ambiguity in <sldn>. Substituting into (4.5), and introducing an

integral representation for the first operator, we obtain {E}

.1 i3
V= lim -=Re [detexpl - a/i}da< nl[dH),~dE,JIln>
A 0 3 n @.9)
in which (dH); denotes the Heisenberg-evolved operator, namely
(dH)rsexp{th/ﬁ}dHexp{—th/'h} (4.10)

The purpose of these dubious formal manipulations was to get V
in terms of an expectation value. Now we can use the correspondence
principle: the classical limit of the expectation <nl A In> of any
observable A is the average of the corresponding classical phase-space
function A(x)over the manifold corresponding [31-33] to the state In> .
Because In> is a stationary state, the manifold must be invariant under
the dynamics. For an integrable system, it is a phase-space torus with
given quantized values of the actions I=(/;,....f5y). For an ergodic
system, the manifold may be - at least in some averaged sense - the
whole energy surface with the energy Ep=H(x) of the state. It might
also happen that the manifold is a single closed orbit. Henceforth we

denote such classical averages, which replace <nlAln> , by

< A(X)>=Jda Alx(a) (4.11)
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where o=(c7,0...) Is a set of coordinates on the manifold with da an
invariant measure; the choice of o will be discussed later.

We also need the classical counterpart of the operator (4.10). this
must incorporate the X-dependence of the classical manifolds. Let
x(t.a; X} (fig.4.1) be the phase point at time ¢ on the orbit which starts
at ¢=0 from the point x with coordinates o on the manifold at
parameters X. Then corresponding to (4.10) we have (cf 4.7)

(dH) = H(x(r @ X)X +dX) - H(x(La3 X 1 X) )0

The quantity dE, in (4.9) corresponds to the energy difference d&
between manifolds at X and X+dX. This is the same for any pair of

points, one on each manifold, and we choose points with the same & and
L)
t. Thus

dE = H(x(t,o; X +dX ;X +dX)-H(x(t, X );X) (4.13)

Subtracting, we obtain

(dH)I—dE=——‘?~}de=jtvdq£—cjr-dpr

ox (4.14)

where

dx,=x(t,0; X +dX) - x(r, X) (4.15)

Now, the operator d in (4.9) commutes with the average (4.11),

so we can allow it to act on (4.14):

161
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dA[(dH)t—-dt’,']-':clp'r/\-dqr—dq}/\AdpI
=dp, n-dgq,+dq, A-dp,

. d
__d"t_dpr’\'dqf

(4.16)
The classical limit of the 2-form now becomes
Vo limLRes :f:dtexp[ - a/h)dp,a-dg, >
=-W(X)/h (4.17)
where the classical 2-form W(X) is easily found to be
W(X)=<dpna-dg> (4.18)

The wedge A acts between the d's in X space, and the - acts between the
vectors p and 4. There is no longer any time-dependence: dp and dg
refer to displacements linking points labelled o at X and X+dX, that is
x(0,a,; X+dX) and x(0,c;X) (fig. 4.1).
The result (4.18) has two important invariance properties. First

{E}, W is invariant under canonical transformations of the phase-space
variables x, provided the transformation does not involve the
parameters X. Second {E, not easy} W is invariant under arbitrary X-
dependent shifts of the manifold coordinates ¢; that is, under the
change to coordinates

a'j =a;+t Fj(X ) (4.19)
This latter invariance is the classical analogue of the quantum gauge

invariance (2.14),
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Because of the simple appearance of (4.18), and these two
invariances, it seems that the result we have found is surely the correct
classical limit of the phase 2-form. But appearances can deceive, and in
fact (4.18) is a subtle and slippery formula whose meaning is proving
hard to extract. )

Consider first the manifold corresponding 1o in> . We do not
know what this is in the general case. The correspondence principle,
combined with the quantum adiabatic theorem, strongly suggests that the
manifold is labelled by the (quantized) value of some classical adiabatic
invariant, which is conserved as X varies slowly. However, no such
invariant is known for a general system, whose motion is neither
integrable nor ergodic. For ergodic (e.g. completely chaotic) systems
there is an adiabatic invariant, namely [34] the phase space volume
within the energy surface H(x)=E. When quantized, this invariant yields
the Weyl rule [31] for the energy levels, which gives quite a good
semiclassical description of the average behaviour of the spectrum, But
the difficulty in an ergodic system is that there seems no sensible choice
of coordinates ¢ on the energy surface; this is necessary in order to be
able to associate phase points for different X and so give meaning to dp
and dg. |

No problems arise for integrable systems - the case considered by
Hannay, where motion is multiply periodic. Corresponding to ln> isa
phase-space torus, labelled by the N action variables I, which are not
only invariant under the motion for fixed X but adiabatically conserved
when X changes slowly. And the natural coordinates &, labelling each
torus with an invariant measure, are the N anguiar variables

g= (91...9 N) conjugate to I. Therefore the classical 2-form W(X) is

given unambiguously for this case.
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Using semiclassical analysis that I will not repeat here, it is
possible to show [26] that the j'th Hannay angle (cf.4.4) corresponding
to a circuit C is the following flux through C:

46(0) = - Z{[ WX )
J (4.20)
We can express this very simply in terms of the quantum phase by
noting (4.17) and the fact that for integrable systems states are labelled
by N quantum numbers n=(nj...ay), one corresponding to each action

[j , which is quantized in units of 2. The result is

-
AGJ.(C) = "yn(C)
J (4.21)

After all this abstraction, it is healthy to do a concrete calculation.
I will illustrate the inner workings of (4.18) by evaluating W (and A &)
for a classical spin. This application was mentioned briefly in Hannay's
paper [25] and worked out in detail later [35]. Consider an angular
momentum vector § whose dynamics is determined by an energy
function E(S) through the equation of motion

S:VSE(S)AS 4.22)

This conserves the length §=IS!, so § moves on the surface of a sphere.

To make contact with our earlier analysis of quantum spins, we
choose E as a function of SR , where R is a given vector whose
components (X,Y,Z) are the parameters, soon to be cycled. For fixed
R the component of S along R is conserved {E}. Therefore the

motion is precession about R ,and § moves uniformly round a circle
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(fig.4.2) on its sphere. This motion can be described by the evolution of
an angle 9.

Now let R be slowly cycled. At the end of the cycle C, S is back
on its original circle, at a position shifted by a Hannay angle A . These
assertions follow from the fact that (4.22) describes a Hamiltonian
system with one freedom, whose phase space is the § sphere. To see

this, choose a fixed direction z in § space and canonical variables

p=3S, q=tan_1{Sy/Sx}
= azimuth angle of polar coordinates with axis z (4,23)

Thus dg dp is the area element on the S sphere. As Hamiltonian choose

the energy in g,p variables, i.e.
. 2 2 .
H(gq,p)= E(-\/ S~ p2 cos g, S - p?‘ sing, p) (4.24)

Then Hamilton's equations reproduce the dynamics (4.22) {E}.
Moreover in our case where E is a function of S-R(¢) , the adiabatically

conserved action variable is {E}
I =80 r() (4.25)

where r is the unit vector R/R. I confines S to a 1-torus on its
sphere; this is just the circle in fig.4.2, and conjugate to [ is the angle
8.

It is worth remarking that the anholonomy A € involves a
hierarchy of three levels of rotation: the spin (axis §), the precession
(of 8 round the axis R), and the turn (of R around C).
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Now we calculate W(R) from (4.18). We need

dpadq=dS, ad(an ' {5,/5,})
dS, A (S5;dS, - §,dS,)

P (4.26)

Introduce a unit triad r,u,v on the R sphere. With these local axes
(fig.4.3)

S=Ir+’\/82—12c059u+'\/52—125i119v (4.27)

2 2
+'Sy

The aim now is to express <dp A dg> in terms of dz and dv (and
ultimately in terms of R through r = u Av).

1t helps to choose instantaneous axes x.y,z along u,v,r, i.e.

u=(010,05 v=0,1.0; r=(0010 (4.28)
Then

du=(0,du,,du,)
dv =(dv,,0,dv,)
dF':(—duz,—de,O) (4.29)

From (4.27) with @ fixed, we find

dS, =~ Idu,++ S - Psin6dv,
dS,=-ldv,+v 8 - Pesbdu,

s, = s?- Iz(cos Odu,+sinfdv,) (4.30)

Substitution into (4.26) and averaging over @ leads to {E}
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<dpAdq>=2—1n£md6dpAdq=—-I du, ndv, 4.31)

Reinstating general axes gives the result:

W=<dpadg>==-1dunan-dv (4.32)

Apart from the factor -/, this is the same as the 2-form (1.13)
that occurred in our earlier study of parallel transport. Therefore we
can use (1.15} to give the monopole formula, which (with d replaced by
Ve ) is

W=-1 R/R (4.33)
For quantized actions /=n# this immediately confirms the correctness of
the relation (4.17), because it reproduces the quantum spin 2-form (3.8)
(here 4.17 is exact, rather than being a semiclassical approximation).

From (4.20), Hannay's angle is the flux through C of a unit .

moncpole, namely

A6 = O (4.34)
This dynamicai angle anholonomy is exactly the same as the geometric
anholonomy in the parallel transport of a vector (lecture 1). We
encountered a similar identity in the optical fibre experiment (lecture 3)
in the duality between photon spin phase anholonomy and the parallel
transport of linear polarization. A purely mechanical illustration of the
duality is the Foucault pendulum.

Imagine first that the pendulurn is rotating conically, with ang;ﬂar
velocity @ (‘circular polarization'), rather than swinging to and fro
(linear polarization'} as it usually does. Our general classical spin
analysis can be applied, with the Iocal upward vertical -g playing the

role of the parameter R. As the earth turns, the vertical turns with it.
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After a day (+=T) R has cycled, and the angle 8 of the conical pendulum

has increased by the solid angle

£ =72x (1 - sin(latitude)) (4.35)
as well as the dynamical wT. This anholonomy is the same for both
senses + @ of conical rotation.

Now let the pendulum swing linearly, and regard this as the
superposition of two opposite conical rotations. If the bob swings in the

xy (horizontal) plane, and is initially x polarized, we have

at the start: x +1y =exp(i wr) + exp( — i we),
fe.(x,y)=2cos ar (1,0

at the end: x +iy = exp(i 2)2cos wt,
ie (x,y)=2cos wr (cos £2,5in )

(4.36)

The effect of cycling is therefore to rotate the direction of swing by £2.
In other words, the direction is parallel-transported. From the rotating

earth this appears as a slow rotation, at a rate

=(2n - DT = w

earth sin(latitude)

Croucauit (4.37)
(in Bristol this is 11.7° an hour). A clever mechanical analogue of the
Foucault pendulum, whose anholonomy can be seen without waiting a
day, was developed by Kugler and Shtrikman [36].

It seems that we have come full circle in these lectures. We
started with parallel transport on a sphere, and now once again we
encounter parallel transport on a sphere. But as with our other cycles,
the end is subtly different from the beginning. In lecture 1, parallel
transport was introduced as a purely mathematical construction. Now
we find that what was mathematically natural is enforced physically by

the laws of Nature (in this case Newton's).
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X(td,x*'d X(O,d, X+dX)

X+dX
manifold

X (tq;X )

Fig. 4.1
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Lecture 5

Here I will describe three generalizations of quantum adiabatic
anholonomy. The first, from Wilczek and Zee [37], allows the
transported states to be degenerate. Consider a group of N
(orthonormal) states [I{x)>, 12(x)> ... IN{X)} >which are degenerate
forall X on C, with energy E(X). Such a situation usually arises when
H(X) has some symmetry. Because of the degeneracy, adiabatically
evolving states I'F{#)> will not cling to individual members In> of the
group. All that can be said is that the |'¥ > will remain a superposition
of members of the group, (i.e. there will be no transitions to states

outside the group) so that the adiabatic ansatz generalizing (2.2), is

; N
L ¥ () >= gxp{— if[dt E(X (e)/n } lzan(:)l n(X (1) > .

To find the evolution of the coefficients axft), it is necessary to
use the Schrédinger equation. The result is that the final superposition

is the result of a unitary matrix acting on the initial superposition:

N
a Ty= X UppfQ a,(0)
m=l

(5.2)
where (E}

Ul Q = Pexp{iPA ,,} (5.3)
in which P denotes path-ordering and Au(=A"mn) is the Hermitian
matrix 1-form

Am=i< nldm > (5.4)

This generalises our previous case, where N=1 and U is a unit

complex number whose phase is %, (C). Even when N>1 it can
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happen, exceptionally, that Ap, is diagonal; then the constituent states
remain uncoupled and so acquire separate geometric phases ¥,(C) just
as though they were non-degenerate. This occurs in the optical fibre
experiment (lecture 3), because the change int one helicity state, induced
by change in the fibre direction, has no overlap with the other [E}.

Usually, though, Aym(X) is not diagonal, and the A;zp at
different X do not commute, a ‘nonAbelian' property that makes it
impossible to write U as the flux of anything simple. But it causes the
final coefficients a, to have different amplitudes as well as phases. In
other words, the populations of degenerate levels can change, without
any transitions involving the absorption or emission of energy. Segert
[38] has proposed an interesting spectroscopic experiment, involving
cycling the direction of parallel electric and magnetic fields whose
magnitudes are tuned so as to make an atomic level degenerate (by
cancellation of Stark and Zeeman shifts).

The second generalization, from Aharonov and Anandan [39],
provides a setting in which the geometric phase can appear in evolutions
that are not adiabatic. Let (T} be chosen to make the state lyqz) >

return exactly, apart from a phase, i.e.

[ yO) w(T) > =1 (5.5)
Such 'cyclic evolution’ can be made to occur in many ways [39], even
with an A that does not change at all.

It will usually be the case that ly{r)> is not an eigenstate of H(z).
Nevertheless, it is possible to define the dynamical phase as the integral
of the instantaneous expectation value of A . This can be factored out by
defining (cf 2.2)

!
Ly(t)>= exp{— ifdt < we YHUE i) > /h'}[ OE
0 (5.6)
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As in our earlier examples, the anholonomy of [¢> is determined by the
Schradinger equation, which again gives exactly (E} the paraliel-

transport law {cf 2.4)
<glp>=0 (5.7)

The anholonomy - that is, the geometric phase - is conveniently
calculated in terms of any base state | (t)> that coincides with ly(s)> up
to phase but is singlevalued round C. Thus > plays the same role as
the singlevalued eigenstate In> in the adiabatic theory, and leads to the

same result as before (cf. 1.20) namely

T

| y(T) > Eexp{-ijd:’ < WUNHE W Wty > 1k +i y(C)}I w(0) >
0

(5.8)

where

AOQ =-Imf gid g > (5.9)

Note that in this formulation there is no parameter space. The
circuit C is in the Hilbert space of states without phase. Sometimes this
is called ray space, or density-matrix space, or projective Hilbert space.
It differs from the full Hilbert space of all states |y by regarding as
identical any states differing by complex scalar multipliers.

Aharonov and Anandan's theory is both richer and poorer than
the adiabatic theory. It is richer in the sense that the adiabatic theory is
a special case, where the base states |> are the n'th eigenstates of a
family of Hamiltonians labelled by parameters X. Thus parameter space
is a submanifold of projective Hilbert space. However, in applications
(e.g. Born-Oppenheimer theory) parameters occur naturally, and can

have a richer geometry (cf. the 2-form and its singularities at
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degeneracies, and the geodesics generated by the metric 2.17) than the
big Hilbert space - just as geometry on a curved surface can be richer
than the geometry of the Euclidian 3-space in which it lives, Moreover,
in the adiabatic framework, where the Hamiltonian is cycled exactly and
states follow as best they can, there is a hierarchy of corrections to the
geometric phase, of higher order in the adiabaticity parameter, which
reveal [1] additionai rich anholonomy (of Hamiltonians obtained by
successive transformations to moving frames).

The third generalization, from Garrison and Wright [40],
removes the restriction to unitary evolution. Consider a vector ¥ (¢)>
driven by a first order differential equation with a general time-
dependent cperator. For convenience we can still write this in
'Schrédinger’ form, but H(X) is now not a Hamiltonian but an arbitrary
and usually non-Hermitian operator, with eigenvalues E,(X), possibly
complex, corresponding to which are left eigenvectors <@ (X)l as well
as right eigenvectors In(X)> , chosen singlevalued on and within the
circuit Cin X space.

The calculation of adiabatic anholonomy is almost the same as
before. We make the adiabatic ansatz (cf 2.2 and 1.18).

[P >= exp{w i[;dt ELX(D)E+ '}’(f)}l n(X () > (5.10)

with the expectation that now 9z , and its value at t=T which is the
anholonomy, will be complex. A simple argument {E} gives
< Aldn > _
Q= § < f@ln> ) (5.11)
To conclude, here is an interesting application of the
nonHermitian theory. In the semiclassical asymptotics of the time-

independent Schridinger equation, there occur phase shifts of the
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WKB-Maslov type [31], appearing as multiples of @2 in quantization
conditions and reflection amplitudes. People have often wondered
whether these phases can be interpreted as anholonomy. Long ago,
Voros gave one such interpretation in his thesis [41], and Littlejohn [42]
has recently published a similar argument. Here I give a different
interpretation, achieved after a conversation with A.Shapere.

A quantum particle with mass m and energy W, moving along a

line in a potential V(x}, satisfies

2
P
& ue)+ 2806y =0
A (5.12)
invelving the classical momentum
Py =2pW -V (2) (5.13)

We write z rather than x because we want to continue the wavefunction
u into the complex plane.
Define the two-component 'spinor’ state vector

I'f’(z):»z( uz) )

hu’(z) (5.14)

Then (5.12) is equivalent to the ‘Schrédinger' evolution
i

, 0
1h'l'I’(z)>-[_iP2(z) 0

JI Y{z)>
(5.15)

The Hamiltonian' in this equation is not Hermitian, even on the real axis
z=x , although its eigenvalues

Ey(z)=% P(z) (5.16)
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are real in classically allowed regions of the real axis. The eigenstates
I£(z)>, and their duals <¥(z)l (corresponding to forward (-) and
backward (+) travelling WKB waves in allowed regions), are {E}

1 ~ -
Ii(z)>=[_—‘_ip(z)} <EI=(+iP(z).]) 5.17)

Degeneracies (E+=E.) correspond to classical turning points, which
are real or complex zeros of W-V{z) . In the usual case of simple
zeros, these are branch points of P(z) and hence of the spectrum E +(z)

and the eigenvectors.

it is easy {E] to show that

<FHE> | p’ i .
l<£ >-—12P—4(OgP(z))

(5.18)

Thus the anholonomy (5.11) associated with a complex C can be written

as the contour integral
— i U
y(Q—Z(f():d z(log P) ’
=- % X (number of zeros of Pz( z) inside C) (5.19)

(If the turning points are not simple, they must be counted with their
multiplicity.) Note that ¥ is real, that is the anholonomy takes the form
of a phase shift, in spite of H being nonHermitian.

The two-state formalism based on (5.15) bears a superficial
resemblance to the spin-1/2 problem considered in Lecture 3, but its
nonunitarity is responsible for two important differences. First, the
geometﬁc phase is the same for the two states [+> and |-> , in contrast to
spin where the n=+1/2 have opposite phases (cf 3.9). Second, the phase
associated with a planar circuit of a degeneracy is 1/2 rather than .

This is because degeneracies are branch points for nonHermitian
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operators, and diabolical points ({43], especially the final remarks) for
Hermitian ones.

An immediate application is to oscillators (e.g. harmonic, which
have two real turning points bounding a classically allowed region. For
a circuit of this region enclosing both branch points, the states return,

with phase shifts (dynamical plus geometric)

Single-valuedness of u (or |'¥> requires that this phase be 2nz. Thus we
¥

reproduce the well-known quantization condition

PPdz=(n+1Dh (5.21)
with the half-integer appearing as a consequence of the nonHermitian
geometric phase. In this formulation the '1/2' is the combined effect of
the branch points - as though the oscillator were a composite of two
particles with spin 1/4, i.e. half-Fermions [46].

Another application is to the amplitude for reflection above a
barrier. As is well known [44], this process is classically forbidden, and
the reflection diminishes exponentially as £ — (. This is because there
are no real turning points and we have to take C around the nearest
complex one, at z*, say. After the circuit of this branch point, P has
changed sign (cf 5.16) and 5.17) and so [+> changes into [-> (and vice
versa); physically this means the transformation of an incoming wave

into a reflected wave. We immediately identify the reflection amplitude

Z*
r=-i exp{Zi J'sz/h'}
% (5.22)

where z, is the point on the real axis from which the phase of the
incident and reflected waves is reckoned. This is exponentially small

because the integral in the exponential - the dynamical 'phase’ - is in fact
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not a phase because it has a positive imaginary part. The phase factor -i
is a consequence of nenHerrmitian anholonomy.

Of course these one-dimensional semiclassical turning-point
problems have been solved long ago by other means [44]. Our main
result (5.19) is just a fancy way of dealing with the multivaluedness of
the amplitude factor P-12 in the WKB solutions of (5.12).
Nevertheless, it is pleasant to discover how easily and naturally these
phases appear, without any sign ambiguities, when interpreted as

anholonomy.
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