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Catastrophe theory has been immensely useful in understanding
the connection between waves and rays. Two important exampies are the
passage from physical optics to geometrical optics, and from quantum
to classical mechanics. These are short-wave [limits, invoiving the
asymptotics of vanishing wavelength A.

The limit is nontrivial because A = 0 is a highly nonanalytic
singular point in wave physics. Such nonanalyticities are the rule
rather than the exception when one theory is reduced to another by
making a parameter vanish, and they always point to new physics in the
borderland between the theories. For example, the reduction of viscous
flow (Navier-Stokes equation) to inviscid flow (Euler equation) is
obstructed by the singularity at zero viscosity, and the borderland
physics is turbulence. And critical phenomena are the borderland
physics in the reduction of statistical mechanics to thermodynamics as
the number of particles diverges, because of the nonanalyticity at the
critical point.

In waves, nonanalyticities abound. The interference of two
waves produces
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whose observable intensity
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has an essential singularity of oscillatory exponential type at A = 0,
where I(x) is pathological and takes all values between 0 and 4. Only
after infinitesimal smoothing does one obtain the “classical”
intensity relation 1 + ! = 2, Another nonanalyticity happens when
instead of two rays there are no rays: for example, the reflection
coefficient above a quantum barrier scales as

constant
—, (3)

rzexp[- A

which is an essential singularity of real exponential type.

The two previous nonanalyticities occur together at caustics,
which are the envelopes of families of rays and in the simplest case
separate a two-wave region from a no-wave region. Caustics are
singularities of geomertrical optics and hence singularities of the
short-wave singularity. The correct synthesis of (1) and (3) was
accomplished by Airy (1838); the wave is
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where x is a coordinate increasing into the two-wave region, C, and C,
are constants and Ai is the Airy function {Abramowitz and Stegun,
1964). Asymptotics of Ai away from the caustic regenerates (1) and
(3). Close to the caustic, we get extra information: the prefactor
shows that the intensity on the caustic grows as A"Y3 and the
argument gives the size of the interference fringes as X3 (ie.,
larger than the ) far away).

At this point catastrophe theory enters. It has contributed in
two ways. First, to teach wus to seek singularities that are
structurally stable, that is, unaffected in their essential geometry
by well-defined deformations (here diffeomorphisms). Thus we seek
caustics in the absence of symmetry, describing focusing as it can
pccur in nature, '

Second, it provides a list of structurally stable caustics
(Poston and Stewart, 1978). These are organized by codimension K, that
is, the number of parameters C;, C,, ..., Cx that must be explored in
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order to find them. These caustics are the catastrophes: fold, cusp,
swallowtail, umbilics, etc. {Thom, 1975) [(4) corresponds to the fold,
with K = 1].

Generalizing (4) are a series of diffraction catastrophes
(Berry and Upstill, 1980, Berry, 1981) ¥(C;A). These obey scaling
laws generalizing the A-dependences in (4);

1 (oF
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The A are the Arnold indices (Varchenko, 1976), describing the wave
intensification at caustics: the intensity scales as A2, The o, are
the fringe indices (Berry, 1977, 1986), describing the shgi_nking of
diffraction features in C space near the caustic; these scale as A L.

These ideas have been instrumental in explaining a great
variety of natural phenomena involving caustics (with and without
diffraction), as described (partly) elsewhere in this book. Here is a
partial list. For photons: rainbows, twinkling starlight, bright
shadows of floating objects, disrupted reflections of things,
gravitational lensing, mirages, focusing by irregular water dropiers,
swimming-pool caustics, radio-wave ducting, .. For atoms and
molecules: rainbow scattering, surface scattering. For nuclei: rainbow
scattering. For protons, positrons, electrons: channeling in crystals.
For phonons: whispering gallery modes, oceanic ducting (whale talk),
focusing by crystal anisotropy.

Caustics are the violent births of rays in pairs. But these
births are really transformations from exponentially small rays into
real ones. It is possible to follow the complex rays and determine how
they are born. These births are individual and occur gently at the
moment of extreme evanescence, when the complex ray is maximally
dominated by another ray. This birth phenomenon was discovered by
Stokes (1864) and long regarded as a discontinuity, albeit
exponentially small. In reality, it happens smoothly, in a way
described recently by Berry (1989a, b) in a formula which is the
analogue for the Stokes jump of Airy's smoothing (4) for a caustic.
The jumps occur on surfaces that connect with the caustics in
interesting ways.(Berry and Howls, 1990).
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