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We develop a technique for systematically reducing the exponentially small
(‘superasymptotic’) remainder of an asymptotic expansion truncated near its least
term, for solutions of ordinary differential equations of Schrodinger type where one
transition point dominates. This is achieved by repeatedly applying Borel summation
to a resurgence formula discovered by Dingle, relating the late to the early terms of
the original expansion. The improvements form a nested sequence of asymptotic
series truncated at their least terms. Each such ‘hyperseries’ involves the terms of
the original asymptotic series for the particular function being approximated,
together with terminating integrals that are universal in form, and is half the length
of its predecessor. The hyperasymptotic sequence is therefore finite, and leads to an
ultimate approximation whose error is less than the square of the original
superasymptotic remainder. The Stokes phenomenon is automatically and exactly
incorporated into the scheme. Numerical computations confirm the efficacy of the
technique.

1. Introduction

In an asymptotic series, it is common for the terms Y, to decrease at first but
ultimately increase, so that the series diverges. If A is the (large) asymptotic
parameter (i.e. Y. oc A7") then the smallest error (relative to the first term ¥, = 1)
from the bare series is exp (—AA), where 4 is a positive constant, and is obtained by
truncation at or near the least term (for example, Olver 1974). The order of this least
term is r oc A. Such ‘superasymptotics’, in which exponential accuracy is achieved
by making the number of terms increase with the large parameter (rather than
considering a fixed number of terms as in the asymptotics of Poincaré), has a long
history. Stokes (1864) used it in the accurate approximation of Bessel functions.
Nekhoroshev (1976) made it the basis for estimates of long-time predictability in
nonlinear hamiltonian dynamics. And it is an essential component of detailed studies
(Berry 19894, b, 1990a; Olver 1990a, b; Boyd 1990; Jones 1990) of the Stokes
phenomenon, which is the appearance and disappearance of small exponentials as
certain variables (not A) change.

Here we go beyond superasymptotics, and obtain by repeated resummation a
sequence of asymptotic series, each approximating the leftover from optimal
truncation of its predecessor. We define hyperasymptotics as the systematic study of
these approximations to the small exponential error left by truncation of the main
series. The possibility of such sequential improvement was glimpsed by Stieltjes
(1886), explored in particular cases by Airey (1937) and Miller (1952) (reviewed by
Olver 1974), and clearly envisaged by Dingle (1973, hereinafter called D), Rakovic
& Solov’ev (1989) and Boyd (1990). D developed a systematic method, based on
Borel resummation, for the first stage of hyperasymptotics, in which the terms of the
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first hyperseries for a great variety of functions are expressed as certain standard
integrals called ‘basic terminants’. Boyd (1990) envisages a hyperasymptotics based
on Stieltjes transforms, and studies its first stage for certain Bessel functions.

In exceptional cases, hyperasymptotics is unnecessary because the exponential
leftover can be expressed exactly as a single basic terminant (an example is Erf (2),
|2| large), or as a convergent series of basic terminants (an example is In I'(2), |2| large).
Usually, however, hyperasymptotics is non-trivial in the sense that the resummations
persist in generating asymptotic series which themselves require resummation.

Perhaps the simplest case where this happens is in the approximation of solutions
y(z, A) of the one-dimensional Helmholtz (or Schrodinger) equation,

d2y(z, A)/dz? = X°Z(2) y(z, A), (1)

where z is a complex variable and Z(z) is analytic. This is the situation we study here,
concentrating on the (generic) case of points z where y is dominated, in a sense to be
specified later, by a single transition point (zero of Z(z)). We are able to construct the
hyperasymptotic series explicitly (§3) and study in detail the asymptotics of the
sequence of remainders that it generates (§4). Our hope was that this sequence would
converge to the exact solution when each hyperseries is truncated at its least term,
but this is not the case. It turns out that the successive hyperseries get smaller, and
the process terminates naturally after a number (of order In A) of stages. The error at
this last stage is of order exp {—(1+21In2)AA} ~ exp (—2.38641), where A4 is the
positive constant already introduced; this error is smaller than the square of the
error at the zeroth (superasymptotic) stage. (In principle, arbitrary accuracy could
be obtained by a non-optimal truncation of the hyperseries, but as explained in §3
this procedure would be impractical.)

We achieve this improvement by exploiting a ‘resurgence formula’ (§2), discovered
by D (p. 300) and rediscovered by Rakovic & Solov’ev (1989), for the late terms
Y, (r - 00) in the asymptotic series for each of the two ‘wave’ solutions of (1). This is
an expansion giving each Y, for large r as a series over the Y, for small r, that is the
early terms. At first encounter this appears astonishing but in fact it is inevitable,
because of the following : (i) each of the two wave series is by itself a complete formal
solution of (1); (ii) both series must diverge, to reflect the fact that (unless Z(z) is
constant) there are really two waves in the solution of (1); (iii) therefore the divergent
tail of each series must encode the early terms of the other series; (iv) the terms in
the two series are the same (apart from signs) namely Y,.

In different regions of the z plane (separated by Stokes lines) the asymptotics of
the solutions y(z,A) contain different combinations of the two fundamental wave
solutions. This is the Stokes phenomenon. Our hyperasymptotic formalism
incorporates these changes of form automatically and exactly (§5).

To illustrate the workings of hyperasymptotics we present (§6) a numerical
example. This is the Airy function, in which Z(z) in (1) is linear. The expected
sequential improvement over brute asymptotics (stopping at the first term, ¥, = 1,
error ~ A7') and superasymptotics (error ~ exp (—AA)), down to the ultimate stage
(error ~ exp (—2.38641)) is achieved in all Stokes sectors.

Such extreme numerical precision is not, however, our main reason for carrying
out this study. After all, it is often the case that where a numerical solution of (1) is
required, standard differential equation routines (e.g. Runge-Kutta), or convergent
series, are more accurate or faster than asymptotics (ordinary, super- and hyper-),
even when A is quite large. Our main motive is rather that the hyperasymptotic
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solution of (1) provides a testbed for studying in great detail the structure of a
physical theory as an important parameter (here 1) takes a limiting value. One such

limit, of considerable current interest, is the classical limit of quantum mechanics
(Berry 1990b).

2. Dingle’s resurgence formula

The two lowest-order ‘wave’ solutions of (1) are given by the phase-integral (i.e.
WKB) method (Heading 1962; Froman & Froman 1965) as

y(e) ~ eXP[i/\ f *dczé(g)] / 7(2) (2)

in which z* is an arbitrary reference point. A natural variable will be the difference
between the two exponents, namely

4

F(z) =2 f *d§Z%(§). (3)

z

It is convenient to perform the analysis for the solution which is subdominant (i.e.
exponentially small) when Re F > 0, and write this as

Y(2) = (exp [ —1F]/Zi(2)) Y (F). (4)

A formal asymptotic series for Y, in descending powers of A, can be found by
substitution into (1). We write

M8

YF)= % (—1)Y,(F), where Y,=1 and Y, ocA™. (8)

I

r=0

Then the Y, satisfy the recurrence relation (D, p. 296)
Y, (F) = = Y/(F)+ G(F) Y,(F), (6)
where primes denote derivatives with respect to ¥ and
G(F) = (%) | 7+ (7)

Note that the large parameter A no longer appears explicitly. Its role has been to
define the terms Y, in the series representing Y. ’

An important role is played by the transition points, that is the zeros z; of Z(z). At
the corresponding points Fj, the function G(F) has double poles, whose strengths
depend only on the order of the zero: for an mth order zero, it follows from (3) and
(7) that :

G(F)—>—m(m+4)/4m+2)*(F—F)* as F->F,. (8)

To avoid complicating the analysis, we henceforth consider only the generic case
m = 1; generalization to arbitrary m is straightforward. When iterating (6) to
obtain the Y,, the derivatives magnify the singularities (8), leading as explained by D
(p- 299) to the following simple approximate formula for the late terms:

Y.(F)—> (r—1)1/2n(F—F,) as r- oo, 9)

where F; denotes the transition point F; which is closest to /' in the sense of having
the smallest value of |[F—F)|. For large |F—F| (ensured by large A), the terms
decrease until r & |F'—F| and then increase.
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The resurgence formula which will be central to all our subsequent analysis is a
formally exact representation of Y, with (9) as its leading term. By direct substitution,
it can be confirmed that

T = 53 G £ O (F =B (== 1) (10)
satisfies the recurrence relation (6). The function G(¥) enters only through the
positions F; of its poles. It should be remarked that (6) is formally satisfied by much
more general relations, in which (i) ¥} are any points whatever, (ii) on the right-hand
side ris replaced by r + o with o arbitrary, (iii) 1/(21) can be any constant, and (iv) the
Y, can be any solutions of (6) (rather than those with the same integration constants
as the ¥, on the left-hand side). The particular choice (10) reproduces the limiting
form (9), which corresponds to the term s =0, and also satisfies certain analytic
requirements, as will be explained in §5. The higher terms s > 0 provide a formal
asymptotic expansion for the late Y, in terms of successive early Y.

In what follows we will use the simplified form of (10) obtained by neglecting all
transition points other than the closest, F,, which we will henceforth take as the
origin ¥ = 0 (this is equivalent to choosing z* = 2, in (3)). This gives

1

VAP = 5 (=8 = D= FY (), (11)
As they stand, (10) and (11) are numerically meaningless because the factorials for
s > r—1 are infinite. They can, however, be made meaningful by Borel summation,
and the hope is that these resummed versions will prove to be exact. We can justify
this hope in the case of (11), by showing (Appendix A) that its resummation is
equivalent to the Stieltjes transform relation between Bessel functions that forms the
basis of the rigorous analysis of Boyd (1990).

Thus (11) will be exact (when suitably interpreted) if there is only one transition
point. If more transition points are present, their neglect in (10) amounts to neglect

of small exponentials whose order is
exp{—rIn|(F—F)/F[}, (12)

where F is the distance (3) between the transition points nearest and next nearest to
F (by hypothesis, |F'—F,| > |F|). We will use (11) only for orders r > |F|, so that this
neglected exponential will never be larger than

exp{—|F|In|(F—F,)/F|}. (13)

Now, the smallest small exponentials in hyperasymptotics are of the order of
exp{—(1+2In2)|F|} (§4) so we can expect our analysis to be valid provided (13) is
smaller than these, that is if
|F—F,| > 4e|F| (14)
Equation (11) is Dingle’s formula (D, p. 300). We will adopt his term ‘singulant’
to denote F, the distance to the dominant transition point. Rakovic & Solov’ev
(1989) rediscovered (11), and presented (10) (also without proof) for the case of two
transition points.

3. Hyperasymptotic resummations

We seek accurate approximations to Y(F'), as defined by the formal series (5), when
the distance |F| to the nearest transition point is large (cf. (3) with A large and z fixed).
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Retain the first Ny —1 terms Y, as given by the solution of (6), where N, is the least
term, and replace the remaining terms by (11). Thus (interchanging the » and s labels)

z & (s—r—1)!
— _F r _ s -7 I;
V=St 3 VF) 3 (-0 (15)
No-1
where So= X (—1)Y,. (16)
r=0

The truncated sum S, is the zeroth level of hyperasymptotics, which we have called
superasymptotics.

The next stage is Borel summation of the s sum in (15), that is replacement of the
factorial by its integral representation, followed by interchange of summation and
integration and evaluation of the sum. After an elementary change of variable, we
obtain

Y = Sy+ 3 (1) YK, (17)
_ (= ghr
where K, = SN f déexp (— £)1+£/F. (18)

In §4 we shall see that the second series in (17) also diverges, with a least term at V,,
say. Therefore as before we retain the first N, —1 terms and replace Y in the
remaining terms by the resurgence relation (11), to get

(s—r—1)!

Y = SO+SI+EO Y(—F) SEVI(——I) o K, (19)
N,;—1 ‘
where . S, = 3 (-1)VK,,. (20)
r=0

The truncated sum S, gives the first level of hyperasymptotics. This was studied in
great detail by D (chapters XXI and XXIV), who called the integrals K,,
‘terminants’, by Boyd (1990) (for Bessel functions) and by Olver (1990b) (for
confluent hypergeometric functions).

Again we can apply Borel summation to the s sum in (19), and obtain

Y =8y+8,+ 5 (—1)Y,K,,, (21)
r=0
where

(_1)N0+N1 . gNo_Nl_l N] r—1
K= (i |, 6o (6 e [ e (&) 02)

Now the third sum in (21) diverges, with a least term at N,, say. Therefore, we again
retain the first N,—1 terms and replace the Y, in the tail by the resurgence relation
(11); the truncated sum constitutes the second level of hyperasymptotics.

Now the pattern is clear: truncation, resurgence and Borel summation can be
repeated, leading to the hyperasymptotic sequence

Y =8,+8,+8,+..., (23)
Proc. R. Soc. Lond. A (1990)
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Ny
where S,= 2 (-1)YK,,. (24)
r=0
The Y, are the terms in the original asymptotic series. They are specific to the given
problem as embodied in the function Z(z) in (1), which appears in the recursion (6)
through G(F) as defined in (7). The K, constitute the hyperasymptotic generalization
of Dingle’s terminants K,,. They are universal functions — that is, independent of the
detailed form of Z(z) — given by the n-fold multiple integrals

KTO= 15
Krnz Krn(F,NO, "”Nn—l)
(25)
=L [T agexp—gy N ey =
(zn)nFNo‘Ti=l 0 @ 1Y % (1 +gl/gl_1) o = L 4i¥y =171).

For these integrals to converge, N, < N,_,, so that successive hyperseries contain
fewer terms and the process of hyperasymptotics must eventually stop, at the stage
where N, = 1.

It is clear from equations (23) and (24) that the series of K,, provide a sort of
universal renormalization of the Y,, enabling the information contained in them to be
decoded, via resurgence, to yield much higher precision in the function being
approximated. This information is however finite, because, since successive
hyperseries get smaller, only the first N, terms Y, will participate in the
hyperasymptotics. Therefore we can expect the ultimate error of the scheme, when

it stops, to be finite and not zero.

"~ Of course, the actual numerical extraction of the information contained in the first
N, terms ¥, requires knowledge of the K,, to sufficient accuracy. In a thoroughgoing
asymptotics, the multiple integrals (25) would themselves be expanded asymp-
totically (and where necessary hyperasymptotically) for large ¥, and the form of
the expansions would depend on r and the W, (cf. the formulae for K,, in D, p. 415ff).
We do not carry out this programme, but simply assume that the K,, are known; in
our numerical example (§6) we reduce the required K,, to certain special functions
which can be computed ‘exactly’ (see Appendix B).

4. Optimal truncations; estimates of ultimate accuracy

In choosing Ny, N;, ..., the guiding principle is that the successive series S, S, ...,
are truncated near their least terms. To implement this principle for S, we use the
estimate (9) for Y,, replacing (r—1)! by Stirling’s formula, and thus obtain the
well-known result

N, = Int|F]. (26)

For the higher sums we need estimates of the K,,. These we obtain by replacing
the £; in the slow varying denominators in (25) by their values at the maxima of the
rest of the integrands, namely

B =N_,—N—1 (V,=n. - (27)

This uncouples the integrals and gives

K o~ oqve & 28
™ e DT e (28)
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In 8, the terms are

(r—1)! &%
Fr FNO—T

(r—D(F|—r—1)!

|}71'K71| oC |F||F’ )

~
~

(29)

whose least term is obvious from symmetry and gives (cf. Rakovic & Solov’ev 1989 ;

Boyd 1990)
N, = Int (F)). (30)

Repetition of this procedure gives
N, = Int (|F|/2"). (31)
Thus each hyperseries §,, is half the length of its predecessor. The natural end of

hyperasymptotics comes when the S, has just one term, which happens after n
stages, given by N, =1 as

Mmax = = Int logzIFI (32)

To study the magnitudes of the terms we use (28) with the factorials replaced by
Stirling’s approximation and the denominators replaced by 2 (this follows from (27)
and (31) for large F'). The last term of the nth hyperseries is thus obtained, after some
reduction, as

+...N, 2n(n+7)/4

—1
(—1)NnYNn,1KNn,mz( (2)n)("“)/23"|F| exp{—|F|[1+2(1—2"")In2]}. (33)

The first term of the (n+ 1)st hyperseries, namely K, ,, involves exactly the same
factors, with the additional denominator
gn+1 N —1

Pyt (34)

This shows that not only do the terms decrease within each individual hyperseries
but that each new hyperseries begins with a term approximately half the size of the
last term in its predecessor. (There is one exception to this rule: when n = 1 and F
is not real, the factor is not § but 1/[1+exp (—iargF)] (cf. Boyd 1990).)

The ultimate accuracy of the hyperasymptotic scheme is expected to be of the
same order of magnitude as the single term K,, of the last hyperseries. We
estimate this by substituting »,,, from (32) into (33) and dividing by 2:

O X / % |[F|[oB P ilo8, GVem) exp { — | F|(1+2 In 2)}. (35)
This confirms that the error is indeed finite, as expected on the basis of the finite
number of participating Y., and of the order exp(—2.386|F|) asserted in the
Introduction (with 4A now identified as |F).

Now we show that it is possible to devise hyperasymptotic schemes of arbitrary
accuracy (within the one-transition-point approximation), by abandoning the
optimality requirement that the terms must always decrease. For this analysis we
need to recast the scheme (23)—(35) so as to yield error bounds. Elementary formal
manipulations (cf. Appendix A) give the remainder after n complete resummations,
namely

RF:N,..N)=Y—3 8, (36)
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as

R(F:N,,N,,...,N,) =

(__1)N0+N1+...+NnJ‘OO dtoté\/o jm dtltivl
(2m)™ o to(l+2t9) )y (1 +12)

*© di, thn
fo mexp[—lf’(to+t0tl+.+t0tl.tn)] Y(Ftot] tn) (37)

Bounding |Y(F)| by a constant €', we obtain
|R(F; Ny, Ny, ... N < O[(Ny—N,— 1)V, —N,— 1) L. (N, — 1) 1]/ (2m)"|F ™o (38)

For given N, the smallest bound on the remainder occurs when all the factorials
are unity, and is achieved by making successive truncation limits decrease by 1
(rather than halving as in the optimal scheme). The scheme thus terminates after
Int (V,) stages, leaving a remainder

|R(F; Ny, Ny—1, ..., 1)| < C/|2nF| Yo, (39)

This can be made arbitrarily small by increasing N,. None of the truncations are
optimal now; the price of arbitrary accuracy is to represent Y(F) by very large
cancelling terms, just as in convergent series representations, and all the advantages
of asymptotics are lost.

The impracticality of these arbitrarily accurate schemes leads to an increased
appreciation of the ‘live now, pay later’ philosophy underlying the optimal
hyperasymptotic (and ordinary asymptotic) schemes, in which ultimate accuracy is
sacrificed as a consequence of the requirement that the terms always decrease (within
each hyperseries and from one hyperseries to the next).

5. Exact Stokes relations

In the scheme (23)—(25), the singulant F enters through the Y, and in the
denominator of the first integral (over §,) in each K,,,. F' can take any complex value.
We now show that as F' makes a circuit around the origin, i.e. as z encircles the
transition point, the solution to (1) as given by the hyperasymptotic scheme
reproduces the Stokes phenomenon — the birth and death of small exponentials in the
presence of large ones — exactly and to all orders.

Consider first F real and positive. Then (4) represents an exponentially decaying
(subdominant) solution of (1). Now let arg /' increase to T, so that (4) represents a
dominant solution. The replacement F = —|F| in the series S, gives late terms
(—1)"Y, which all have the same sign (cf. the limiting form (9)). This is behaviour
characteristic of a Stokes line (Stokes 1864; D, pp. 7, 414). Near to the transition
point in the original z plane the m rotation of F corresponds to a 21 rotation.

In the hyperasymptotic corrections, the rotation produces a pole at &, = |F| in the
first integrand of each K,,. As arg F increases to w, the pole approaches the real £, axis
from below. Thus, by continuity, the integral splits into two contributions: from the
principal value and from the negatively traversed infinitesimal semicircle around the
pole. Rather than write out these contributions explicitly for each of the stages of
hyperasymptotics, we carry out the splitting in one step using the resummed version
of the scheme, based on (36) and (37) with n = 0. This is

L[ [—H\Noexp(—t)
YF)=8S,F)+— di(*) ——=Y(?). 40
() ol ") RL ) wi+i/F) (t) (40)
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The splitting just described can now be easily implemented, and gives

Y(|F|exp (im)) = Sy(—F])

1 (= t \No exp (—t) L
that is
Y(|F|exp (im)) = Y,(—|F|) +3i Y(IF|) exp (—|F]), (42)

where the subscript p denotes the hyperasymptotic series for Y(—|F|) with all &,
integrals interpreted as their principal values. Note that (42) is an identity for the
function Y(F), in which all reference to the truncation N, has disappeared.

Thus on the Stokes line the solution (4) which is subdominant for F positive real
is, exactly,

y(2)= Z7i(z) exp [+ 3|F|] Y(|F| exp (im))
= Z75(2) {Y,(— |F|) exp [+ FI] + % Y(|F]) exp (—2F])} (43)

showing that the solution has now acquired a subdominant contribution whose
leading term is 3w out of phase and half the size of the dominant exponential, as it
must be (D, pp. 8, 414).

The strength of the subdominant contribution grows from 0 to 1 across the Stokes
line, being 1 on the line itself, as indicated in (43). Berry (1989a, 1990a) showed that
the strength increases smoothly, according to a uniform approximation involving an
error function. In the present hyperasymptotic scheme, this emerges as an
approximation to the first term in the first hyperseries, i.e. to the first terminant
K, (F,N,) (equation (18)) for F near the negative real axis. Here —and only here —
our previous approximation (28) for the generalized terminants (25) breaks down,
because in the £, integral the pole and the stationary point coincide. For the higher
terminants (r > 0 or n > 1), the pole at £, = —|F| for F' negative real can never
coincide with the stationary point at £, = £f (equation (27)) if the N, are chosen
optimally (i.e. as [F|/2"), and so the principal-value pole contribution is exponentially
small compared with that from the stationary point. A consequence of this is that the
Stokes phenomenon, regarded as the rapid switching-on of the subdominant
exponential, is completely described by the error function ; further hyperasymptotic
corrections vary only slowly across the Stokes line.

Now continue the positive rotation of F until arg ' = 3n. We are now on an anti-
Stokes line, where both exponentials have equal magnitude and opposite purely
imaginary phases. The pole in the &, integrals has rotated positively up to the
imaginary axis, and by continuity has dragged the contour with it. Again these
integrals can be split into contributions from the pole and from the original contour
among the positive real axis. From (40) we obtain (cf. (41))

Y(|F|exp (3im)) = Sy(|F|exp (—3im))
1 (® t \No exp(—t) 7 L. s
+% , dt (m) t(l——Hm Y(t) +1Y(|P I exp (EITC)) exp ( lll’ |), (44)
that is (cf. (42))
Y(|F|exp (3im)) = Y(—ilF|)+iY(ilF]) exp (—ilF]) (45)

Proc. R. Soc. Lond. A (1990)
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in which the functions Y on the right-hand side are evaluated with all K, contours
along the positive real axis.
Thus on the anti-Stokes line the solution (4) is, exactly,

y(2)= Z7i(z) exp [+ 4[F|] Y(IF| exp (3im))
= Zi(z) exp (dim) 2Re [Y(i|F]) exp {i(— }|F| +1m)}], (46)

showing that the subdominant contribution which appeared on the Stokes line is now
equal in magnitude to the original exponential, and y(z) is now proportional to a real
oscillatory function, as it must be (D, p. 297).

The function Y(F) is not single valued. We can see this by rotating further, to
arg F' = 27, that is onto the second Stokes line in the z plane, corresponding to a
41 rotation close to the transition point. Similar reasoning to that just used gives
(cf. (42))

Y(F| exp (2i)) = 3V (F)) +iY,(— |F]) exp (7). (47)

Finally, we rotate to argF = 3m, corresponding to a complete circuit of the
transition point in the z plane. The pole has now dragged the £, integration contours
around a point on the second sheet, above the real axis. There is a contribution from
this pole at £, = |F|exp (2ri), as well as a half contribution from the pole at &, = |F],
leading to

Y(|F|exp (3im))= Y,(—|F|)+i[Y(|F|exp (2in)) + Y (|[F])] exp (—|F])
= iY(|F|) exp (—|F]). (48)
The solution (4) now becomes

exp [5|F1]
Zi(z—>2 exp (2mi)

yl)= Y(|F|exp (3im))

iexp[—|F|/2]
Zi(z—>2 exp (2mi))

Y(|F)). (49)

This must be exactly the same as at the start of the circuit, because y(z) is single
valued, and indeed it is, because the factor i is cancelled by the change in Zt round
its zero.

6. Numerical illustration: the Airy function

Here we choose Z(z) = z, which is the paradigm for the study of equation (1) near

a single transition point. Then without loss of generality we can set A = 1, because
asymptotics for large A is equivalent to that for large |z|. From (3), the singulant is
F =42 (50)

The solution of (1) which has the form (4), that is decaying as Re z increases, is the
Airy function Ai(z) (Abramowitz & Stegun 1964). Insert the correct constant, we
have

1
Ai(z) = 2230y )
2me 1
so that Y(F) = 2¢/T@EF)s exp (AF) Ai {3F)3}. (52)
Proc. R. Soc. Lond. A (1990)
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total number of terms in hyperasymptotic series
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Figure 1. Decrease of the terms in the first five hyperseries of Y(16), for the Airy function Ai.

Table 1. Hyperasymptotic approximations to the Airy function Ai (equation (51)) for F = 16

level approximation to Y(F) approx. —exact
lowest 1 8.163x 1073

S, 0.9918367935113234591100 —5.677%x107°

So+8; 0.991836799 1882512550983 —1.134x 1071
So+8,+8, 0.991836799 188262 5907500 —8.160x 10718
So+...+8, 0.991836 799 188262 599 868 2 9.584 x 1071?
So+...+8, 0.991836799 188262600603 1 1.151x 10718
exact 0.991836799 188262598909 8 0

To compute Y(F) hyperasymptotically we require the terms in its formal
asymptotic expansion. These are

1 I(3r+3)

L) = QTF)Y T(r+1)T(r+1)’

r

(53)

which satisfy Y, =1 and the limiting form (9). We also require the generalized
terminant integrals (25). K,, and K,, were computed from formulae in Appendix B;
for higher hyperseries we used the approximations (28).

All numerical work was performed on an Apple Macintosh II computer using the
program Mathematica (Wolfram 1988; Maeder 1990), which has the advantages that
it can be configured to work to any specified accuracy and evaluate all its special
functions for complex arguments. Mathematica has internal routines for Ai (z), which
we checked against the representations in terms of Bessel functions of order +1 and
as a convergent series.

First we study Y(F) on the positive real axis, that is positive real z, and choose
F =16, that is z = 5.2414827884177932413.... From (35), we can hope to be able
to compute Y(16) with an error 8.4 x 107,

Figure 1 shows the decrease of the terms in the first five stages of hyperasymptotics,
that is the terms in S, S,, S,, S; and §, (the last series having only one term). The
optimality of the hyperseries is obvious. Table 1 shows the numerical values of the
successive approximants to Y(¥), together with their errors. The improvement with
hyperasymptotics is dramatic. Even the first level reduces the error of super-
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Table 2. Hyperasymptotic approximations to the Airy function Bi (equation (55)) for |F| = 16

stage approximation to Y (—|F]) approx. —exact
lowest 1 —9.355%x107®
S, 1.009354 544224 44128201112 —7.389x 107*
Sy+8; 1.009354551613418769424 46 —4.296 x 1071
So+8,+8, 1.009354551613461 695449 —3.012x 1077
So+...+8, 1.009354551613461 721493 —4.078 x 1071#
So+...+8, 1.009354551613461 721984 —3.587x 10718
exact 1.00935455161346172557054 0

asymptotics (S,) by five orders of magnitude, and at the last stage (here S,) the
reduction is nearly ten orders of magnitude, and we are close to the ultimate error
of the method.

Now we move onto the Stokes line, where arg z = 21 and arg /' = 1. Because of the
identity (42), it is necessary only to study Y, (—|F[), which is the real function
obtained when all £, integrals in the generalized terminants (25) are interpreted as
principal values. This is equivalent to studying the exponentially increasing Airy
function Bi (z) (Abramowitz & Stegun 1964) for z positive real, because (cf. (51) and

5
22 Bi (2) = 2 Fexp GIF]) Y,(— ), (54
ie. Y(=IFl) = v/7@IF)fexp (—3IF]) Bi{GIFI)5}. (55)

The approximations to ¥ ,(—|F|) are shown in table 2, again for [F| = 16. Herc the
improvement over superasymptotics (8;) with the first three stages of hyper-
asymptotics is nine orders of magnitude.

Gailitis & Silverstone (1988) have studied the asymptotics of Bi (2.5), whose exact
value is 6.4816607.... With Padé summation of the first 40 Y,, they obtain for
this real quantity the complex value 6.48166—0.00001i. With three stages of
hyperasymptotics — nine terms in all - based on only the first five Y,, we find
6.4816598, thereby achieving the ultimate error of the method, which from (35) is
0.000001.

Finally, we examine the anti-Stokes line, where argz = n and the Airy function is
oscillatory. From equation (46),

Ai{—@F|)7} = Re [Y(ilF]) exp {i(—4F| +1m)})/ /7G| F]). (56)

Here we choose to study the zeros, rather than the values, of Ai.

The lowest few stages of hyperasymptotic approximation for the first threc zeros
are shown in table 3, with errors displayed as fractions of the asymptotic mean zero
spacing 2n. For the crudest approximation (Y = 1), the errors are of order 1/|F| and
are roughly the same for the three zeros. Superasymptotics (¥ ~S,) gives
exponentially small errors which therefore diminish considerably from the first to the
third zero. Hyperasymptotics gives further, enormous, improvements: even for the
first zero, where |F| ~ 4.8 is hardly large, the error diminishes from 107* (S,) to
1077 (Sy+8;+8,); for the third zero (|F|~ 17.3) the additional improvement is
nearly eight orders of magnitude.

7. Discussion
We have given an explicit description of hyperasymptotic corrections, that is

corrections beyond the accuracy exp (—|F|) obtained by the usual (superasymptotic)
procedure of summing the primary asymptotic series down to its least term. The
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Table 3. Hyperasymptotic approximations to the values of |F| = (3|2|/4)3 for the first three zeros of the

Airy function Ai(—|z|) (equation (56))

Table 3a
stage |F| (1st zero) (approx.—exact)/2m
Y1 4.712388980 384 689857 694 —8.67x1073
S, 4.765396 652 270803735893 —2.38x 1074
So+8, 4.766878592 385215365778 —2.33x10°¢
Sy+8,+58, 4.766894 444570394458 53 1.94x 1077
exact 4.766893 225061 654917199 0

Table 3b
stage |F] (2nd zero) (approx.—exact)/2m
Y~ 10.995574 287 564 276 334 62 —3.95%x107®
S, 11.02039325027731244171 3.28x 1077
S,+8, 11.020391 190527 946 029 66 —3.17x 1071
Sy+8,+8, 11.020391 19072562870 —2.84x 10713
exact 11.020391 190727416744 17 0

Table 3¢
stage |F] (3rd zero) (approx.—exact)/2n
Y~ 1 17.278759594 743862811 54 —2.54x107®
S, 17.294715 323206 738594 33 —4.98 x 10710
Sy+8; 17.294715326337 198104 22 —5.94x1071¢
So+8,+8, 17.294715 326 33720182004 —2.20x 10718
exact 17.294715326337201833 86 0

structure of the scheme is particularly interesting. Each correction term is the
product of a universal factor, namely a generalized terminant integral K., (equation
(25)), and a non-universal factor, namely a term Y, of the original asymptotic series for
the particular function being approximated. In addition, we have investigated the
asymptotics of the hyperasymptotic sequence itself, and shown that the method
terminates naturally, leaving an ultimate error of order exp (—2.386|F|).

Much remains to be done. Our arguments have been based on the resurgence
formula (11), which applies when the point z in the solution of (1) is dominated by
a single transition point. While this is the generic case in the limit A — c0, it is easy
to envisage other situations, in which additional transition points are near enough to
make appreciable contributions. Presumably hyperasymptotics should then be
based on the more general resurgence formula (10) (cf. Rakovic & Solov’ev 1989), but
we emphasize that a proper mathematical foundation for this formula is lacking.

Any such generalization of hyperasymptotics, applicable to clusters of transition
points, would have to be compatible with the corresponding generalizations of the
Stokes relations of §5 (cf. Heading 1977; Olver 1978; Voros 1983; Sibuya 1977).

We thank Dr W. G. C. Boyd for helpful discussions. C.J. H. acknowledges a Research Studentship
from the U.K. Science and Engineering Research Council.
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Appendix A. Resumming resurgence

Summing both sides of (11), we obtain Y(F) from (5) (after an interchange of
summation labels) as

L (s—r—1)!
Y(F) = -y — A1l
(F) = 2&20 ) (=P = (A1)
Next, the sum is interpreted by the Borel procedure, which gives
1 (“exp(—§) & ( F>r
Y(F -
(F)= J E(L+E/F) % H(F) z
_ L (7 exp(—Fx) J Ly
“on), Y atrs A )( x) 42

Because our treatment is restricted to a single first-order transition point, well
separated (in F) from any others, it is consistent to regard Z(z) as linear (we exclude
such cases as Z(z) = zexp (z), where the transition point at infinity has finite ). Then
Y,(F) is proportional to F'~" (cf. (53)), so that

Y(F) (—1/x) = (= 1) Y,(Fa). (A3)

Again using (5) we obtain the resummed resurgence formula

_ 1 (7 exp(—Fa)
Y(F) _ZRL dx_x(1+x) Y(Fx) (A4)

corresponding precisely to the exact Stieltjes transform for the Bessel function of
order 1, as used by Boyd (1990) in his study of the Stokes phenomenon.

In the more general situation, where there is more than one transition point, ¥, will
not be precisely proportional to F~", and the scaling (A 3), necessary to obtain (A 4),
cannot be used. But by construction ¥, is precisely proportional to the original large
parameter A. We can exploit this by redefining the singulant as (3) without the factor
A, that is as

F(z2) = 2f d& 7). (A 5)
Z*
Then we can resum the conjectured more general relation (10), involving all the

transition points Fj, without assuming (A 3). Thus we obtain a putative resurgence
formula for the multiplier Y(&,A) in the solution (4):

L EXP{— MNF =F)a} -
FA) = zj 1+x) PEV(F, Aa) (A 6)

relating the solutions of (1) for different values of A. We can, however, neither prove
nor exploit this intriguing relation.

Appendix B. Calculation of generalized terminants

Our aim here is to express the terminants for the first two stages of
hyperasymptotics, that is the integrals (18) and (22), in terms of functions that can
be evaluated by Mathematica with sufficient precision (up to 24 digits for the
calculations presented in §6).
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The first-stage terminant integrals K,, can be expressed in terms of incomplete
gamma functions (cf. D, p. 415, Abramowitz & Stegun 1964):

K. (F,Ny) = ((—1)/2n)exp (F)['(N,—r) T (r—N,+ 1, F). (B1)
Now we use
O (B2)
and obtain
_ 1)r+1

K (F.N,) = (B 3)

[exp () EAF)—NWM],

m=0

where E, denotes the exponential integral function.
To simplify the second-stage terminant integrals K, ,, the first step is to evaluate
the &, integral in (22):

(—)NFNIT(N,—7r) (@, T(r—N,+1, Ft)t N1
K., (F,N,,N,) = d¢ Lo
B Ny, ) o 0 Tos] (B 4)
Next we use (B 2), which gives
K,,= (—1)Nom"1/2m)2 (I —J),
D/ F —7+Ny—1
where IEJ exp(=p) J t ,
0 P 0 1 +1)
N,—r— m o) ~r+Ny—m—2 (B 5)
J= E —1)"m! exp —Fi)t
- "o Fm+l 1+t)
For I we substitute the expansion
tN (_ 1)N N-1
— _ _1 N —t T
(14+t) (141 (=1 EO( ) (B6)

and thereby obtain
© . exp(—p) p\y_ Ml (=1)%!
= S (142 ) - ——
! fo ap P n( +F) 201 (q+1)Fe! B7)

The integral can be expressed in terms of Kuler’s constant y and the digamma
function ¥ (Prudnikov et al. 1986, vol. 1, p. 530), leading to

I=Y(nF+y)2+1in?]— > [2/Ic+1/lfc(y/2)—ln F] -
k=1 .
Ny—r—2 (—l)eq
- 3 g (BeF>0. (BS)

o (g+1)Fr

The sum over k converges adequately fast for our purposes.
To simplify J we notice that the integral has the same form as K,; and then

substitute (B 1) and (B 2)

Ni—r=2 Ny—r=2 No=r—m=3 ( _ {)Sp 1 g1
J=(— 1)No"‘2[exp (F)E(F) X T b z Lf,,—?gﬂ—) (B9)
m=0 m=0 5=0
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