Infinitely many Stokes smoothings in the
gamma function
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The Stokes lines for I'(z) are the positive and negative imaginary axes, where all
terms in the divergent asymptotic expansion for In I'(z) have the same phase. On
crossing these lines from the right to the left half-plane, infinitely many subdominant
exponentials appear, rather than the usual one. The exponentials increase in
magnitude towards the negative real axis (anti-Stokes line), where they add to
produce the poles of I'(z). Corresponding to each small exponential is a separate
component asymptotic series in the expansion for In I'(z). If each is truncated near
its least term, its exponential switches on smoothly across the Stokes lines according
to the universal error-function law. By appropriate subtractions from In I'(z), the
switching-on of successively smaller exponentials can be revealed. The procedure is
illustrated by numerical computations.

1. Introduction

My purpose is to draw attention to, and explore in detail, a peculiarity of the
asymptotics of I'(z) for large |z|. Motivated by Stirling’s formula, we write

['(z) = 1/(2n) 2* exp{—2}exp{g(2)} (1)

and study g(z) for large | z|. In the right half-plane, i.e. when |arg z| < im, ¢g(z) >0 as
|z| - co. This follows from the formal (because divergent) asymptotic expansion

_ g B2r+2
9(z) = E(, 2r+1)(2r+1) 221

(2)
where B, are the Bernoulli numbers (Gradshteyn & Ryzhik 1980). For real z the series
is alternating, because successive even Bernoulli numbers have opposite signs. Thus
all terms have the same phase on the positive and negative imaginary axes, so these
are the Stokes lines of I'(z). According to the now well-understood Stokes
phenomenon (Stokes 1864 ; Dingle 1973), we expect a small exponential to appear
across each of these lines; for simplicity, and without loss of generality, we
henceforth consider just the positive imaginary axis.

The unusual feature of I'(z) is that not one but infinitely many small exponentials
appear. That this must happen can be shown by the following version of an argument
by Paris & Wood (1991), based not on asymptotics but the fundamental reflection
formula

I'(—2) = —[n/zsin (n2)] I'(2). (3)

Substitution into (1) gives, after a short calculation,
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g(z) = —g(zexp{—in})—In (1 —exp {2miz})

[ee}

=—gzexp{—in}h)+ =

n=1

exp {2minz}

(4)

Continuation has produced an infinite string of exponentials, which in the upper half-
plane are subdominant relative to the series (2) which is of order 2™, multiplying
exp (0). Thus g(z) cannot be the odd function that (2) would imply if the series
converged, and the vanishing of ¢(z) as | 2| - co0 cannot continue to hold throughout
the left half-plane. In particular, as z approaches the negative real axis (anti-Stokes
line) from above, that is when arg z = m—¢, the exponentials add to generate the
poles of I'(z).

We expect all these subdominant exponentials to arise out of the remainder when
the divergent series (2) is truncated. If the truncation is optimal, that is near the least
term, we further expect the exponentials to appear where they are smallest, that is
across the Stokes line argz =in, and to switch on smoothly according to the
universal error-function law (Berry 1989). Paris & Wood (1991) proved that the
leading subdominant exponential (» = 1 in equation (4)) is indeed born in this way.
Here it will be shown how all the smaller exponentials appear similarly, and how
their smooth births can be detected in I'(z) by a sequence of increasingly delicate
subtractions.

2. A convergent series of exactly terminated asymptotic expansions

We begin with formal manipulations of the asymptotic series (2). Expressing the
Bernoulli numbers in terms of the Riemann zeta function, replacing this by its
(convergent) Dirichlet series and interchanging summations, we obtain successively

Z(=1)"E2r+2)2r)!

g(z) = 22 EO 2o
58S et
- n§1 r§0 (2mzn)?rte (5)

Thus g(z) is a series, labelled by 7, of asymptotic expansions whose terms, labelled by
r, take the standard form of factorials divided by powers. The divergent tail of the
series labelled n will generate the nth subdominant exponential in (4). Anticipating
this, and following Dingle (1973), the quantities raised to powers, namely

nkF = —2mninz, (6)

will be interpreted as ‘singulants’, that is the difference between the dominant
exponent (zero) and the nth subdominant exponent 2minz (cf. (4)). The singulants are
positive real on the Stokes line arg z = ir.

To convert the formal expression (5) into an exact explicit representation of g(z),
we truncate each asymptotic series at an arbitrary point N,, and apply Borel
summation to the divergent tail. Thus we obtain the convergent series of terminated
expansions

2 1 Nall (20)!  exp (—nk)
g(z) B n§=:1 {ifsz r§0 (nF)2T+ n M(nF’ Nn)}: (7)
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where M denotes the ‘terminant’ integral

00 2N

1
M(F, N) = Hf dumexp{lfw(l—u)} (8)

0

(where ¢ is a real positive infinitesimal ensuring that the contour passes above the
pole at w = 1). Appendix A gives an alternative derivation of (7), less illuminating
but not involving the summation of divergent series. The special case where all
truncations N, are the same was previously obtained formally by Dingle (1973, p.
435), also using Borel summation, and proved by Paris & Wood (1991), using a
Mellin-transform representation of I'(z).

Crossing the Stokes line with arg z increasing through im corresponds to Im F
increasing through zero. Optimal (i.e. least term) truncation of the nth series in (7)
corresponds to choosing

N, = Int in| F|) = Int (nx|2]). 9)

The appropriate approximation of M, obtained as explained by Berry (1989) (after
replacing 1 —u? by 2(1—wu)), is

M(F,N) ~ }{1+Erf (Im F/+/(2Re F))],|

if N~ YF|, |ImF| < ReF, ReF > 1, | (10)

where Erf denotes the error function. As ImF increases, M approaches unity,
confirming that the exponentials in (7) can be identified as those in (4).

3. Exposing successive smoothings by subtraction

In order to see the smooth switching-on of the nth small exponential in (7), it is
necessary to subtract from g(z) all larger exponentials, and all larger terms of the
asymptotic series in powers of 1/(nf"). To achieve the latter, it is necessary to regroup
the terms in the double sum over n and r, as follows:

© Np,—-1 N;—1 o Ny,—1 oo Ng—1 oo
DY = ..+ X 2.+ by
n=1 r=0 r=0 n=1 r=N, n=2 r=N, n=3
© Np-1 ©
=3 X X .. (whereN,=0). (11)
m=1r=N,,_; n=m
From (7), the sums over n have the form
o 1 m—1 1 _
> e {2r+2)— X Sa = En(2r+2). (12)
n=m n=1
Thus
1 2 Nutl(2p)! * exp(—mkF)
= e ) 2 — .
g(z) inszj”:%mﬂ Vi Eonl r+2)+m2=1 po” M(mF, N,,) (13)

This reordered expression is still convergent, and holds for any choice of truncations
N,,.
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Now we make the optimal choice (9), and seek to expose the nth small exponential
by subtracting from g(z) the larger subdominant exponentials m = 1 through n—1
and the asymptotic series labelled m = 1 through #. Thus it is natural to define

L,(2) = nexp (nk)

12 Natto(27)! _ "lexp (—mF) }
X [g(Z)—m—FmE_l r=NZm41 FW gm(27'+2) mzzl TM(?’}'LF,Nm)
= [MnF,N,)+R,(F)]. (14)
The remainder
_ 2 [exp(—mkF) 1 Nmtlo(27)!
Rn(F) = nexp (nF)m=Zn+1|: m M(MFaNm)+inFr=l§m—1 Fer gm(27+2)
(15)

must vanish asymptotically, that is as Re # — oo, if the subtraction is to succeed. We
consider separately the terms involving M and those involving ¢,,. Obviously the
terms in the first class vanish asymptotically, because the decay of all the
exponentials involving m is faster than the growth of that involving n, and the
terminant integrals M remain bounded (cf. (10)). In the second class of terms, the
sum over r is dominated by its first term m = n+1, r = N,,. Using (9) and estimating
$n(2r+2) by m~@"*® we find that these terms also vanish asymptotically, as

exp{—n[|F|ln(1+1/n)+|F|—ReF]}. (16)

These estimates are confirmed by a more refined analysis.
Taking the asymptotic limit of M on the right-hand side of (14), and defining

z = |z|exp (i), (17)

we therefore find that across the Stokes line 6 =im the nth small exponential
switches on like

Ly (2)

1+ B (0= dm) (mn ] 2 )}, (18)
as|z|—» o

This is our main result. It shows that all the subdominant exponentials switch on
smoothly in the universal manner. Because of the increasing singulants the higher
switchings get sharper (over a 6 range proportional to 1/4/7). In evaluating the limit
of L,, it is important not to substitute the error functions for the functions M, in the
definition (14), corresponding to the larger subdominant exponentials m < n,
because the subtractions will succeed only if the Ms are controlled to exponential
accuracy, whereas the error function is an approximation valid only up to terms of
order 1/4/ | F'| (Berry 1989 ; Olver 1990). Paris & Wood (1991) prove the special case
of (18) with » = 1.

4. Numerical illustration

We computed I'(z), and the subtractions L,(z) defined by (14), for 0 <0 =
argz < 7 and two values of the singulant modulus. These were | F'| = 5, corresponding
to |z] =0.79577..., and |F|= 10, corresponding to |z| = 1.59155.... Such small
values were chosen deliberately, to illustrate how quickly the limit (18) is approached.
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Figure 1. First three subtractions of the gamma function, for (a) |F| = 5, (b) | F| = 10. The thick
lines show ReL,, computed from equation (14), for n =1, 2, and 3. The thin lines show the
corresponding error-function predictions, computed from equation (18). The dashed lines show the
approximation (19) which should apply near the anti-Stokes line § = n (the apparent straightness
in (b) of these lines, and also of the thin lines, is an illusion resulting from the larger value of
| F|). The abscissa is 6 = arg z, so that § = 0° corresponds to the positive real z axis, 6 = 90° to the
positive imaginary z axis (Stokes line), and 6 = 180° to the negative real z axis (anti-Stokes line).

To compute the terminant integrals (8), the denominator in the integrand was
expanded in partial fractions, to give two integrals which were then evaluated in
terms of exponential integrals as explained in Appendix B of Berry & Howls (1990).

Figure 1 shows the graphs of Re L, (thick line), and the error function (thin line)
predicted by equation (18), for the first three subtractions, that is » = 1, 2, and 3.
The agreement is very close before and across the Stokes line, indicating
unambiguously that the error function correctly describes the smoothing not only for
the leading subdominant exponential but for all the smaller ones. Note that when
| F'| = 5 we are accurately calculating the factorial of an argument with negative real
part using asymptotics that becomes exact in the limit of large positive real part!
The correctness of the subtraction procedure based on (14) is confirmed by the fact
that for F = 10, n = 3 it successfully uncovers a buried exponential of magnitude
exp (—30) hidden behind two larger ones.

However, it is clear from figure 1 that the agreement degrades on approach to the
anti-Stokes line § = n. The reason is not connected with the Stokes smoothing, but
indicates the failure of the subtraction procedure. This relies on the rapid decrease
of |exp (—nF)| for increasing n, and fails because the exponentials are all of
comparable magnitude near 6 = m and cannot be separated. To calculate the correct
form for L, in this region, we note that equation (14) simplifies considerably, as
follows. The terminants M can be set equal to unity (cf. (10)), the asymptotic series
(double sum over m and r) can be neglected (because |F| is large), and g(z) can be
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set equal to the sum of exponentials (cf. (4) with g(zexp{—in}) neglected because
zexp{—in}isnear the positive real axis when z is near the negative real axis) generated
by the Stokes phenomenon. Thus

L, (2) ——>nexp (nF)[—ln{l—exp(—F)}—nz_}l M] (19)

m

argz—»>m m=1

The real part of this quantity is plotted as the dashed lines in figure 1; these coincide
with the thick lines as ¢ -7, and evidently give very accurate approximations to the
L, calculated from (14).

5. Concluding remarks

In the hierarchy of functions with divergent asymptotic expansions, it is common
for the late terms to be increasingly well approximated by a factorial divided by a
power. Among such functions, I'(z) occupies a peculiar position, intermediate
between the simplest and the most general cases. In the simplest cases (exemplified
by the exponential integral and the error function), the approximation is exact : every
term is a factorial divided by a power, and Borel summation terminates the
truncated series exactly, with an integral belonging to a class which includes (8)
(Dingle 1973) describing the appearance of a subdominant exponential across a
Stokes line.

In the most general case (exemplified by typical solutions of one-dimensional
Schrodinger equations, or integrals of exponentials with several saddles), the
‘factorial divided by power’ approximation is simply the first term of a divergent
series for the late terms. This happens when the subdominant exponential is itself the
first term of an asymptotic series, rather than standing alone as in the simplest cases.
Such linking of dominant and subdominant divergent series is ‘resurgence’, and is
the basis of very accurate ‘hyperasymptotic’ schemes (Berry & Howls 1990, 1991),
based for example on iterated Borel summation.

What is distinctive about I'(z) is that each term (labelled r) in its asymptotic
expansion (5) is a convergent infinite series of factorials divided by powers. As we have
seen, each component asymptotic series can be resummed and describes a different
subdominant exponential, whose simultaneous appearances across the Stokes line
can nevertheless be separately monitored by the subtraction procedure we have
described.

The gamma function has other peculiarities, which become evident on considering
the problem of calculating the factorial of a large integer k£ to high accuracy by
truncating the asymptotic expansion (5) near its least term. This would require
knowledge of (27)! = [Int|F|]! = [Int (2nk)]!, that is the factorial of an integer
considerably larger than k itself. (This seems a defect of the approximation, but it
might be possible to turn it to advantage by using the series in reverse, to calculate
[Int 2nk)]! given k!.)

Even if the series (5) could be employed to its least term (for example with the later
terms more roughly approximated) the optimal absolute error in k! would increase
with k&, for the simple reason that the exponentially small error in g(z) is multiplied
by the factorially large prefactor in (1). This optimal error is

e(k) = k! — (k) approxl = K714/ (2/m) exp {k(In k—1 —2m)}. (20)
The minimum value of e(k) is approximately exp{—(exp (2n)+2n)} ~ 107235, and
occurs for k & exp (2r) & 535. ¢(k) reaches unity when £ ~ 1463 (slightly greater than
Proc. R. Soc. Lond. A (1991)
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exp (2n+1)). For larger values of k, the absolute error exceeds unity. This apparent
inability to calculate k! efficiently with an error less than unity frustrates one
possible method of testing large & for primality, based on Wilson’s theorem (Baker
1984). This states that k is prime if and only if it is a solution of the equation

(k—1)! = —1 (mod k). (21)

Finally, it is worth noting that the exponential refinements described here are
obscured if one uses the saddle-point method to approximate I'(z), rather than
InI'(z). Starting from the familiar representation

I'(z) = [exp (2miz) — 1]‘1f dtt# Lexp (—1t), (22)
C

where C is the Hankel contour, and changing to a new variable defined by ¢ =
exp (u), we find an infinite string of saddles at « = In 2+ 2mnin. The contour links valleys
at u = o0 and u = 00 +27i. When arg z < ix, this can be deformed to a steepest path
through two of these saddles, whose contributions combine to cancel the prefactor in
(22), leaving in lowest-order Stirling’s formula (equation (1) with g =1). When
argz > I the steepest path passes through only one saddle, leaving the prefactor
uncancelled to give the poles for z negative real. Thus by this method a single Stokes
phenomenon suffices to generate the poles, and as Paris & Wood (1991) suggest,
recovery of the smaller exponentials, so easy with InI'(z), might require hyper-
asymptotics (Berry & Howls 1991).

I thank Richard Paris and Alastair Wood for introducing me to this problem and kindly showing
me their paper before publication, Christopher Howls for a careful reading of the manuscript and
several corrections, and Jonathan Keating for a helpful suggestion.

Appendix A. Alternative derivation of equation (7)

We use ‘Binet’s second representation’ for g(z) (Dingle 1973, pp. 65-66), namely

o [ 4, arctan (¢/2)
g(z) =2 L dt——exp(21rt)—1. (A1)

With suitable choice of branch for arctan, this is valid throughout the required region
of argz. Expanding the denominator and integrating once by parts gives

z 1 @ exp (—v)
—— A2
9 =2 2 G J R PRy —r (42)
where the contour always passes above the pole in the right half-plane. Writing
1 Nal v\ (—v/2minz)?Ne
1 +2v2/(2mnz)? El (—2ninz) * 1+2?/(2nnz)? (& 3)

and making a simple change of variable, we at once obtain (7).
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