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Integrals involving exp{—kf(z)}, where |k| is a large parameter and the contour
passes through a saddle of f(z), are approximated by refining the method of steepest
descent to include exponentially small contributions from the other saddles, through
which the contour does not pass. These contributions are responsible for the
divergence of the asymptotic expansion generated by the method of steepest descent.
The refinement is achieved by means of an exact ‘resurgence relation’, expressing the
original integral as its truncated saddle-point asymptotic expansion plus a remainder
involving the integrals through certain ‘adjacent’ saddles, determined by a
topological rule. Iteration of the resurgence relation, and choice of truncation near
the least term of the original series, leads to a representation of the integral as a sum
of contributions associated with ‘multiple scattering paths’ among the saddles.
No resummation of divergent series is involved. Each path gives a ‘hyperseries’,
depending on the terms in the asymptotic expansions for each saddle (these depend
on the particular integral being studied and so are non-universal), and certain
‘hyperterminant’ functions defined by integrals (these are always the same and
hence universal). Successive hyperseries get shorter, so the scheme naturally halts.
For two saddles, the ultimate error is approximately 238 where ¢ (proportional to
exp (—A|k|) where A is a positive constant), is the error in optimal truncation of the
original series. As a numerical example, an integral with three saddles is computed
hyperasymptotically.

1. Introduction

We intend to discuss very accurate asymptotics for a class of integrals commonly
occurring in pure and applied mathematics and physics, namely

(k) = f dzg(z) exp {— f(=)) 0
Cn(ﬁk)

Here |k| is the large asymptotic parameter, and it will be convenient to regard
k = |k| exp (i0,) as complex. The functions f and g are analytic in a region which we
will specify later. There are several saddles (stationary points) of f, which we assume
to be simple zeros of the derivative f’(z). The infinite oriented contour C,(6,) is the
path of steepest descent through the nth saddle, at z = z,, along the two valleys,
issuing from z,, of the real part of the exponential. It is common to encounter
integrals where the contour — for example, the real axis —is not a path of steepest
descent, but in such cases the contour can be deformed to give the function as a sum
of integrals of the type (1).

Thus (1) defines a function of k for each saddle »; if f is an Mth order polynomial,
there are M — 1 saddles. As is well known, the method of steepest descent (De Bruijn
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1958), based on expanding the integrand about z,, generates for each integral an
asymptotic series in powers of £7!, multiplying a leading exponential exp {—kf,},
where f, = f(z,). As well as yielding extremely useful approximations, the method is
fundamental in physics (providing for example connections between wave and ray
optics, quantum and classical mechanics, and statistical mechanics and thermo-
dynamics). Nevertheless, the series diverges, and the common view is that it can
represent the exact integral I™ only within an accuracy comparable with the size of
the least term.

Here we show how much greater accuracy, and deeper understanding, can be
obtained with the aid of the principle of resurgence, inspired by the works of Dingle
(1973) and Ecalle (1981, 1984), which we express in the following way. The reason for
the divergence of the asymptotic series for 1™ is the existence of other saddles z,, .,
through which C, does not pass. These contribute smaller exponentials, ‘beyond all
orders’ of k1. Therefore the divergent part of the series must contain information
about these other saddles. This is also true for the other asymptotic series, based on
the other saddles z,,. Thus all the asymptotic series are related by a requirement of
mutual consistency: each must contain, in its late terms, all the terms of the
asymptotic series from all the other saddles. This information is present in coded
form, because the series all diverge.

Tts systematic decoding, to obtain successive approximations more accurate than
the least term of the original series, is what in our recent paper (Berry & Howls
1990 @, hereinafter called I) we called ‘hyperasymptotics’. This terminology was
introduced to distinguish the novel procedure from the following two familiar
schemes. First, ordinary (Poincaré) asymptotics, namely stopping at a fixed order N
independent of |k|; as is well known, the error here is of order |k|~¥*V. Second,
‘superasymptotics’, namely stopping at the least term (a procedure originally used
by Stokes (1847)); the order of this term is proportional to |k|, and the error is now
of order exp (—A|k|) where A is a positive constant. With hyperasymptotics we
achieved an error exp (—2.386A4|k|).

The functions we studied in I were solutions of second-order differential equations,
of Schrédinger type, dominated by a single transition point. Such equations have two
solutions, each represented in lowest-order WKB theory by an exponential.
Hyperasymptotics was based on repeated Borel summation, based on a formal
resurgence relation, discovered by Dingle (1973), relating the late terms of the series
multiplying one exponential and the early terms of the series multiplying the other.
That example was special because it involved only two exponentials and the terms
in the two asymptotic series were the same, up to signs.

Hyperasymptotics based on the integral (1) is much more general because many
exponentials are involved and the terms in all the associated asymptotic series are
different. The treatment differs from that in I, in that it does not involve the
resummation of divergent series. Instead, we shall employ the iteration of an exact
and finite (i.e. not formal) resurgence formula, giving the remainder of the truncated
asymptotic expansion for 7™ in terms of the integrals ™ through certain other
saddles, selected by a rule depending on the topology of f(z). This integral resurgence
formula generalizes the Stieltjes-transform relation postulated in recent work by
Boyd (1990).
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2. Steepest-descent expansion

The steepest path through z,, that is C,(0,), is defined by k(f(z)—f,) real and
increasing away from z,. As the phase 6, is altered, the steepest path near z, rotates
half as fast, so that when k returns to its original value, after a phase change of 2w,
the orientation of C,(6,) has reversed, and I (k) has changed sign. Therefore the
integrals 1™ (k) are double-valued, and the functions 7™ (k), defined by

I™ (k) = k™ exp [—kf, ] T™(k),

Le. T (k) = kéf dzg(z) exp {—k[f(2) —f.]} (2)
Cp(6g)
are single valued.

These functions are not, however, continuous, because the steepest paths jump
whenever they pass through one of the other saddles m # n. One way to see that
jumps must occur is to consider the case where f(z) is an Mth-order polynomial, so
that there are M —1 saddles. Then f(z) grows at infinity like z¥, so that, when 6,
changes, C,(6,) rotates at infinity 1M times as fast as near z,,; therefore when M > 2
(that is, when there is more than one saddle) the steepest paths must jump if they
are merely to reverse orientation during a circuit of k in its plane. Each jump is an
example of the Stokes phenomenon, which as we will explain later is in this formalism
a discontinuity, rather than a smooth transition (Berry 1989a), because we have
chosen the path to be the one of steepest descent.

We require the coefficients 7™ in the formal asymptotic expansion
0 /(n)
T™ (k) = X # (3)

r=0
The expansion is formal because, as is well known and as we shall study in detail later
in this section, it diverges.

To obtain the coefficients, and also to develop our resurgence formula, we shall use
a representation of 7™ (k) as a double integral. This is based on the transformation
to the new integration variable

u(z) = k[f(2) = fa]- (4)

For each value of z on C,,(6,),  is real and non-negative. For each value of u (except
u = 0), there are two values of z (figure 1): z,(u), on the half of the steepest descent
path emerging from z,, and z_(u), on the half leading into z,. The transformation
gives

o [ exp(—u){g(a(u))_g(z_w))} .
7= f T ) fe ) (5)

The quantity in curly brackets can be written as the contour integral
{9(2+(u)) g(z_w))} _ ! § 4 IRk —fo)T
fae@) fe—())  2mivt]r e,  f)—fo—u/k’

where I',(6,) is the positive (anticlockwise) loop surrounding C,(6,) (figure 2). The
square root, defined as having phase zero on the path C,(0) emerging from the saddle,
and 7 on the path leading into it, is single-valued on C,(6,) because of the double-

(6)
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Figure 1. Double-valued mapping (equation (4)) from z to .
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Figure 2. Steepest path C,(6,) through saddle 7, and loop I',(6,) enclosing it.

valuedness of (4). Equations (6) and (5) now give the desired representation, which
will form the basis of all that follows:

. 1 (* . exp (—u)i; 9@ f(2) —fn )
Ty = — | gy SR TW de 202 Jno 7
(k) 2mi Jo “ u Ty(6y) zf(z)_fn_u/k “

Expanding the denominator in powers of k™! gives the coefficients in (3) as (cf.
Dingle 1973, p. 119)

1
2

T — (7’—%)'§ dz g(z) , (8)
B PR VOB AT

where the subscript n indicates that now the contour I',(6,) has been shrunk to a

small positive loop around z,. These integrals can be evaluated exactly in terms of

the coefficients in the expansions of f and ¢ about z,, to yield the explicit (and

complicated) expressions (Dingle 1973, p. 119ff) for the terms in the saddle-point

expansion. For example, the leading term r = 0 is

T = 2n/fo)tg, (9)
Proc. R. Soc. Lond. A (1991)
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@

C, (o,

Figure 3. Special phase contours of f(z)—f, (steepest paths) through saddle » (e), encountering
adjacent saddles m = 1, 2, 3 (0), with their steepest paths; non-adjacent saddles (shaded circles)
are also shown.

(here, as before, primes denote derivatives and subscripts n denote quantities
evaluated at z,).
3. Resurgence relation

We expand the denominator in (7) to isolate the first V terms, using

1 N-1 .’/EN
i~ 5 (10)
Thus
N— lT(
T®(k) = ¥ ~L—+R™(k,N), (11)
r=0

where T are the coefficients (8) and the remainder R™ is

R™(k,N) = Z‘ci_kN—J du exp (—u)yud"
0

><5£ d _9¢) . (12)
ey @) =fu¥H{L—u/k(f(z) = fu)}

Next we deform the contour I',(6,) in a particular way, which as will now be
explained depends on the topology of f(z). Consider all the steepest paths through the
saddle n, for different 6,. As illustrated in figure 3, some of them are special in that
they encounter other saddles m. We call these the saddles adjacent to n. From now
on we will make extensive use of this concept of adjacency.

To specify the paths through the adjacent saddles we define the ‘singulants’ (a
term introduced by Dingle (1973))

= |Fyml €xp (i0) = frn —fa- (13)
Proc. R. Soc. Lond. A (1991)
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The special steepest paths are those corresponding to kF,, positive real, that is
k= |kl exp (—io,,), ie 0,= —0,,. (14)

The steepest path C,(—o,,,) turns sharply through a right angle at z,,, to continue
descending into a valley of exp {—k[f(z)—f,]} (whether the path turns right or left
depends on whether 6, approaches —o,,, from below or above; cf. figure 4 later).

We deform I',(6,) by expanding it onto the union of arcs at infinity and arcs
through the adjacent saddles m. These arcs are the steepest paths through m with k
given by (14), that is C,,(—0,,,). We obtain, symbolically, for (12),

é dz...=2(—1)7nmf dz ..., (15)
I'y(0) m Cp(—0pm)

where the sum is over the adjacent saddles and vy, is an ‘orientation anomaly’, 0
if the arc of the expanded I,(0,) has the same orientation as C,(—o,,,), and 1
otherwise. For the relation (15) to hold, three conditions must be satisfied. First,
lgl/|f1¥+: must decay at infinity faster than 1/2|, in order for the infinite arcs to give
zero contribution. Second, there must be no zeros of the quantity in braces in the
denominator of (12), for any w, in the region of the z plane swept by this contour
expansion ; in Appendix A we study these ‘dangerous zeros’ (which for v = 0 are also
branch points of the integrand), and show that they do lie outside this region. Third,
the functions f and g must contain no singularities in this same region; this is the
analyticity condition mentioned in §1.

Next, along the arc of the expanded path which passes through m we transform the
u integration variable in (12) to v, according to the relation

u = v[f2)=ful/Fum = 0+ 0 [f&) = fnl/Fum (16)

Like u, v is real and positive. The remainder (12) becomes

L (= 1yrem [ exp(—v)  n.
(‘ﬂ) = e N2
Rk, N) 2nilcN§n: FN+ J dv L—v/(kF,,,)

x f dzg(2) exp {—olf&)—ful/Fan).  (17)

Cm(=0nm)

The z integral is of the form (1), and so, using (2), we see that the remainder has been
expressed as a sum over integrals through the adjacent saddles:

n __1_ (= d)rmm [ oM T exp (= ) m(_ Y
RN =g, g )0

Combining this with (11), we obtain the following exact resurgence formula, which
will be the basis for hyperasymptotics:

NP1 (—1)rem [*®  pNlexp (— ) )
(n) . memy | __—
= x +2n12(anm>NL YT, (FW)' (1)

This formula provides an explicit and exact form for the remainder in the method
of steepest descent. When we use it for hyperasymptotics we shall choose N to be the
order of the least term of the asymptotic series (3). But it holds for any N, and by
choosing N fixed and letting |k| ~oco0 we can use it to establish at once that (3) is an
asymptotic series in the sense of Poincaré, that is the remainder is of order |k|™" (for
a development of this idea, see Boyd (1991)).
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An immediate application of (19) is to the derivation of formal resurgence relations
for the coefficients 7™ in the expansion about the nth saddle. Choosing N = 0 (so
that the sum over r is empty), substituting the series (3) for the saddles » and m into
both sides of (19), and identifying coefficients of powers of k™!, we obtain

1 (r—t—1)

M8

|
T = = 3 (—1)tan - pom)
' 27‘:13( ) =0 Frim ‘
1 r—1)! P
= — — 1 Vam 7 (m) 4 __nm rn(m)
Znig( 1) - [TO +r——1 s ] (20)

This gives the late terms (r > 1) of the series for a given saddle as a sum over the
early terms of the series for the adjacent saddles. The leading contribution, from the
adjacent saddle m* with the smallest singulant |F,,,|, is

(—1)7nm* (r—1)!
FT

nm*

™ ~ T (21)
and has the familiar ‘factorial/power’ form. (In the interesting special case where
two or more adjacent saddles have the same [singulant|, their contributions add.) The
complete resurgence relation (20) is formal because the factorials are infinite when
t>r—1, but it does give an asymptotic expansion for the late terms. By Borel
summation, the formal relation can be converted into an exact one, but this is just
(19) (indeed we originally obtained (19) in this way, after conjecturing (20)).

In the special case of two saddles (for which there is just one adjacent saddle m)
the resurgence relation (20) was discovered by Dingle (1973) not only for integrals
(where it was rediscovered by Balian et al. 1979) but also for the analogous case of
second-order differential equations (where it was rediscovered by Rakovic &
Solov’ev (1989)).

Now we show how the resurgence formula (19) incorporates the Stokes
phenomenon (Stokes 1864). This is the appearance of a subdominant exponential
(Berry 1989b) as the contour C,(6,) sweeps through one of the adjacent saddles m.
As we have seen, one way to make this happen is to vary 6, through —o,,,,, defined
by (13). Let i

ke = k| exp {i(—= 0 +0)} (22)
and let & sweep through zero. The behaviour of the integration contour C,(6,) during
this process is illustrated in figure 4, and shows that 7™ has a discontinuity, whose
magnitude must be

T™(|k| exp {i(— 0y +0,)}) =T (k| exp {i(— 0, +0_)})
= (— 1)t exp (—kF,,,) T™ (k| exp {—io,,}) (23)

(the extra minus sign can be confirmed by diagrams corresponding to the two
possible orientation anomalies). This jump is exponentially small because kF,,, is
positive real. Exactly the same jump is given by (19); its origin is the pole at
v = kF,,,, which sweeps up through the integration contour (positive real axis) as &
increases through zero (the extra minus comes from the sign of the denominator in
(19)). Note that the discontinuity is independent of the truncation order N, a known
aspect of the Stokes phenomenon (Dingle 1973).

At first sight, the discontinuity might appear inconsistent with the universal
smooth behaviour across Stokes lines, established by Berry (1989a). However, the
discordance arises from a difference of definition. In this paper it has been convenient
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C,(-0,,,+96)

>0
C, (-0,,,+6) (©>0)

(6<0)

Cn ('O-nm)

Figure 4. Jump in the steepest path through n as adjacent saddle m is passed, corresponding to
the appearance of a subdominant exponential (Stokes’s phenomenon).

to define the integration contour in (1) as the single infinite arc through z,,
connecting valleys of the integrand. This contour is k-dependent, and jumps when 6,
passes —o,,,. On the other hand, it is more usual to define integrals with contours
between infinite limits independent of k£, which are therefore analytic functions of k
near ¢, = —o,,. The conventional definition can easily be incorporated in the
present framework by allowing the pole in (19) to drag the integration contour with
it when it passes the positive real axis, as we have explained in detail in §5 of I.

4. Hyperasymptotic multiple scattering

The iteration of the resurgence formula (19) is more complicated than in I, because
now there can be several adjacent saddles (as embodied in the sum over m in (19)),
rather than just two. After iterating (19) s times, we obtain

Ny-1 N;—-1 N,y—-1
0) — (0 0) 1) 01 (2 012
0= % TWKO+% X TWKM IS ¥ TP K0
=0 1 r=0 1 2 r=0

Ng—1
TR z( > T K019 +R<°1-~-8>). (24)
1 s r=0
To avoid long formulae we have here used an abbreviated notation: 0 stands for the
starting saddle n,, 1 for the saddles »,, adjacent to n,, reached in the first iteration,
... s for the saddles n, reached in the sth iteration. For reasons to be explained later,
we allow the arbitrary truncation orders NV to change at each iteration. As well as the
coefficients 7 in all the primitive asymptotic series (3), this formula involves
‘hyperterminant’ integrals K{'--® generalizing those in I, and the remainders
R(Ol cel8) .
The hyperterminants and the remainders depend on

Yo-1,0,001 = Fpo1,5/Fp pis- (25)
Proc. R. Soc. Lond. A (1991)
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1

3
4

Figure 5. A possible adjacency diagram for five saddles, with arrows pointing to the nearest;
thus adjacent to 1 are 2, 3 and 5, with 3 nearest.

The hyperterminants are

KO = 1/k"
s—1 [
K£01...s) — (H J dvp)J§°1"'S), (26)
p=0J0

where N
JOD — (—1)7a  py'o exp (—v,)
’ 2nikNo FYo"  (1—v,/kF,) (27)
J(Ol. L8 — (_ 1)7’8—1'3 vév-sfl_r_l exp (_vs—l)
' 2niFé\iSf,ls_r (1 - (vs—l/vs-z) ysfz,sfl,s)

The remainder after s iterations is

R(o...s)z(nf dvp)EJ(()O...s+1)T(s+l)( Vs ) (28)

p=0J0 s+1 s, 8+1

The scheme (24)—(28) gives an exact representation of the integral (1). It looks
complicated, and might appear to give no advantage over the original representation
as a single integral, because the hyperterminants are multiple integrals whose order
increases with order of iteration. However, the hyperterminants are universal
Sfunctions of the singulants and truncations, which need be evaluated only once; the
non-universal aspects of the scheme, distinguishing the particular integral being
evaluated, are embodied in the coefficients 7 in (24).

It is convenient to interpret (24) by regarding iteration as multiple scattering
between successive groups of adjacent saddles. The first term (involving K©)
corresponds to no scatterings and involves the single saddle 0, the second term
(involving KV) corresponds to single scatterings from 0 to one of the adjacent
saddles 1, ete. A diagrammatic representation is appropriate. The first step is to
construct an ‘adjacency diagram’ (figure 5) in which the saddles are depicted as
points in a plane (e.g. the original z plane), and each is connected to those adjacent
to it (the significance of the arrows will be explained later). A multiple scattering
path is now defined as a sequence of saddles, each adjacent to the next. The set of
multiple scattering paths can be constructed as illustrated in figure 6. The number
of paths proliferates rapidly : in figure 6, which corresponds to five saddles, connected
as in figure 5, the first three iterations generate 15 paths. When there are just two
saddles (the case considered in I) there is only one scattering path, bouncing back and
forth between them. For such backscattering, the definitions (13) and (25) give
y = —1, so that the denominators in the integrals (26) and (27) do not vanish. In
general, a denominator will vanish if the corresponding y is positive real, but we
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saddles n —p»
1 2 3 4 5

¢—— iterations s
3]

3

Figure 6. The fifteen multiple scattering paths from saddle 3, generated by the adjacency
diagram of figure 5 by hyperasymptotic iteration.

ignore this exceptional case (which is the signature of a ‘double Stokes phenomenon’,
in which a steepest path from one saddle hits a second, turns through a right angle
and then encounters a third).

In (24) each scattering path contributes a ‘hyperseries’ over the orders r of the
original asymptotic expansion, whose limits are » = 0 and »r = N;—1 (for a path with
s scatterings). Unless the truncations N, are specified, the scheme is not unique.
In any truncation scheme, each hyperseries must be shorter than its prede-
cessor, because from (27) the hyperterminant integrals (26) do not converge unless
N1 <N,. This has two consequences. First, the sequence of hyperseries along each
scattering path must eventually halt — when it generates a hyperseries containing a
single term. Second, each sequence contains only a finite amount of information,
because it involves only a finite number of primitive coefficients 7€ (the number
being the truncation N when the saddle » first appears).

Because of this finite information, hyperasymptotics will halt with a finite
remainder. It might seem natural to make the remainder as small as possible by
choosing a large starting truncation, and indeed arbitrary accuracy can be obtained
in this way, as we showed in I. However, such schemes are unnatural because they
lead to series whose terms get very large before decreasing, thereby violating the ‘live
now, pay later’ philosophy underlying asymptotics, where ultimate accuracy is
sacrificed for improvement at every stage. (Without this philosophy, one could as
well use the convergent series in k which can be found in many cases, but which are
computationally inefficient when |k| is large.)

To preserve the spirit of asymptotics, we shall consider each scattering path
separately and demand that the successive series it generates are optimally
truncated ; that is, truncated near their least terms, so that the remainders R©:--® for
each s along the path are smallest. In determining the optimal Ns, we shall make use
of the concept of the nearest saddle to a given saddle n, defined as the adjacent saddle
m with the smallest singulant modulus |F,,,|. As in (21), we shall denote nearest
saddles by asterisks, so that, for example, the path 0123* is the path starting at
saddle 0, going through given saddles 1 and 2, and ending at the saddle 3* nearest
to 2. In an adjacency diagram such as figure 5, nearest saddles can be indicated by
arrows.

To determine the optimal truncations we must estimate the remainders R©---%,
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Figure 7. One of the multiple scattering paths in figure 6 (thick line) together with nearest saddles
(*) contributing at each level of truncation (shown linked to their progenitors by thin lines). For
the second iteration the nearest saddle (3) is also the next saddle on the actual path.

This we do by approximating 7¢*V to lowest order with (21) (thereby replacing the
sum over the (s+ 1)th order saddles, adjacent to the sth, by the saddle (s+ 1)* nearest
to the sth). Moreover, the denominators in (27) are of order unity (this follows from
the procedure, used in I, of replacing the vs in the denominators by the maxima of
the rest of the integrands), and so we approximate them by unity. The vs are now
uncoupled, and the remainders can be evaluated as products of factorials. These can
be simplified with the aid of Stirling’s approximation, and we obtain

NYoE exp (—N,)
1V (2m) lkFOI*lNO
NYshexp(=Ny) (V=N )N Vond

I =
(zn)(s+1)/2 |k|N° IFS'(S+1)*|NS =0 |Fp, leNp Npiq

|RO| =~

1761,
(29)

lR(o...s)l ~ |T§)(s+1)*)|

Successive minimization along the scattering path now gives
N, = Int |kF,,.|,
Ns—l — Int Ns—l . (30)
L+1Ys 1, sl L+1Fo g o/ Fy s11)5]
Henceforth we shall omit the ‘Int’ symbols. The nearest saddle to s, that is (s+1)%*,
cannot be more distant than the preceding saddle s—1, so that
|ys—1,s,(s+1)*| = 1’ and Ns < %Ns—l- (31)

Thus each hyperseries is at most half the length of its predecessor. Figure 7 shows one
of the scattering paths of figure 6, together with the nearest saddles which contribute
to the successive truncations.

With these truncations, the optimal hyperasymptotic remainders can be estimated
from (29). The zero-stage (superasymptotic) remainder is

exp (—|kFy4|)
V(21 |kFy4|)

N, = Int

RO ~ |76 (32)
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The improvement from the (s—1)th to the sth stage is

R-..9
R(O...s—l)

~ 1+ 'ys—l,s,(s+1)*|
\/(2TEN8—1 |y8*1,8,(8+1)"‘|>

Pl +1EL
xexp{—Ns—l In [' sy I+ : Ls']}
s—1,s8*

((s+1)*)
T
(s*)
To

(33)

This does represent an improvement, rather than a degradation, because (31) and the
definition of nearness guarantee that the argument of the logarithm exceeds unity,
so that the exponent is positive. On average the improvements diminish, because the
truncation limits decrease (equation 30). The improvement is greater if s is a saddle
far from s — 1 (rather than the nearest saddle s*), and less if the saddle (s+ 1)* nearest
to s is closer to s than s—1 was.

In the special case of two saddles, equivalent to that considered in I, the formulae
simplify considerably. There is only one adjacent saddle, and it is of course the
nearest, so that (cf. (25)) y,_; 5 5.y =—1 and (cf. (30)) the sth truncation limit is
N, = |kF,,|/2°. The hyperasymptotic improvement (33) is

R(O...s) 23/2 ”CFOII
RO~ \/(nIkFoll)eXp{_ 951 In2;. (34)

It is the accumulation of these improvements which, together with (32), gives the
final remainder exp {—|kF,;|(1+2 In 2)} = exp {—2.386|kF,,|} obtained in I.

The optimal truncations (30), and the estimate (33) for the improvements in the
remainder, hold for a given multiple scattering path. Each path can be followed to
its end (when hyperasymptotics halts) and the final remainder estimated. In general
the remainders will all be different. Obviously the overall accuracy of the scheme is
controlled by the path with the largest final remainder. Therefore it is pointless to
evaluate hyperseries along the other paths more precisely than this, so that
hyperasymptotics for these other paths should be prematurely terminated at this
level.

5. Example: Pearcey’s integral

We shall calculate
P(x,y) = f dz exp {i(32* +3x2% +y2)}, (35)
C

where C' descends into the valleys at oo exp (in/8) and oo exp (5in/8). This integral
was first studied (for real x and y) by Pearcey (1946). Provided the contour passes
through just one of the three saddles, this has the form (1), with k£ = 1 (any other &
can be reduced to 1 by scaling x and y), g =1 and

s, y) = =il + e + y2). (36)

We choose the complex values v=7, y=1+i (37)

thereby ensuring that the magnitudes of the singulants are all different.
The positions of the saddles (where 23+ xz+y = 0) are

z, = +0.077621247095613 —12.574820095 698 692,
z, = —0.143675227409104 —10.142 009934077984, (38)
zg = +0.066 053980313492 +12.716830029776 676,
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E K-

Figure 8. Some phase contours of f(z)—f,, for the Pearcey integral (35)—(37) with (a) n =1,
(b) n =2, (c) n = 3. These saddles are denoted by e, and adjacent saddles by o; the bold line
contour in (b) corresponds to the steepest path deformation of the contour in (35); dangerous
zeros (Appendix A) are denoted (for » = 0) by m.

saddles 77 ————7>pp
1 2 3

—

_
w
<¢—— iterations s
[\®)

3

Figure 9. Adjacency diagram, and multiple scattering paths from saddle 2, corresponding to
figure 8.

and the contour along the real axis can be deformed into the steepest path through
saddle 2. Figure 8 defines the orientations of the contours through the three saddles,
and shows the constant-phase lines (cf. figure 3) for the three functions f(z) —f,,. Thus
2 is adjacent to 1 and 3, and 1 and 3 are not adjacent. The adjacency diagram, and
the multiple scattering paths from 2, are rather simple, as shown in figure 9. The
orientation anomalies (cf. equation (15)) are
Ye=1 Ya=0, 75 =0 7v,=1 (39)
The three singulants are
F (= —F,) = +2.429559462 904937 —19.601681 152318827,
|Fyol = 9.904294 025047 193,
F,, = —2.858116 325734320 —114.897 069 623 055 830,
|Fy,| = 15.168767 658 765 224,
s = +5.287675788639256+15.295388470 737003,
|Fy| = 7.483358490796 506. /
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Therefore 1 is the nearer of the saddles adjacent to 2. We shall soon give the reason
for including F; even though this singulant cannot contribute to hyperasymptotics
because 1 and 3 are not adjacent.

The raw data of the hyperasymptotic scheme (24) are the asymptotic coefficients
T™ appearing in (3). From the contour integral (8) we obtain (by expanding the
denominator binomially)

o _ =2 L (Y B4a/5) Brot=Y)!
T A (B 4a/22) D, (2r—2t)1¢!

(41)

These coefficients can be expressed in closed form in terms of Legendre or
Gegenbauer polynomials (Abramowitz & Stegun 1972), as follows:

o — vV (2m)irte [df p (é’)]

2rztr+1(3+x/zi)(sr+l)/2 d—gr 37

C—{(3+x/23)/2)

cptl
- _\/21”2(7_%” Cr+%
1
Zir+1(3+x/zi)2r+§ 2r

({(B+a/22)/2) 7). (42)

On the basis of the leading-order late terms formula (21) and the singulants (40)
we expect the least terms of the sequences 7™, T'®, T® to be near » = 10, 10 and 15
respectively. Figure 10 shows that this is the case. If saddles 1 and 3 had been
adjacent, the smallest 7" and 7 would have been near » = 7; the fact that they
are not confirms that the nearest saddle, which dominates the asymptotics, is
determined not simply by proximity (smallest |F']): adjacency is necessary too.

We also require the hyperterminant integrals, defined by (26) and (27), for the
multiple scattering paths of figure 9. In the present case, where k = 1 and both paths
starting from saddle 2 scatter back to 2, the first and second hyperterminants are

—1)a [ pNoT"1 exp (—0)
K = ( d
' 2miF g Jo ’ 1—v/Fy, ,

( — ]_)7’01"’712( —_ ]_)Nl_"_l

K©12) —
" 4 F "
XJ“’ gy 20T exp (—vo)r’ gy, 1 exp (= vy) (43)
0 ° 1—v,/Fy 0 ! L+v,/v,

(Note that here the subscripts 0, 1, 2 refer to orders of scattering, as in (24)—(28), and
are not labels of saddles.) These integrals were computed as explained in Appendix
B of I. We also needed the hyperterminants K{°'?® which were approximated by
replacing the vs in all the denominators by the stationary values of the other factors
of the integrands, thereby uncoupling the integrals, which become proportional to
factorials.

To the nearest integer, the rules (30) give the optimal truncation limits for the
different paths of figure 9 (labelled by their saddle sequences) as

N@2) =10, N@21)=N@23)=5, N(212)=N(232)=2,)

44
N(2121) = N(2123) = N(2321) = N(2323) = 1. | .

Proc. R. Soc. Lond. A (1991)



Hyperasymptotics for integrals with saddles 671

l Tlr | A ] T2r |
[ ]
(@) f (®)
0.00004 0.00004 4
[ ] [ ]
° [ ]
[ ]
° [ ]
[ ] ° b
0.00001 . o 0.00001 o
®eg0® ] ®oo0®
5 10 15 > 5 0 15 >
r r
[ ]
[T, | A
[ ]
4x 107 ©
° [ ]
[ ]
[ ]
1x107 . o*
..'Ooooo.'. >

5 10 15 20 25 r

Figure 10. Magnitudes of asymptotic coefficients (41) for the three saddles in Pearcey’s integral
(35)—(37). Note the different scales for saddle 3.

Figure 11 shows the magnitudes of all the terms on all the scattering paths. This
shows that the path with the largest remainder when hyperasymptotics terminates
is 2121. As explained at the end of §4, this path controls the accuracy, and we should
discard smaller terms from other scattering paths; these are the four terms below the
line in figure 11.

Now we can evaluate the contributions to the terms in the hyperseries (24) and
compare the partial sums with the ‘exact’ value of the Pearcey integral; this was
computed from the convergent double series in ascending powers of x and y, taking
about 3000 terms to ensure sufficient accuracy. Obviously it is sensible to add the
terms, in the various hyperseries, in order of decreasing magnitude. Figure 12 shows
the relative errors |approximate/exact— 1| thus achieved. As expected, the errors
decrease uniformly until the term 2121 at the end of the accuracy-controlling path
is included. After that, there is no improvement, even though the last four terms
decrease by nearly two orders of magnitude —indeed the very next term (2123)
increases the error.

Table 1 shows some numerical values and relative errors of computations of
P(7,141i). In addition to the ‘exact’ value, we include the lowest-order saddle-point
approximation (that is, the first term of (3)), superasymptotics (that is, (3) truncated
at its least term), and the best hyperasymptotic approximation, which includes the
path 2121 and all larger terms. The ultimate error agrees well with the theoretical
estimates (32) and (33), which give 1.103 x 1072,

Although our main aim was analytical understanding rather than the development
of computational algorithms, we remark that hyperasymptotics seems to be
numerically efficient: computation of the optimal approximation was about three
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terms along scattering paths

' : : >
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Figure 11. Magnitudes of the terms in the multiple scattering paths of figure 9 in the
hyperasymptotics of Pearcey’s integral.

number of terms added
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Figure 12. Magnitudes of the relative errors in hyperasymptotics of Pearcey’s integral,
incorporating successively smaller terms.

Table 1. Approximations to the Pearcey integral (35)

level approximation to P (7, 1+41) lapprox./exact —1|
lowest 0.779703507027512+10.765551 648 542315 1.496 x 102
super. 0.788920520763900+10.752101783 262 683 2.916 x 1076
ultimate hyper. 0.788922837595360+10.752103959759701 1.5635 x 10712
exact 0.788922837596969+10.752103 959759243 0
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times faster than the ‘exact’ value. (The absolute time taken to calculate the ‘exact’
value, using the package Mathematica on an Apple Macintosh IIfx computer, was
400s.)

6. Concluding remarks

We have greatly extended the accuracy of the method of steepest descent, while
retaining its numerical effectiveness as an integration technique, by basing it on the
exact resurgence relation (19). The resulting iteration scheme (24)—(28) incorporates
the effects of successively smaller exponentials, which arise from ever more distant
groups of adjacent saddles and repeated scatterings from nearer ones. An attractive
feature is the separation of non-universal properties characterizing the particular
integral (1) being studied, and embodied in the raw asymptotic coefficients 7™, from
the universal properties common to all integrals with saddles and embodied in the
universal hyperterminant integrals (26)—(27). In a sense the history of asymptotics
is repeating itself, albeit at a more refined stage, because as with Stokes’s (1847)
procedure of optimizing the raw asymptotic series by truncation at its least term, our
iteration scheme too comes to a natural halt, representing an optimum level of
approximation. We envisage several lines of further enquiry.

First, we hope mathematicians will be able to establish rigorous error bounds
(rather than our estimates (32)—(33)). The explicit formula (28) for the hyper-
asymptotic remainder, which eliminates manipulations of divergent series, provides
a natural starting-point for such investigations. It would be necessary to combine the
errors for all the multiple scattering paths, which we have considered in isolation.

Second, there could be extensions to integrals (1) involving functions f(z) and g(z)
with singularities. Clearly, each class of singularity would require special treatment.

Third, there is the question of ‘beating the halting barrier’, that is increasing the
accuracy of the optimized scheme. Recall that for two saddles the error is roughly
exp (—2.386|kF|). Further systematic improvement of the approximation (‘ultra-
asymptotics’?) would require evaluation of the roughly log, |kF,.|-fold multiple-
integral remainder (28). One possibility is to substitute the convergent series, in rising
powers of the argument, for the function 7®*V. The motivation for this procedure is
that the shortening of successive optimally truncated hyperseries can be regarded as
a ‘renormalization’ of the original large parameter, which becomes effectively unity
when the procedure halts. Preliminary indications are that fully halted hyper-
asymptotics can be terminated in this way, but that convergence is very slow.

Fourth, the k-dependence of hyperasymptotics should be unravelled. The first
hyperseries (superasymptotics) is an exponential multiplied by a finite series in
descending powers of k. The higher hyperseries have approximately this form, with
smaller exponentials, but establishing the full k-dependence would involve
approximating the hyperterminant integrals (26)—(27) to hyperasymptotic accuracy.
The result could be that hyperasymptotics is a multiple-scale expansion whose large
parameters are the different singulants.

Fifth, there is the extension to integrals with more than one variable. As well as
being necessary to beat the halting barrier and approximate the hyperterminants, as
just discussed, hyperasymptotics of multiple integrals would be useful in physics.
Double integrals occur naturally in diffraction theory, where large k corresponds to
the geometrical-optics limit and small exponentials represent complex rays. Infinite-
dimensional integrals occur in statistical mechanics and quantum field theory, where
small exponentials represent instantons. It is tempting to regard hyperasymptotics
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as a model for the feeble interaction of particles, represented by saddles. Each lowest
saddle-point contribution gives the ‘bare mass’ of the corresponding particle;
higher-order terms give the ‘local renormalization’ of this mass; the renormalization
diverges, and hyperasymptotics describes the ultimate breakdown of locality, when
the particles can no longer be considered in isolation.

Sixth, resurgence should be systematically applied to WKB theory for differential
equations. In one dimension this would provide the extension of I to equations with
effectively more than one transition point. The generalization of adjacency to
transition points might justify the WKB topological rules of Knoll & Schaefer (1976),
and complement the exact WK B analysis of Voros (1983). In more dimensions, one
goal of resurgence would be to understand the semiclassical (small %) expansions of
quantum mechanics. For example, the expansion of the resolvent operator in powers
of 7 (see Baltes & Hilf (1976) and Stewartson & Waechter (1971) for the case of
quantum billiards, i.e. vibrating membranes) usually diverges, and we expect the
divergence to contain information about the contributions from the periodic orbits
of the corresponding classical system. These contributions are of order exp (iS/%),
where S is the action of the orbit. Each periodic-orbit contribution is itself the first
term of a semiclassical expansion; it is likely that all these expansions diverge and
that the divergences are interlocked by resurgence. For classically chaotic systems,
the sum over all the periodic orbits itself diverges (for a discussion see Berry (1991)),
and this divergence, like a similar one for the Riemann zeta function (Berry &
Keating 1990), can also be interpreted by resurgence, albeit of a type different from
that derived here.

We are grateful to Dr W. G. C. Boyd for carefully reading the manuscript and making many
helpful suggestions. C.J.H. received financial support from SERC.

Appendix A. The dangerous zeros

This concerns places where the quantity in braces in the denominator of (12)
vanishes for real non-negative u, that is places where

Pu(2) = k(f(2)—fn) (A1)

is real and non-negative. We must show that there are no such ‘dangerous zeros’ in
the region # defined as that swept by the deformation (by expansion) of the contour
I, (6,) (figure 2) described in §3. This is the region enclosed by the contours
Cp(—0,,) through the saddles m adjacent to n (figure 3), together with the arcs at
infinity joining their ends, and excluding the contour C,(8,) itself (where ¢,,(z) is real
and non-negative by definition).

Consider the lines of constant phase of ¢, (z) issuing from the double zero of ¢, (2)
at the saddle z,; z, is a singularity of these lines, around which the phase changes by
4m (i.e. a phase dislocation of strength 2 (see Nye & Berry 1974)). Only on two of these
lines, those where the phase of ¢,(2) is 0 and 2mx, is ¢,(z) real and non-negative, and
these lines are the two halves of C,(6,). The remaining phase lines fill a region
bounded by the special phase lines (defined in the paragraph after (12)) through the
adjacent saddles. This is precisely the region # which therefore cannot contain
dangerous zeros.

The function ¢,(z) has zeros other than the double one at z,. These are situated
outside # and can be reached successively by starting from z and passing over the
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saddles m # n along lines of constant phase of ¢, (z). Typically these other zeros are
simple (i.e. phase dislocations of strength 1), with a dangerous zero (for given «) on
one line of constant phase of ¢,(z) issuing from each of them. If f(z) is an Mth order
polynomial, there are M —2 such simple zeros of ¢,(z), and hence M —2 dangerous
zeros outside Z. Figure 8 shows an example with M/ = 4, where there are three saddles
each with its associated function ¢, (2) which has two simple zeros.
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