Quantum Chaology: Our Knowledge and Ignorance
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Abstract. A brief review is given of what has been achieved in understanding the
discrete spectra of classically chaotic bound quantum systems, emphasising the
central role of semiclassical techniques and the unsolved problems associated with the
clash between the long-time limit and the semiclassical limit.

We are fairly sure that, apart {rom a curious special class of cases [1,2], there is no
chaos in quantum mechanics. It is obvious, however, that in the semiclassical limit
#—0 (e.g. highly excited states} the quantum behaviour must somehow reflect the
nature of the classical trajectorics, and in particular must exhibit characteristic effects
if the orbits are chaotic. For the study of these quantum signatures of classical chaos
I proposed the term 'quantum chaology' [3,4]. Here I provide a brief ‘readers’ guide' 1o
the main advances there have been in the subject, and emphasize the major unsolved
problems. I confine myself to the quantum chaology of the discrete spectra (energy
levels and wavefunctions) of time-independent bound Hamiltonians with N (>1)
freedoms. Therefore I will not discuss the important areas of the time-development of
quantum states [5,6] or chaotic scattcring [7,8]. It is hardly necessary to say that even
for spectra my account will be partial and deliberately selective,

One thing that is very well known about the density d(E) of energy levels is its
average valuc <d(E)> (over energy ranges that are classically small but include many
quantum levels). This is given by the Weyl rule [9,10]: one quantum state per
classical phase space volume #V. Thus d is proportional to AV and the level spacing
proportional to AV, The first few A-corrections to <d> are known for quantum
billiards (vibrating membranes) [10], including the effects of magnetic flux [11] and
relativity [12] (Dirac spinorization). These corrections are routinely used in checking
computations of quantum billiard cigenvatues, and form the basis of an extremely
accurale error-detection scheme [13]. 1 have not seen explicit general formulae for the
h-corrections to <d> for general smooth potentials, apart for the one-dimensional
{WKB) case [14].

Although the first #-corrections for the smoothed level density are known for
billiards, nobody has studied the late terms of the series. But we know that this must
diverge, because the exact d(E) is a series of Dirac &, which cannot be represented by
a power series in 2. The approach to quantization, starting from <d>, is given not by
h-corrections but by a series of contributions, of order exp(iS,/#} (i.e. nonanalytic
as fi—0), from each classical closed orbit, with action §,. [15,16,17]. Each closed
orbit describes oscillatory clustering of the levels, on an energy scale /T, where T
is the period of the orbit. It is important to appreciate that the clustering associated
with a given orbit is classically small (of order #) but large in comparison with the
quantum level spacing (each ‘cluster’ includes of order 1/#V-1 levels), Therefore in
order to understand specira on fine scales (that is on the scale of individual levels)
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within the framework of semiclassical asymptotics, enormously long classical orbitg
must be involved, with periods of order 1/4Y-1,

There is, however, another framework for studying the fine scales of specira,
namely energy-level statistics [18-22]. Here we abandon the attempt to locate each
level precisely, and instead study average properties (fluctnations, correlations,
spacing distributions). Now universality emerges: the statistics depend only on the
classical chaology, in the following way. For classically integrable systems, the
levels are Poisson-distributed {18); for classically chaotic systems, levels are
distributed according to random-matrix ensembles [23] that depend on symmetries -
Gaussian unitary (GUE) when there is no symmetry [24-26], Gaussian orthogonal
(GOE) when there is time-reversal and the system is Bosonic (e.g. scalar-wave) [21],
and Gaussian symplectic when there is time-reversal and the system is Fermionic
[27]. Of course there are intermediate cases, where some orbits are regular and some
chaotic, and, correspondingly, statistics which interpolate between the four
universality classes.

To understand these largely numerical observations about level distributions, the
appropriate theorctical framework must be semiclassical, because statistics are not
even defined for an individual Hamillonian unless there are infinitely many levels,
and then almost all are highly excited - that is, semiclassical. The semiclassical
connection is nccessary in order to explain the observed dependence on the dynamics.
Without this connection, other theories, such as those based on the 'motion’ of Ievels
as parameters vary [28-30], must fail, although they certainly contain interesting
mathematics.

The only semiclassical theory available at present is based on the expansion of the
spectral fluctuations d-<d> as a sum of closed orbits, and we have secn that any
explanation of fine-scale spectral structure must involve the very long orbits, At this
point we come up against the central theoretical problem in the whole subject [17],
namely the fact thal our semiclassical formulac break down at long times. This
reflects the fundamental quantum-mechanical fact that the semiclassical limit 7~—0
and the long-time limit ¢—soo do not commute, We do not know how, or even
whether, the closed-orbit sum gencrates the individual 8s in the level density for
chaotic systems. This is a serious - perhaps shocking - situation, because it means
that we arc ignorant of the mechanism of quantization. (Sometimes, singularities in
d(E) can be gencrated by summing selected infinite series of orbits, for example all
repetitions of a given one, but these are false singularities [31), not energy levels,
even for integrable systems [32].)

Nevertheless, there has been some progress in incorporating long times into the
semiclassical framework. The intensities (squares of amplitudes) of the closed orbits
are purely classical quantities which for long times obey a sum rule [33], depending
only on the classical chaology and reflecting the uniformity of the distribution of
long closed orbits in phase space. The requircment that the long orbits must combine
(albeit by some unknown mechanism) to give a sequence of & with the correct
density <d> gives another sum rule [34,17], involving the interference between pairs
of orbits. With these classical and semiclassical sum rules, it was possible to
understand a large class of energy-level statistics [34] in a fundamental way, that is in
terms of classical mechanics, by means of semiclassical asymptotics. These are the
statistics quadratic in d(E), such as the spectral rigidity, the number variance, the
two-level correlation function, and the form factor (all defined in [22]).

From this semiclassical theory of some of the statistics, there emerged as an
unexpected bonus the explanation [34] of the breakdown of universality at large
energy ranges, first observed in computations [35] on an integrable system. Since the
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miversality is a conscquence of classical uniformity, and this only holds for long
yrbits, it will fail at and beyond energy scales where the spectral fluctuations depend
yn short orbits, This scale is ATy, where Tpyiy is the period of the shortest orbit
with energy E.

The difficultics associated with long times disappear if the spectrum is smoothed,
for example by giving the encrgy a sufficiently large imaginary part ie, because then
the sum over closed orbits converges - and indeed provides a useful description of the
large-scale spectral fluctuations [41,42]). For chaotic systems, however, £ must
exceed a value determined [36] by the entropy of the dynamics. Overcoming this
'entropy barrier’ and thereby understanding quantization, is thus a problem of analytic
continuation. One possible way to solve this is suggesied by the analogy {34, 37,17]
between the spectra of classically chaotic systems and the imaginary pasts of the
zeros of Ricmann's zeta function. This analogy has already proved productive in the
quantum—Riemann direction, by inspiring an analytical and quantitatively-accurate
formuia [38] for the number variance of the Riemann zeros. Recently [39] it was
employed in the Riecmann—quantum direction, to obtain a quantum analogue of the
Ricmann-Sicgel formula [40] which enables efficient computation of the zeros; the
idea (already underlying the scmiclassical sum rule [34]) is the 'resurgence’ {17] of the
long orbits to give, by resummation, information related to <d> and the short orbits,
This new quantum condition is the vanishing of a sum over a large but finite number
of closcd orbits. Perhaps it will lead to a semiclassical explanation for the higher-
than quadratic Jevel statistics, which the earlier theory {34] did not achieve.

Even if the closed orbits can be resummed to give a quantum condition, cither
explicitly in the form of the 'Ricmann-Siegel look-alike' or implicitly as a
compactificd determinant [43], there remains the awkward fact that the semiclassical
theory on which it is based is only a lowest-ordcr one, in the sense that higher terms
in A, mutiplying the contributions exp([iSn,/h}, are ignored (and unknown). This
raises the uncxplored question of the asymplotic accuracy and meaning of any
‘eigenvalucs' generated by these methods: the true levels have spacing #Y, but the
methods have crrors #2. It might be possible to get some insight into this difficult
problem by studying systems with special symmetrics, such as quantum biiliards on
tilings of the hyperbolic plane [44.42], or the quantum cat maps [45-7], for which
the sum over closed orbils is known o be exacl.

For wavcfunctions, the mixture of knowledge and ignorance is very similar -
although for a long time we did not appreciate how closc the analogy is. There is a
lowest-order description (analogous to the Weyl rule for the smoothed level density)
which states (hat the probability density for an eigenstate of an ergodic system is the
projection of the energy surface from phase space onto coordinate space [48] (for
integrable systems, tori must be projected). Then some spectacular computations
[49,50] showed wavefunctions looking very different from uniform projections of
the energy surface, revealing imprints ('scars”) of individual closed orbits. These led
to the development of a theory {51] in which, just as for the level density, the
Iowest-order wavefunctions are corrected by characteristic interference fringes near the
closed orbits. The theory can also be formulated in phase space [52,17], and the
characteristic fringes there, which take the form of hyperbolae with each orbit's
invariant manifolds as asymptotes, could explain certain features of computations
[53] of the Husimi (smoothed Wigner) functions for eigenstates. We do not know
how to understand the {divergent} superposition of very long and overlapping scar
patterns. There is rcason to think that their net effect might (after some kind of
resummation) be to provide a Gaussian random background decorating the smooth
background of the lowest-order description, as conjectured in the old theory {43,91.
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