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The geometric phase acquired by the eigenstates of cycled quantum systems is given
by the flux of a two-form through a surface in the system’s parameter space. We
obtain the classical limit of this two-form in a form applicable to systems whose
classical dynamics is chaotic. For integrable systems the expression is equivalent to
the Hannay two-form. We discuss various properties of the classical two-form, derive
semiclassical corrections to it (associated with classical periodic orbits), and consider
implications for the semiclassical density of degeneracies.

1. Introduction

Since its discovery (Berry 1984), considerable attention has been devoted to the
geometric phase v, acquired by the eigenstates | n) of quantum systems H(R) whose
parameters B are taken through a cycle C. According to one of a number of
equivalent expressions,

1
== 1.1
Vn ﬁL Vs (1.1)
where S is a surface in parameter space bounded by C, and
V, = —ik{dn|A|dn) (1.2)

is the two-form whose flux through S is the geometric phase. There exist several
extensive reviews of the geometric phase (see, for example, Shapere & Wilczek 1989).
(Note: multiplying by —1i in (2) is equivalent to taking the imaginary part, and the
factor of # introduced will render V, #-independent in the classical limit.)

Given V,, a quantum mechanical quantity of geometric origin, it is natural to ask
what it corresponds to classically. For integrable systems this question was answered
by Hannay (1985), who discovered a classical anholonomy for cycled integrable
systems, analogous to the geometric phase. Hannay’s two-form was subsequently
shown to correspond to V, in the classical limit (Berry 1985).

More generally, the correspondence principle, couched in geometrical language,
asserts that in the classical limit, the spectral invariants of quantum systems
correspond to the invariant manifolds of classical systems. For integrable systems
the invariant manifolds are tori, and this correspondence is embodied in the torus
wave functions and quantization conditions (Berry 1983) which form the basis for
the semiclassical analysis of Berry (1985). The invariant manifolds of chaotic systems
are the energy shells and the isolated periodic orbits contained therein. Semiclassical
quantization conditions in terms of these are fundamentally more difficult than for
the integrable case; the quest for such conditions lies at the heart of quantum chaology
(see, for example, Gutzwiller 1990; Berry 1991; Keating 1991).

1 This paper was accepted as a rapid communication.

Proc. R. Soc. Lond. A (1992) 436, 631-661
Printed in Great Britain 631



632 J. M. Robbins and M. V. Berry

As Hannay’s two-form is associated with invariant tori, one would expect the
classical two-form for chaotic systems to be associated with the energy shell and
periodic orbits. A theory along these lines, along with some of the difficulties
encountered, was previously discussed informally in Berry (1990). Here we present
a complete account of the classical limit of the two-form in a form applicable to
chaotic systems.

Before proceeding, let us mention an interesting though quite distinct extension of
the Hannay two-form due to Montgomery (1988) and Golin et al. (1989). These
authors consider classical hamiltonian systems with parameter-dependent con-
tinuous symmetries (though not necessarily integrable), and establish the existence
of a unique (hamiltonian) connection, i.e. a prescription for lifting curves from
parameter space to phase space (with certain additional properties). Crudely
speaking, the connection describes the geometrical component of motion in the
‘ignorable’ coordinates (i.e. those conjugate to the momenta which generate the
symmetries); in the integrable case these momenta are the actions, and the
connection determines the geometrical component of the angle evolution, namely
the Hannay angles.

Here we are considering a different problem; our concern is the intrinsic
anholonomy, defined quantally but so far not classically, associated with ergodic
hamiltonians with no symmetries at all. One might attempt to apply the preceding
formalism to such systems, by regarding the dynamics itself as the symmetry, but
the associated connection is ill defined, as the expressions for it diverge exponentially.

The paper is organized as follows. We introduce a time-dependent formalism for
the quantum two-form (§2), from which its classical limit, our principal result,
follows directly (§3). The cases of anticanonical symmetries and additional constants
of the motion (in particular, integrable systems) are considered (§4), along with some
specific examples (§5). We then develop an alternative formalism for both the
quantum and classical two-forms (§6), which is used to establish formally that the
two-form is closed (§7). Finally, we calculate the periodic orbit contributions to the
two-form (§8) and its derivative, the density of degeneracies (§9). In the interest of
maintaining continuity, the derivations of some results have been placed in
Appendixes. Throughout we use the notation of differential forms; Arnold (1978)
provides a good general reference.

2. Time-dependent quantum formalism
(@) Derivation

For chaotic systems, the classical limit of (1.2) is not directly accessible, because
(and in contrast to integrable systems), semiclassical eigenstates are not known. As
is customary in quantum chaology, we proceed by expressing the spectral property
of interest (in this case, V,) within a time-dependent formalism. Taking the classical
limit is then a straightforward matter.

We start with the equation (Berry 1984)

(n|dH|mY A {m|dH|n)

Vn:_lh = (En_Em)z

m#n

(2.1)

Here, as elsewhere, d is the exterior derivative with respect to parameters R.
Throughout the paper the R dependences are usually left implicit, though
occasionally in the interest of clarity they are indicated explicitly.
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The energy denominator in (2.1) may be expressed as a time integral;

1 0
(B,—E,)?=—=lim | dte“tcosw,,t, (2.2)
€>0J0
where w,,, = (E,—H,,)/#. (Usually the convergence factor lim, ,exp (—et) is left
implicit.) The oscillations cosw,,,, ¢ may then be incorporated into time-dependent
matrix elements, as in

cosw,,,, t {n|dH| my A {m|dH|n)
= }<n|(dH),|m) A <m|dH|n) +<n|dH m)y A {m |(AH),|n)).  (2.3)

Here (dH), = Ut(t) (dH) U(t) is the time-evolved operator, in which U(t) is the
evolution operator at fixed £, namely

U(t) = e AU, (2.4)

With the substitution of (2.3) and (2.2) into (2.1), the restriction m # n on the sum
is no longer necessary, and 2, |m) {m| gives the identity. Therefore
v, =§% At t¢n |(dH), AdH+dH A (dH),| n). (2.5)
0
The sum of operators appearing in (2.5) is actually a commutator, i.e.
(dA), A dH +dA A (dH), = [(dH),, AdH]. (2.6)

At first this might appear surprising, since the commutator of two scalar operators
is antisymmetric in its arguments. However, the commutator of operator one-forms
is symmetric, the two antisymmetries cancelling as it were. To clarify this point, let
us consider (as we often will in what follows) the ‘reference’ area element [Jj in
parameter space drawn in figure 1a, spanned by infinitesimal displacements », and
r, from R. The flux through [, of d4 AdB+dB Ad4, as computed from the usual

rules for two-forms, is

A ~

(/fléz _AZBI) + (él‘{z _Bz

By

1) (2.7)

~ def . ~ PN ~
(here 4, = d4 7, and similarly for B), whereas the flux of [4, A B] through [ is
(4, By]—[4,,B,], or e a A A a A A
(4, By,—B,A,)— (4, B,— B, 4,). (2.8)

Clearly (2.7) and (2.8) are the same.
Substituting (2.6) into (2.5) we obtain

i [® 5 4
V=55 | dtnll(dH), AdH]np, (2.9)
0
our principal formula for the quantum two-form. We may write it in a form more
symmetrical with respect to time. Since expectation values of eigenstates are time
invariant, (n|(dH), AdH|n) = {n|dH A (dH)_,|n). Therefore

Vv, = ?;ifw dttln|[(AH),+ (AH)_,, AdH] n). (2.10)
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(b)

Hilbert space

[n> 'Uz(z‘)ln>

Uoin>

u@) |n>
%) 0@

DP(z,t)

nearby orbits

2,0
Energy shell H(z,R)=E

periodic orbit y;(6)

(d)

Iny>

|n> |,,2>

Tigure 1. (a) area element 0O, spanned by displacements r, and r, from R. (b)~(f) two-form fluxes
through oy, as follows. (b) The time-dependent formula (6.2) relates V, -0, to the time average of
the symplectic area of o(t) in Hilbert space. (c) The time-dependent formula (6.8) relates V(H) - 0p
to the time and microcanonical averages of the symplectic area of 0,(z,t) in phase space. (d) The
time-independent formula (1.2) relates V, -0, to the symplectic area of o, in Hilbert space. (¢) The
time-independent formula (G 1) relates V¢- 0, to the symplectic area of m,(f) in phase space. (f)
The periodic orbit two-form (8.10).

(b) Antiunitary symmetries

An antiunitary symmetry K, such as time-reversal, takes inner products to their
complex conjugates and commutes with the hamiltonian;

K| K- gy =<yl 9%, (2.11a)
HK = KH. (2.110)

If (2.11b) holds for all parameters, the two-form satisfies
Ve=—Vs (2.12)

where |7y = Kn)>. In particular, if [z} is invariant under K, then V, vanishes.
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The symmetry property (2.12) is easily obtained from (1.2) and can be also made
manifest in the new formula (2.10). We note that
K(dfl), = (@A) K, (2.13)
because : (i) time-evolved operators 4, transform according to KA, = A, K, where
A = KARK', and (i) from (2.11b) dH = dH. Turning to the expectation value in (2.10),
computed for |#) rather than |n),
(), + (@A), AdH)| 7wy = KK-n|[(dH),+(dH) . AdH]K-n)
=K n|K[(dH),+ (dH)_,, AdH] n) = (n|[(dH),+ (dH)_,, AdH][n)*, (2.14)
where in the third equality we have used (2.13), and in the last equality the

antiunitary property (2.11a). Since the expectation value of the commutator in the
last term is pure imaginary, it follows that

<ml(@H),+(@AH)-,, AdH)| 7y = (n (@), + (dH)_, AdH] n)*
= —<n|l(dH),+(dH)_,, AdH] n),  (2.15)
and (2.12) follows immediately.

3. Classical limit
(a) Wigner—Weyl formalism
The classical limit of (2.9) is carried out within the Wigner—Weyl formalism, the

defining relation of which is the following correspondence between operators 4 and
phase space functions 4(z),

A(z) = des (q+is|d|q—1isye s, (3.1)

where z = (q,p). A(z) is called the Weyl symbol, or simply the symbol of 4;
sometimes we write (A)W(z) for 4(z). There is nothing intrinsically semiclassical or
approximate about the Wigner—-Weyl correspondence ; it is simply another formalism
for exact quantum mechanics. However, it lends itself to semiclassical approxi-
mations in which the canonical structure of classical mechanics is manifest. For
discussions and reviews, see Groenewold (1946), Moyal (1949), Baker (1958).

V, is expressed in (2.9) as the time integral of an expectation value. In the
Wigner-Weyl formalism, expectation values of operators correspond to phase space
averages of symbols. In particular,

(nl[(dH), AdH] n) = fd”z W, () ([(dH),, A dH])p(z). (3.2)

W,(z) is the symbol of the projection |n) (x|, and is also called the Wigner function.
For chaotic systems, the simplest and crudest semiclassical approximation is to
replace W,(z) by the microcanonical density, namely

W(z) > 0(E — H(z))/ £ (E) (33)

Here H(z), an abbreviation for H(z, R), is the classical hamiltonian, i.e. the symbol
of H. The normalization factor

QE) = fdzNz SE—H(z))
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is the volume of the energy shell, whose energy £ is quantized in this lowest
approximation according to the rule

QE,) =nh", (3.4)

which associates a quantum state to each phase space cell of volume A",
Q) = deNz O(E—H(z))

is the phase space volume with energy less than Z. Refinements to (3.3), involving
classical periodic orbits, are discussed in §8.

Next we consider ([(dH),, AdH]),,. To lowest order in %, the symbol of the
commutator of two operators is given by i# times the Poisson bracket of their
symbols. Thus R ) .

([(dH),, A AHY)yy > iF (A, )y, A A, (3.5)

Like its commutator analogue, the Poisson bracket of one-forms is symmetric rather
than antisymmetric in its arguments. (Explicitly, the flux of {d4, A dB} through [,

def def
is given by {4,,B,} +{4,, B}, where 4, = d4 r,, B, = dB-r;.) The symbol of a time-
evolved operator is given, to lowest order in #, by its classically time-evolved symbol.

def
If we define the time-evolved function 4,(z) = A(z,), where z, is the trajectory from

z at time £, then )
((dH))y — (dH),. (3.6)

(An explication of notation might be helpful at this point: (dH),, evaluated at z and
R, is just H(z,, R+dR)—H(z,,R) ‘to first order in dR’.) Then from (3.5) and (3.6),

([(dH),, AdH]),, — ik {(dH),, AdH]}. (3.7)

Let us mention that both (3.5) and (3.6) give the lowest-order terms in formal power
series expansion in #. The next terms are of order #* higher than the leading one (see
Voros 1976), so that the next term in (3.7) is of order #3.

Substituting (3.3) and (3.7) into (3.2) and (2.9) we obtain the classical limit of the
two-form,

Vo Ve(E) = —% f " Qe H(dH),, A dHYY . (3.8)
0

(In general {f), denotes the microcanonical average
jd“’ 20(E—H)f/Q(E).

When there is no risk of confusion we simply write {f), leaving the energy
dependence implicit.) For given n, £ is quantized according to the approximation
(3.4).
(b) Convergent formula
For chaotic systems, it is not clear that the expression in (3.8) is convergent. The
reason is that the Poisson bracket {(df),, A dH}(z) grows exponentially in time. To
see this, note that in general

{4,.B}(z) = A'(z,) S(z.t)J B'(2), (3.9)
Proc. R. Soc. Lond. A (1992)



The geometric phase for chaotic systems 637

where A4’(z) and B’(z) are phase space gradients, J is the Poisson tensor

0 I
J:(_I O), (3.10)

and Si(z,t) = 0Z,(z,1) /02 (3.11)

is the linearized flow, where Z(z,t) = z, is the flow. The exponential growth of
S(z,t) (which would imply the same of (3.9)) is the very definition of chaos.

To make sense of the classical limit of the two-form we require a manifestly
convergent formula. This can be obtained by means of an identity which eliminates
the z derivatives in (3.8),

{(dd),, AdB} g = (1/2) (2'<(d4), AdB)g)". (3.12)
The derivation is given in Appendix A. The prime (') denotes the derivative with
respect to energy, and the dot () the derivative with respect to time. While (3.9)
implies that {4,,B} (z) is exponentially divergent in ¢, (3.12) implies that it is
oscillatory in z, and that the exponential oscillations cancel in the main when
averaged over the energy shell. Substituting (3.12) into (3.8),

V(B = —i, Q| dtt{(dH), AdHY, | . (3.13)
20 0
((dH), denotes the derivative of (dH), with respect to t.) We integrate by parts,
J dtt(dH), = lim | dte~*t(dH), = —J di(dH), (3.14)
0 e>0J0 0

(the reinstated convergence factor of (2.2) justifies the neglect of the boundary term),
and obtain

V() = — (g f At ((dH), /\dH)E) . (3.15)
2Q 0

This is our principal formula for the classical two-form. Like the quantum formula

(2.9) it can be made more symmetrical with respect to time. Since microcanonical

averages are time invariant, we get that ((dH),AdH) = {dHA (dH)_,) =

—{(dH)_, NdH). Therefore

v = g [ arcam, —am ) namy,). .16

From (3.15), the convergence of V¢(E) depends on the behaviour of the
correlation function {(dH), A dH). If the dynamics is mixing (Arnold & Avez 1989),
then

lim ((dH), A dHY = (dH) A {dH) = 0. (3.17)

t— 00

In fact, we shall assume the rate of mixing (i.e. the rate at which {(4,B) - <{4) {B))
is sufficiently rapid so that

me<MHLAdH>

0
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converges. This is certainly true for hyperbolic (or Axiom A) systems, for which the
mixing rate is exponential (see Ruelle 1986), but clearly holds for power law mixing
rates {7 with » > 1. (As discussed in §4¢, (3.15) also holds for integrable systems,
which are not mixing at all, essentially because the correlation functions are quasi-
periodic.)

Because the dynamics is ergodic,

T
((AH), AdHY = lim | dr dH(z,,,) AdH(z) (3.18)

T 0
for almost all initial conditions z. Therefore, the phase space integrals of (3.15) may
be replaced by time integrals along a single trajectory, and the energy derivative
obtained by varying the energy of the initial condition. Use of (3.18) would
considerably facilitate numerical computations, as V¢(¥) could be computed from

just a pair of trajectories with slightly separated energies K and K +e.

Finally, let us mention an equivalent form of (3.15) of some theoretical interest.
Considering the quantum two-form for the moment, we note that because it
depends only on the eigenstates of H (and not on the energy levels), it is unchanged
if A is replaced by a (possibly parameter-dependent) function of itself. The same is
true of the classical two-form; it is easy to verify that V° remains unchanged if
H(z, R) is replaced by

def

G(z,R) = g(H(z,R), R), (3.19)

where ¢ = g(#, R) is a function of energy and parameters. (The effect on the dynamics
of this substitution is simply to rescale the time.) A natural representative for the
family of ‘hamiltonians’ defined by (3.19) is the volume function

def

Qp(z,R) = Q(H(z,R), R)

(whose quantum analogue is the counting operator Q= Y, n|n)<n|), in terms of
which

1d (@
VC(CU) = ‘2*&;] do <(d‘QP)a‘ A dQP>m‘ (320)
0

Here the expectation value () is taken over that energy shell which contains phase
volume w, and (d€2,), denotes d€2, evolved under the dynamics of 2, for a fictitious

time o. For one-dimensional systems, (3.20) is closely related to equation (9) of
Hannay (1985).

4. Symmetries
(@) Antrcanonical symmetries

The classical analogue of an antiunitary symmetry K (cf. (2.11)) is an anticanonical
symmetry K (Robnik & Berry 1986), a phase space transformation which reverses
the sign of Poisson brackets and commutes with the hamiltonian;

{AoK,BoK} =—{A4,B}oK, 4.1a)
HoK=H. (4.1b)

(Here o denotes composition, so that (H oK) (z) = H(K(z)).) Time reversal, in the
form K(q,p) = (q,—p), is the prototypical example.
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Suppose a system possesses an anticanonical symmetry K. In general, the energy
shell {z| H(z) = E} will be composed of distinct connected components mapped into
each other by K. Let I'y and I be two such components, related by I'y, = K(I'y) (it
could be that I', = I, i.e. that I'y is invariant under K). Let V°(E) and V¢(E) be the
associated two-forms obtained by restricting the microcanonical average in (3.16) to
I'; and Iy, respectively. Then, in analogy with (2.12), the classical two-form obeys

Ve(B) = — V(B). (4.2)

In particular, if I’y = I'y, then V¢(K) vanishes.
The proof of (4.2) is quite similar to that of (2.12). Calculating V¢(E) from (3.16)
and integrating over K(z) rather than z (a volume-preserving change of variable),

Ve(B) = 1}2—, f Car J A2¥ 2 84(E — H) ((AH),— (AH)_,) A dH

_ %QJOO dt fdzNza'f(E—HoK) (dH), 0K —(dH) ;oK) A (dHoK). (4.3)

Here 07(E —H) denotes the restriction of &'(£—H) to Iy, and Q'(E) = Q'(E) is the
volume of I'y or I',. Since anticanonical symmetries reverse the sense of time (easily
shown), Z(t)o K = K o Z(—t), or more explicitly Z(K(z),t) = K(Z(z, —t)). Therefore
def

(dH), 0K =dHo Z(t)oK = dHoKo Z(—t). But dHoK = dH (K is a symmetry), so
that

(dH),0K =dHo Z(—t) = (dH)_,, (dH)_,oK = (dH),. (4.4)
Substituting the preceding into (4.3),

Ve(H) = —5f dt Jd2N18’f(E—HoK) ((dH),— (dH)_,) ANdH. (4.5)
0

Since 05K — H o K) = 0(E — H), the right-hand side is just — V¢(#), and the symmetry

property (4.2) follows directly.

(b) Additional constants of the motion

Before considering integrable systems we first consider the more general case in
which there are k commuting constants of the motion, with 1 <k < N. Ergodic
systems correspond to k = 1, integrable systems to k = N. Let F = (F,, ..., F})) denote
the constants of motion.

Assuming the dynamics is ergodic on the invariant manifold {z| F(z) = f}, there is
a straightforward generalization of the classical two-form, Equation (3.8) is still valid
if the microcanonical density is reinterpreted to be &*(f—F)/D(f), where

Df) = fdwz S (f—F)

is the volume of the invariant manifold. Thus
1 o0
v ==y | decia, namy, (4.6
0
From a straightforward generalization of (3.12) (derived in Appendix A),
{(dH),, NdH} )= (1/D)V, (D(AH),, F} NAH D). (4.7)
Proc. R. Soc. Lond. A (1992)
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But {(dH),, F} = {dH, F_;},, since Poisson brackets are preserved by the dynamics,
and {dH, F_}, = {dH, F},, since F is a constant of the motion. However, {dH, F} =
d{fl, F}—{H,dF}, and d{H, F} = 0, again because F is a constant of the motion.
Therefore

{(dH),, F} = —{H,dF}, = (dF),. (4.8)
Substituting (4.8) and (4.7) into (4.6) and integrating by parts over ¢, we obtain
1 o0
Ve(f) =5Vf'(DJ dt((dF)t/\dH>f), (4.9)
0

the required generalization of (3.15).

(¢) Integrable systems

Take the constants of motion Fto be the actions I. Then D(I) = (2n)Y (obtained from
integration over the angles 6), and
1

yeI) = Qr At V,- {(dI), A dH . (4.10)

We obtain a more explicit formula by expanding dH in a Fourier series,
dH(0,1) =X h,,(I)exp (im-0), (4.11)

in which the coefficients A,, are one-forms. (Note that dH is the derivative of H(z, R)
with z, rather than (0,I), held fixed.) The Fourier coefficients i, of dI may be
expressed in terms of the h,s. Expanding the relation {dI,H} = {dH, I} (the
derivative of {I,H} =0) in a Fourier series, we obtain i(m-®)i, = imh,,, where
o =V H are the frequencies. Therefore

i, =h,m/(m o). (4.12)
The dynamics is simply 6, = 0+ wt. Substituting the Fourier series for (df), and dH
into (4.9), we readily carry out the torus average (-); and time integral (the latter
after reinstating the convergence factor of (2.2)) and obtain

h"”\h‘;". (4.13)

Ve =4 ¥ (m-V)

m#0 (m- o)
As h_,, = h}%, V°(I) is real. In Appendix B we show that (4.13) is equivalent to the
Hannay two-form.
5. Examples
(@) Uniform magnetic field
In appropriate units the hamiltonian of a three-dimensional charged particle in a
uniform magnetic field B is given by
H=4p—A?+V(r), A=1LiBxr. (5.1)

We take the parameters of [/ to be the components of the magnetic field and use
vector notation for parameter space, writing Vp instead of d. Straightforward
calculation gives

VpH =—1l, (5.2)

Proc. R. Soc. Lond. A (1992)



The geometric phase for chaotic systems 641

uniform field B

Figure 2. Aharonov—Bohm billiard. The particle at # moves with velocity v = (v, ®) in uniform
background field B, and a flux line is located at R. p =r—R = (p, 6).

where [ = r X v is the mechanical angular momentum and v = p— A4 is the velocity 7.
The two-form V°(E, B) is a vector field in B-space and is given by

1 ® ’
Ve, B) = — (2| dtd(l,—L)xDp ) (5.3)
40 0 '
At B =0 the hamiltonian is invariant under the time reversal transformation
(r,v) — (r, —v). Under this transformation /- —17 and l,>—1I_,. Since microcanonical
averages are invariant under time reversal,

<(It_l~t)Xl> = _<(lt_l—t)><l>: (5-4)

which in turn implies that V¢(E, B) vanishes when B = 0. Note that this conclusion
is not a consequence of (4.2). Equation (4.2) is derived for an anticanonical symmetry
which holds for all parameters, whereas the hamiltonian (5.1) is time-reversal
invariant only for B = 0.

V¢(E, B) is not invariant under parameter-dependent gauge transformations of the
vector potential A4, in spite of its expression in terms of the mechanical angular
momentum. Under the gauge transformation A(r) > A(r)+V,y(r, B),

VpH > VgH—Vg(v-V,y), (5.5)

and V¢, B) transforms accordingly. The analogous behaviour of the quantum two-
form is discussed in Mondragon & Berry (1988). (There it is noted that, although the
geometrical and dynamical phases are not separately gauge invariant, their sum is.)

(b) Aharonov—Bohm billiard in uniform magnetic field.

A particle is confined to a two-dimensional billiard threaded by an infinitely thin
unit solenoid (e.g. the flux line of a magnetic monopole) in a constant background
magnetic field. In suitable units the hamiltonian is

H=3ip—A,—A,)", A;=(Exp)/p*, A, =3Bixr, (5.6)

where (see figure 2) r = (z,y) are the particle coordinates, R = (X, Y) are the solenoid
coordinates, and p = r— R. A, and A4, are the vector potentials of the solenoid and
the background field, respectively. One can verify that B, = 2né*(p) Z and B, = BZ.
We take R, the coordinates of the solenoid, as the parameters of the system. (We
could if we wished include B, the background field strength, and introduce another
parameter for the solenoid strength.) We use vector notation for parameter space,
writing V instead of d. Omitting straightforward calculations, we get that

VieH =Zx (v, —v))/p* (56.7a)
= (—wv/p?) (sin (e —26), cos (a — 20)), (5.7b)
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where v = p—A,— A, is the velocity 7. Equation (5.5a) is expressed in terms of the
components of v parallel and perpendicular to g, namely v = (p-v)pand v, = v—v,.
Equation (5.5b) is expressed in terms of the polar coordinates of v and p, namely
p = p(cosf,sinf) and v = v (cosa,sina).

For this system €’ is a constant equal to 2nd, where 4 is the area of the billiard,
and v = |9] is a constant of the motion. The two-form is a scalar field in R-space given

by

VB, R) = (Jm dt<(”l)tp_2 (vll)t % vip_z v||>)/ (5.8a)
0 t
- (_,Uz JOO dt<sin(2(0t—0)—(at—oc))>>'. (5.8b)
0 pi P

Let us point out some features of (5.8). For trajectories which either start (resp. end)
at the solenoid, p (resp. p,) vanishes, and the integrand is singular. However, the
contribution of these singularities to V¢(&, R) is finite. (See Appendix C.) Next, in the
absence of a background field (i.e. B = 0), the dynamics is time-reversal invariant,
and with an argument similar to the one in §5a, one can show that V°(E, R) vanishes
identically. Thus, even though the solenoid breaks the time-reversal invariance of the
hamiltonian, the background field is needed to produce a non-zero two-form. Finally,
one can show that V¢(E, R) vanishes if the solenoid lies outside the billiard. (This is
intuitively clear but is not obvious from (5.8). It does follow immediately from the
alternative formula (6.8) derived in the next section.) Thus R-space is effectively the
billiard itself.

The Aharonov—Bohm billiard in a uniform background field is perhaps the
simplest example of a chaotic system for which the classical two-form is non-trivial.
It is two-dimensional, the minimum required for chaos. The dynamics may be
computed without having to solve differential equations (the trajectories are circular
arcs specularly reflected at the billiard boundary.) Finally, the dynamics is
independent of the parameters R (as B vanishes everywhere but at a point, only a
zero measure set of trajectories is affected by it.) In light of the discussion following
(3.18), a numerical calculation would require only a pair of trajectories, with slightly
separated energies, to determine V°(&, R) for all R. A variant of this example (not
quite as simple) is a billiard in crossed uniform electric and magnetic fields. The
magnetic field is normal to the billiard, the electric field tangent to it, and the two
field strengths and the direction of the electric field are natural parameters.

6. Alternative form

We obtain a useful alternative expression for the classical two-form, (6.8) below.
Instead of deriving it directly from (3.15), we begin with an alternative expression
for the quantum two-form (6.2) below) which is of independent interest.

(@) Quantum formula
The alternative quantum formula follows from an identity,
—3ifidUt) n| A dU(t) ny = V, +3ih X {dn|j) A {j|dn) cosw,;t, (6.1)
i#n
derived in Appendix D. dU(¢) is the derivative of the propagator. Upon averaging
over time the oscillatory terms vanish, and we obtain

V, = — Yk {dU0) - n| A1AUE) 7). (6.2)
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(Here and hereafter, f denotes the time average

.1 (T
lim T de f(¢).)

T -> o0 0
With a similar calculation one can also show that
V, = —ikldU(t) -n| A|dU(E#) ). (6.29)

In (6.2) the time averages over the bra and ket are performed separately, or
incoherently, whereas in (6.2) they are performed simultaneously, or coherently ; the
factor of 1 accounts for this difference. One can develop the formalism starting from
either the coherent or the incoherent expression ; for brevity we present the coherent
version only.

Equation (6.2) has an interesting geometrical interpretation. Suppose we want the
flux of V,, through [y (see figure 1a). We apply U(t,R), U(t, R+r,) and U(t, R +7,) to
|n, R). The states obtained describe an area element [ (¢) in Hilbert space (see figure

1b), spanned by displacements U, (¢)|ny and U,(t)|n) from U(t)|n) (here U,(t) =
dU(t) ;). By virtue of the canonical structure of quantum mechanics, [Jz(t) has a
(naturally defined) symplectic area —2#Im U, (t) n|U,(t)'n) (see Appendix E).
According to (6.2), the time average of the symplectic area of [J(¢) is just (minus
twice) the required flux. (Note there is a factor of two which arises from the definition
of the wedge product.)

The equivalence of (6.2) and (2.9) can be established by expressing dU(¢) in terms
of (dH),. These are related by the formula for the derivative of an exponential (see
Bellman 1960),

du(t) = —

iU(t) f dr(dH),. (6.3)
ﬁ 0

Substituting into (6.2),

y, = __i_f dr f dr’{n|[(dH),, A (dH),]|n), (6.4)
4 ), 0

in which, because the 7 and 7’ integrals appear symmetrically, we have replaced
(dH), A (dH), by its symmetrized part, 3[(dH),, A (dH),] (cf. (2.6)). Since expectation
values of eigenstates are time invariant,
<l [(dH),, A @A) )0y = (| [(dH),—p, AdH] ).
Making this substitution in (6.4) enables the 7" integral to be performed, and (2.9)
follows from a few more manipulations.
(b) Classical formula

The corresponding classical alternative is obtained directly from (6.4). Taking its
classical limit as in §3, we get

t
V,—> V() = ifd’rf d7’{{(dH),, A (dH),})g. (6.5)
0 0
In Appendix F we show that
def d7r’ {(dH),, A (dH),} = —[dZ(t), AdZ(t)]. (6.6)
0 0
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where dZ(t) is the derivative of the flow with respect to parameters, in which the
dependence on initial conditions z has been left implicit. The square brackets denote
the symplectic inner product (Arnold 1978), defined as follows: Given vectors
u=(q,p) and v = (q’,p’) in phase space,

def
[wv]=uJv=pq—qp, (6.7)

where J is given by (3.10). (The symplectic inner product [u,v] should not be
confused with the commutator [4,B]; in the latter the quantum operators are
distinguished by carats.) Substituting (6.6) into (6.5) we obtain

Ve(B) = —K[dZ(t), NdZ(D)]) 5 = —3<[dP(t), AdQ ()]s, (6.8)

where in the last expression we have taken dZ(t) = (dQ(¢),dP(t)). This is the
alternative formula for the classical two-form.

Equation (6.8) is a precise version of a formula (eq. (4.18)) derived in Berry (1990)
(there the time dependence was integrated over, but the interpretation of the
differentials dQ and dP was left ambiguous). Equation (6.8) might appear to be the
simplest expression for the classical two-form, but its simplicity is deceptive (cf. the
discussion in Berry (1990)). As with (3.8), the fact that (6.8) converges is not obvious,
because if the dynamics is chaotic, both dZ(z,t) and [dZ(z,¢), AdZ(z,t)] grow
exponentially in time for fixed z. (We shall not give the somewhat involved general
argument here — none of our results depend on it — but the particular case of periodic
orbits is treated in appendix K.) However, since the microcanonical average {[dZ(t),

A dZ(t)]) does not in fact diverge, it follows that [dZ(z,¢), A dZ(z,t)] oscillates with
z, and that the exponentially large oscillations must cancel in the main when
averaged over the energy shell.

Like (6.2), (6.8) has a geometrical interpretation. Suppose we want the flux of V(&)
through [g. To a point z on the energy shell we apply the hamiltonians H(R),
H(R+r,) HR+7r,) for a time ¢. The resulting trajectories describe an area element
p(z,t) in phase space drawn in figure 1¢, spanned by displacements Z,(z,t) and
Z,(z,t) from z,, where Z,(z,¢) = dZ(z,t)-r,. The symplectic area of [p(z,t) is
[Z1(z,t), Z,(z,t)], and according to (6.8), its microcanonical and time average is just
(minus twice) the required flux. In light of figure 16 and ¢, the correspondence
between quantum and classical two-forms, (6.2) and (6.8), is immediate.

(c) An equivalent form

Differentiating Hamilton’s equations Z(t) = J- (H'), with respect to parameters, we
find that dZ(t) satisfies the linear inhomogeneous equation

dZ(t) = J(H"),-dZ(t)+J - (dH'),, (6.9)

with initial conditions dZ(z,0) = 0. (Here (H"); = 0°H/02,0z;.) 1t is often useful to
express dZ(t) in terms of other solutions d Y(¢) of (6.9), to be specified later, which will
of course satisfy different initial conditions. (Here we make a slight abuse of notation,
as we will not assume that dY(t) is an exact differential.) In general, any two
solutions of (6.9) differ by a solution of the homogeneous equation dX(t) =
J(H"),-dX(¢t), and solutions of the homogeneous equation are of the form dX{(t) =
S(t)-dX(0). (Here S(¢) is an abbreviation for S(z,¢), the linearized flow of (3.11).)
Therefore

dZ(t) = dY(t)—S(¢t) - d Y(0). (6.10)
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Substituting (6.10) into (6.8) we obtain

Ve(B) = —K[dY(#), AdY(#)]) +3<[dY(#), AS()-dY(0)]) —K[dY(0), AdY(0)]),
(6.11)
an equivalent expression for the classical two-form. In the last term we have used
[S(t)-dY(0), AS(t)-d¥(0)] = [dY(0), AdY(0)], (6.12)

the canonical invariance of the symplectic inner product. Equation (6.11) is
particularly useful in deriving the two-form for integrable systems (Appendix G) and
periodic orbits (§§8 and 9).

7. Is the classical two-form closed?

The question as to whether V¢(#) is closed is of central importance, but it is not
easily answered. Here we present a formal derivation of closedness,

dVe(E) = 0. (7.1)

First, let us point out that it is not correct to argue, on the basis of the
correspondence principle, that because the quantum two-form is closed, so must be
its classical limit. The reason is that V, is not closed, as dV,, is singular at eigenvalue
degeneracies. (Indeed this property was one of the motivations underlying the
discovery of the geometric phase (see Shapere & Wilczek 1989, p. 26).) Thus
dV (E) # 0 would have implications for the distribution of degeneracies in the
classical limit, as will be explained in §9. On the other hand, dV,(£) = 0 would imply
that (at least locally) V¢(£) is the derivative of a one-form, whose integral around a
closed loop in parameter space one might expect to describe a classical anholonomy
for adiabatically cycled chaotic systems, analogous to the Hannay angles for
integrable systems.

From the formulas derived so far it is not even clear that the three-form dV¢(X)
converges. For example, the derivative of (3.15) introduces the two-form d((dH),).
While d(dH) vanishes, d((dH),) does not, due to the parameter dependence of the
dynamics. In fact, for fixed z, d((dH),)(z) grows exponentially in time, since

d((dH),) (z) = dH'(z,) A -dZ(z,¢) (7.2)

and dZ(z,t) grows exponentially.

The alternative form (6.8) turns out to be the most convenient for calculating
dVe(E). To proceed, we first note that upon differentiating an ensemble average such
as (¢ (here ¢ is any differential form), account must be taken of both the explicit
parameter dependence of ¢ and the implicit parameter dependence of the ensemble.
Also, the derivative of the ensemble is to be taken at fixed volume rather than fixed
energy (cf. of the Weyl rule (3.4)). As shown in Appendix H,

d{¢>p = dgpp+(1/2) (Q(dE—dH) N ¢)y)', where dE =<dH),. (7.3)
Thus differentiation of (6.8) gives

dVe(B) = —(1/42) (' {(dE—dH) A [dZ(t), N Z(1)]) k)’ (7.4)
(we have used the closedness of [dZ(t), A dZ(¢)]). In what follows we show that
LAH A[AZ(t), AdZ(t)]) = 3dE A[dZ(t), NAZ(t)]) g, (7.5)

which together with (7.4) implies that V(&) is closed. To streamline the presentation
we have left some details to Appendix I.
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In Appendix I we show that

W(dH A[dZ(¢t), AdZ(8)]) = lim G(s, s), (7.6)
§>0
(o8] e_ST 0 L,
where G(s,s) = —J dr s’j dr'e*"F(r,7), (7.7)
0 § 0 :

F(T7 T/) = %<(dH)—‘r' A {(dH)‘r’ A dH}>

The principal steps leading to (7.6) involve replacing [dZ(¢), A dZ(¢)] by its expression
in (6.6) and writing its time average as the residue of its Laplace transform at the
origin (as in Appendix J). Instead of taking both arguments of G(s,s’) to zero
simultaneously, let us take the limit s"— 0 first. From Appendix J

(ed] T
lim Slf dr’' e*"F(r,7) = lim % dr'F(r,7’), (7.8)
s'>0 0 T >0 0

because the right-hand side is the 7’-average of F(7,7") and the left-hand side is the
residue of its 7'- Laplace transform at the origin. But from (7.7) the 7"-average of F(r,
7') is {dE A {{(dH),, AdH}), as implied by the weak mixing property {A,B) =
(A) {B) (Arnold & Avez 1989) (weak mixing is implied by mixing, which we have
already assumed the dynamics to be). Therefore

lim G(s,s) = —dE/\ljw dr & ((dm),, A dHYD. (7.9)
0

§’—>0 2 $

The remaining limit s—0 is straightforward. As shown in Appendix I,

lim L | dfe:T ((@AH),, AdHY, = V(B). (7.10)

§—>0 0
Thus lim,_, , (lim, ,,G(s,s")) = —dE A V¢(E), which in turn is equal to
1B A[AZ(0), AdZ(B)]D g

Together with (7.6) and (7.4), this implies the closedness of the classical two-form.

The preceding derivation is purely formal in that we have not established the
convergence of the expressions involved nor justified the interchange of limits. These
difficulties might yield to a more technically rigorous treatment but might also
conceal some interesting behaviour. One possibility is that V°(E) is in a sense exact
but not closed; it might be the derivative of a one-form (in which case its integral
over a closed surface would vanish), but it might not be differentiable itself.

8. The spectral two-form

Just as the Weyl density of states d(£) = Q’/h" describes smooth variations in the
exact density of states d(#) = 2, 8(K —E,,), so too V¢(E) describes smooth variations
in V, on a classical energy scale. Similarly, just as quantum fluctuations in the
density of states are described by classical periodic orbits, so too are fluctuations in
the two-form. The starting point for these considerations is not the two-form itself
but rather the spectral two-form

D(E) =X 0E—E,)V,. (8.1)
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We can write the previously derived quantum formula (6.2) as
V, =—=%kTre[P,dU () AdU()], (6.27)

where P, =|n){n|; this is a time-dependent version of the manifestly gauge-
invariant formula V, = —ifTr [P,dP, AdP,] (see Avron et al. 1987, 1989) in which
the two-form is expressed in terms of spectral projections. Thus we may express the
spectral two-form in a form more suitable for semiclassical approximation,

D(E) = —3ih Ty [8(E—H) AU (t) A dAU(t)]. (8.2)

Here 8(E—H) = X, 8(E—E,) P, is the spectral operator.
The classical limit of (8.2) is taken exactly as in §§3 and 6, with the result

D(E)->D*(E) = —i f A2 W(z,E)[dZ(z, 1), AdZ(z,1)]. (8.3)

In place of the Wigner function W, (z) (taken to be the microcanonical density in §§3
and 6) there appears the spectral Wigner function (Berry 1989)

W(z, E) = (8(E — H))w(z), (8.4)

the symbol of the spectral operator, whose semiclassical approximation is given by

W(z,E) = L sE—H(z ) (1 +2hN 1Y A(E) 6,.(z)). (8.5)
J

hN
The first term in (8.5) is just the microcanonical density weighted by the Weyl
density of states. The additional terms, whose amplitudes are of order 2V ~* less than
the leading one, are the periodic orbit contributions. §;(z) is a normalized J-function
on the jth periodic orbit, and

T;

A, E) = meos (8;/fi—zp;m) (8.6)
are the oscillatory amplitudes of the Gutzwiller trace formula (Gutzwiller 1971,
1990). S, is the action, 7} the period of a single repetition, M, the linearized Poincaré
map and y; the Maslov index of the jth orbit. (In fact, (8.5) is a limiting form of a
more refined expression, in which the delta functions are replaced by smooth

functions localized on the energy shell and the periodic orbits.)
Substituting (8.5) into (8.3), we obtain the classical limit of the spectral two-form,

D°(E) = D*(E)+ X D$(E). (8.7)
i
The smooth contribution
De(B) = (' /™) Ve(B) (8.8)
is simply the classical two-form weighted by the Weyl density of states. Our interest
here is in the periodic orbit contributions (2/4) A,(E) Vi°(E), where
Vi¢(B) = —iK[dZ(t), NAZ(t)]);5- (8.9)
(In general {f);; denotes the average of f round the jth orbit at energy £.)

There is a natural two-form associated with periodic orbits, analogous to the
Hannay two-form for one-dimensional systems. Periodic orbits belong to continuous
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families y,;(6, S, R), labelled by action S (in preference to the energy) and parameters
R. 6, the coordinate along the orbits, is the scaled time (‘angle’), in terms of which
y;(0,8,R) is 2n-periodic. Then the periodic orbit two-form is given by

Vi(8) = —3[dyy, Ady))Ds- (8.10)

(Here (- );s denotes the average around the jth orbit at action S8.) As shown in
Appendix K, V§(S) is well-defined. Like (6.2) and (6.8), it has a geometrical
interpretation. Suppose we want the flux of V§(S) through [J;. We draw vectors from
y;(0,8, R) to points on neighbouring orbits at the same action and scaled time, but
with parameters R+, and R +7,. These vectors span an area element [],(0) in phase
space drawn in figure 1f. The symplectic area of [],(f) averaged round the orbit is
(minus) the required flux.
In Appendix K we show that the two-forms (8.9) and (8.10) are the same, i.e.

Vi(Si(B)) = Vi°(E). (8.11)
Thus the periodic orbit contribution to the spectral two-form is
DS(E) = (2/h) A,(E) VE(S,). (8.12)

For unstable periodic orbits the derivation of (8.11) is not straightforward. As shown
in Appendix K, [dZ(z,t), AdZ(z,t)];; diverges exponentially in time, and while the
divergent behaviour disappears when z is averaged over the energy shell, it does not
when z is averaged only over a periodic orbit. Thus <{[dZ(t), AdZ(t)]);; grows
exponentially with ¢, and its time average must be defined by analytic continuation
(as in Appendix J). The origin of the divergence is the singular nature of the periodic
orbit delta function, itself an artefact of the semiclassical approximation (8.5). We
would like a derivation of (8.12) free of all divergences (possibly based on the Airy-
function smoothing of Berry (1989)), but have not yet found one.

9. Semiclassical density of degeneracies

In this section, we consider systems without time-reversal symmetry and for the
sake of explicitness take parameter space to be three-dimensional.

The distribution of energy level degeneracies in parameter space is of considerable
interest. While degeneracies are exceptional — according to a well-known theorem of
Von Neumann & Wigner (1929), for systems without time reversal symmetry at least
three parameters must be varied to find one —they provide a mechanism for
dissipation in adiabatic processes. As a hamiltonian is varied in time, its path
through parameter space passes near degeneracies ; these near-approaches violate the
conditions of the quantum adiabatic theorem and generate transitions of Lan-
dau-Zener type between states. This subject has received and continues to receive
much attention, as described in Hill & Wheeler (1952) and Wilkinson (1990).

As discussed in the original work on the subject, the geometric phase is intimately
connected to degeneracies (Berry 1984). It turns out that dV,(R) (a scalar density in
three-dimensional R-space) has d-function singularities at degeneracies (generically
these occur at isolated points) and is zero elsewhere. Explicitly, letting R,, , denote
the degeneracies between the states |n) and |n+ 1),

dV,(R) = 2n X (0, ,0"(R=R, ) =0y ,0*(R—=R,, ) p, 9.1)

22
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where p = dR, A dR, A AR, is the coordinate volume form and the os denote +1, as
we discuss presently. Note that degeneracies with both the state above and below |n)
contribute to dV,, and that the degeneracies between, say, |n) and [n+ 1) contribute
to dV, and dV,,,, with opposite signs.

The os are defined as in Simon ( 1983). Assuming the eigenstates are continuous

functions of parameters, let |+> |n+1 ma) s | — ) |n n.)» denote the pair of
degenerate states at R = R, ,. We construct a two-dimensional hermitian matrix

H(R) with matrix elements #_, (R) = {+|A(R)|—, H+(R) = { —|H(R)|+ ), ete. The
expansion of H in terms of the Pauli matrices, H = AI+ B-é, determines a vector
field B(R) on parameter space. Then o, , is given by —sgn det (0B,/0R,)| )z, ,; that is,
0, 18 negative if at R, , the mapping from R to B is orientation preservmg, and is
positive if it is not.

The quantity we will consider is not dV, itself but rather the sum

From (9.1) we get that
Mn =2nX o‘n,aaa(R_Rn,a)p’ (93)

as the alternating contributions from m < n cancel each other. Thus M, gives the
algebraic or signed density of degeneracies between |») and [n+1). M, should be
distinguished from the absolute density of degeneracies,

def
W|n =2n Eaa(R_Rn,a)p

o

An interesting question (we will not pursue it here) is which of the two densities, M,
or |[M|,, determines the rate of Landau—Zener transitions; does each play a distinctive
role in the description ? Let us just mention that [M], can also be expressed in terms
of the two-form; explicitly

M|, (R) = hmi<f d3R’Mn(R’))Mn(R). (9.4)
50 2T \J |R-R1 <5

In terms of the spectral two-form (8.1),

n(R)+e
M, = lim d f dED(E), (9.5)

e>0" 0

an expression whose classical limit M°(#) is readily obtained from (8.7), (8.8) and
(8.12). M°(K) like D°(E) contains smooth and oscillatory terms, but since V¢(E) is
closed according to (7.1), it follows directly from (9.2) that the smooth contribution
vanishes.

The periodic orbit contributions M5(K) are given by

d f : de 4,(e) V(S,(€)), (9.6)
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where 4; is given by (8.6) and Vi by (8.10). Because the factor cos(S;/%i—3u;m)
oscillates rapidly, to lowest order in # we may neglect the energy dependence of the
other factors in the integrand. (In so doing we ignore singularities in det |M].—/|‘% at
bifurcations.) Then

MY(E) = %d(ﬁ

sin (S;/fi—ju; ) )
— 2L P8y, 9.7
det M, — 12 i) ®-7)

To lowest order in #, d acts only on the oscillatory factor, and dsin (S;/h—3u, ) =
cos (S;/fi—gpu;m) dS;/%i. Also

dS; = Ty(dE —<{dH »)), (9.8)
as shown in Appendix K. Combining these results, we obtain
M3(E) = (2/h) A(E) (dE —{dH ;) A VS(S)). (9.9)

(Note that for long periodic orbits dE—{dH); approaches zero, as {(dH),—
(dH)y = dE.) Thus the density of degeneracies, while neutral on a classical scale, is
resolved semiclassically into oscillations described by classical periodic orbits.

10. Discussion

Our principal result (3.15) is an explicit and explicitly finite expression for the
classical limit of the geometric phase two-form which is valid for chaotic systems. In
the derivation we have assumed the dynamics is ergodic and mixing at a sufficiently
rapid rate. We have given a formal derivation of the closedness of the classical two-
form, obtained semiclassical corrections to it associated with periodic orbits, and
derived a semiclassical expression for the algebraic density of degeneracies in
parameter space. We have also discussed the case of additional constants of the
motion and specific examples including the Aharonov—Bohm billiard in a uniform
magnetic field.

From this investigation there emerge a number of questions to be pursued. One
would like to test these formulas numerically, particularly the periodic orbit
contributions. The Aharonov-Bohm billiard is one candidate system, although for
the version we are considering the quantum calculations might not be simple. Maps
(classical and quantum) present alternative and possibly simpler test cases: the
necessary modifications to the formalism presented here should be straightforward.
It would also be interesting to see if the periodic orbit two-form plays some role in
purely classical mechanics, for instance in the study of bifurcations.

The most important question is whether the classical two-form itself has any
intrinsic significance in classical mechanics. Does it describe an anholonomy in
adiabatically cycled chaotic systems, as the Hannay two-form does for integrable
systems ? If so, it must be derivable purely within classical mechanics (as the Hannay
two-form is). In this connection there remains the related question of the closedness
of the two-form (another question amenable to numerical investigation.) The formal
argument of §7 should be right in some sense, but precisely how requires further
study, perhaps facilitated by consideration of the purely classical problem.

It is a pleasure to acknowledge important contributions by M. Wilkinson in the early stages of this
work. We also thank J.H.Hannay for helpful discussions. J.M.R. was supported by a NATO
postdoctoral fellowship awarded in 1989, and by the SERC.
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Appendix A. Derivations of (3.12) and (4.7)
By definition

{(d4),, AABYY, = o, [aV2{(dA), AdB}SE—IT). (A1)

Using the Leibniz rule for Poisson brackets, {F,G}K = {F,GK}—{F,K}@, the
integrand {(d4),, A dB} 0(£ — H) may be written as

(d4),, AS(E—H)dB}—{(d4),,o(E —H)} AdB. (A2)

The first term vanishes when integrated over phase space because: (i) it is a Poisson
bracket and therefore a pure divergence (explicitly, {F,G} =V - (FJ-G’), and (ii) its
surface integral at infinity vanishes because 0(# — H(z)) does. As for the second term,

{(d4),,0(E—H)} = —{(d4),, H} &'(E—H) = — (d4), (E—H), (A 3)

where the prime denotes the derivative with respect to energy and the dot the
derivative with respect to time. From (A 1)-(A 3) we obtain

1 ’ { ’

o (2K(d4), AdBY ), (A4

{(d4),, NdB}) = d*¥z &' (E—H)(d4), ANdB =

Q’ [0
the required result (3.12).
A similar argument establishes (4.7). By definition
), AdBYY,= 1 [4¥23 7~ F) (@A), AaB) (A5)

The integrand 0*(f— F){(d4),, A dB} may be expressed as
{(d4),, A &*(f—F)dB}—{(d4),,o*(f—F)} AdB. (A 6)

The first term is a pure divergence which does not contribute to the phase space
integral, and the second is

—V,8%(f—F)-{(d4),, F} AdB. (A7)
Therefore ({(d4),, AdBY, = (1 /D )V, (D{(dA),, F} AdBY)). (A 8)

Appendix B. The integrable case: first derivation
We establish the equivalence of the classical two-form V¢(I) and the Hannay two-

form
V(D) = —<{dp Adg), (B 1)

for integrable systems. In (B 1), g and p are functions of @, I and R, and the average

is taken over an invariant torus; for convenience a minus sign has been introduced

into the usual definition. For the sake of simplicity, we restrict ourselves to one

degree of freedom ; the generalization to higher dimensions is straightforward.
Hamilton’s equations and (4.11) give

dp =—do,H = —0,dH = -0, h,, exp (im0),
dg = 0, X b}, exp (—imb),

Proc. R. Soc. Lond. A (1992)
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where we have used the fact that phase space and parameter differentials commute.
Inserting the time dependence 0, = 0+ wt and integrating gives

=10, X hyexp (imb)/mw+0,F (),

m#0 (B 3)
dg =i0, X hy,exp(—imb)/mw—0,F(I),

m#0

where I is a non-oscillatory 1-form describing the mean displacement of the torus
labelled 1.

These expressions for dg and dp must be substituted into (B 1) and integrated over
0. The terms involving F cancel because

0, F N0, F =YF, ANF}y=0,F N0, F = 0. (B 4)

The other terms give

S
VH(1)=_z[a,<%m)/\ﬁa (hm)a 10,1+ h ARED, 00 0]

_izi{(@ﬁ)/\a (h*)a 00,10 (h ) (}‘*)a 60 I} (B 5)
mim |\ o w )

Now h,, Ak} is odd in m, causing the terms in the first line to cancel. The remaining
terms can be replaced by their average over m and —m which gives

VH(T) = _;—z Oyl AR J0?) (2,00,1—0,60,1)/m (B 6)
which is the same as (4.13), because (6, 1) are canonical variables.

Appendix C. Convergence of billiard two-form

First we write (5.8b) in a more explicit form. The microcanonical average {-) is

given by
—/ docf d2r

(the r integral is taken over the billiard), and it is readily shown that V¢(K, R) =

—2(H1)/Q’, where
fdtf docJ 2SO, =0) = (=) (C 1)
pi p*

Equation (C 1) is an integral in four-dimensional (a,t,r) space, and the integrand
exhibits four types of singularities: () p =0, (b) p,=0, (¢) p=p, =0, t #0, (d)
p=0,t=0. We consider these in turn.

(@) p=0. The singularity is a two-dimensional surface in (a,f,7) space and
corresponds to trajectories which begin at the solenoid. Regarding o and ¢ as fixed,
we consider the contribution 7,(x,t) of a two-dimensional pencil of trajectories
beginning near p = 0 in direction a. Changing integration variables from 7 to (p, 6),

o t) Jdpf ap SO =0) = (=) (€ 2)
Pip

As our concern is the singularity at p = 0, the upper limit of the p-integral is left
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indefinite. Let p’, 6" and o’ denote the final coordinates of the central trajectory from
p = 0. Since final conditions depend smoothly on initial conditions, p, = p’+O(p),
and analogous relations hold for 6, and «,. Expanding the integrand about p = 0,

sin(Z(l‘/’t—H)—(at—a)) __sin (6—20) O(p)
pip pp p

where 8 =260'—a’+a. Only the first term is singular, and it vanishes upon
integration over . Therefore (C 2) converges conditionally. The divergence itself is
only logarithmic.

(b) p,=0. Again the singularity is two dimensional, and it corresponds to
trajectories which end at the solenoid. The analysis proceeds exactly as in () and is
therefore omitted.

(¢) p=p,=0,t+#0. These occur at isolated points in («, ¢, ¥) space, and correspond
to trajectories which begin and end at the solenoid. In the neighbourhood of such a

, (C 3)

def def
point it is convenient to change variables from a and ¢ to p” = p, and 0" = 0,. I, the
contribution of the neighbourhood of the singularity, is given by

,lsm (0 —0)—(a,— )
I,=1|4d dé | d dé , C4
j ,Of f pJ p'p ©4

where J is the jacobian |0r,/0(a,t)|. Expanding about p = 0 and p’ = 0, we get that
o,—o is of the form (const.+f(6 )p+g(0’)p +O0(pt*™p ™)), where m,n = 0.
Assuming that J does not vanish at p = p” = 0, the singular terms in the integrand
vanish upon integration over ¢ and ¢, and the divergences in p and p’ are
logarithmic. (The case where J does vanish corresponds to a coincidence of closed
orbits and caustics, and occurs only on a one-dimensional set in parameter space, and
therefore not for generic R. This set includes self-conjugate points along periodic
orbits.)

(d) p=0, t =0. The singularity is one dimensional (it is parametrized by the

initial direction o) and is the strongest of the four. As in (¢) we change variables from
def
o and ¢ to ,0 = pt and 0 = 6 To first order in L = |p’— p|, i.e. short times,

7

- r
=5 (C 5)

’sin @’ — p si def
=L a=aretan(p sin 0 psmﬁ) et | O(a, t)

p cost —pcosh)’ T |, )

Also, a,—a = wt = wL /v, where w is the Larmor frequency (= B in our units.) Thus
to first order in L,

de’f dgfdpf dﬁ,[sm2(9 0) wcos2(6 — 0)} (C6)
vop'L v*pp’

Both terms vanish on integrating over 6 —@, the first because the 6 and 6’
dependence in L is through cos (6" —6). Thus I, is conditionally convergent, although
the leading-order divergence is stronger than logarithmic.

Appendix D. Derivation of (6.1)
Differentiating the spectral resolution of the propagator

U(t) = 3 Pyexp (—iw;1) (D 1)
)
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with respect to parameters (here P; = |j> (j| and w; = E,/%), we get that

AU ) -n| AdU(E) - n) = T n|(dP;+itP;dw;) A (AP, —itPy dwy)ny e't, (D 2)
ik

where v, = w;— ;. The terms quadratic in ¢ are of the form d; , 6, ,,(dw; A dw,) and
vanish by an‘msymmetr; The terms linear in ¢ are of the form 6,C n(n |dPy[ n) A dw,.
These vanish because {n|dPj|n) = 0. We are left with

AUEt) n| AdUE) n) = 2 {n|dP; A dPyln) elrnt. (D 3)

jk

Next we substitute |dj) {j| +15) {dj| for dP; and similarly for dP; to obtain
{dU(t) | AdU() - ny = {dn| Aldn) + X {nldj) A <djln)
i
+ X (<nldjy A ldn) emt 4+ {dn|j) A Ldjlny enif). (D 4)
j

Differentiating (n|j) = &,;, we get that {n|dj) = —{dn|j). This implies that (i) the
second sum may be written as X, {dn|j) A {jldn) and the sum performed to give
{dn| Aldn), and (ii) the prefaetorb of the two exponentials in the third sum are the
same, and the j = n term vanishes. Thus we obtain

AU@E) n| AdUE) - n)y = 2{dn| Aldrny—2 2 {dn|jy Ajldn) coswy,t, (D 5)
ji#n

which when multiplied by —1i gives (6.1).

Appendix E. Symplectic form on Hilbert space

It is well known that the equations of quantum mechanics can be cast in
hamiltonian form (see, for example, Abraham & Marsden 1978). Our purpose here is
to do so in a manner motivated by the correspondence principle; we make the
convention that the hamiltonian functional #(y) (which plays the role of H in
Hamilton’s equations) should be given by the energy expectation value Sl
(usually it is taken to be half of this). As we now show, this convention implies the
following definition of the symplectic form:

(6,31 = =28 Im (gl (E1)

Our main interest is to explaln the origin of the numerical factor — 27, so we do not
take pains to introduce a precise notation. Formally Hamilton’s equations are U=

J- H' (). Therefore J~7 -4 = H#'(}), so that for arbitrary ¢,

(6.1 Z (P> = 7).

But Hp)p = (d/de)y H (Y +ed) = 2 Re (GIH ),

and from Schrodinger’s equation, ﬁ-lﬂ = 1h¢ Therefore

(¢ 4] = 2Re {glifigy> = — 2/ Tm <Pl .
As i is arbitrary, (E 1) follows.
Proc. R. Soc. Lond. A (1992)
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Appendix F. Derivation of (6.6)

Consider the quantity [S7!(7)-dZ(7), AS7'(7")-dZ(7')] and its derivative with
respect to 7 and 77. (Here Z(7) and S(7) are abbreviations for the flow Z(z,7) and the
linearized flow S(z,7) of (3.11); the z dependence is left implicit.) From (6.9) and from
S™Hr)=—S"Y7)J(H"), we get that

9
or

as the terms in H” cancel. In the last equality we have used S™! = —JSTJ. (We
remark in passing that (F 1) is the classical analogue of the t-derivative of (6.3).)
Therefore

(S7Hr) dZ(1)) = S7Hr)J - (dH'), = J V ((dH),), (F 1)

a2
5757 [S7H M) AZ(0), ASTE)AZ(r)] = [ V(AH),), AV ((dH))]

= _Vz((dH)7) JV:((dH)-r/)’ (F 2)

by using (6.7) and J = —J*. But the last expression is just —{(dH),, A (dH),}.
Therefore

A(dH) ) = ==

v T oror’

{(dH) [S§7(7)-dZ(r), ASTH(r')-dZ(1")]. (F3)

Integrating 7 and 7" from 0 to ¢, and noting that dZ(0) = 0 and
[S7U(t)-dZ(t), NSTHt)-dZ(t)] = [dZ(t), AdZ(¢)] (F 4)

(the invariance of the symplectic inner product under canonical transformations) we
obtain (6.6).

Appendix G. The integrable case: second derivation

We give an alternative derivation of the equivalence of the classical two-form V¢(I)
and the Hannay two-form V®(I') based on the formalism of §6, in terms of which (B 1)
may be rewritten as

VE(I) = —3[dy, dy D). (G 1)
Here y(0,1,R) = (q(0,1,R), p(6,1,R)). As in Appendix B, we restrict ourselves to one
degree of freedom, but the generalization to higher dimensions is straightforward.

Let v =0y/060. Then 3{[y,v]); = {(pdyq); = I. Differentiating with respect to R,
dy,v]>,+<[y,dv]>; = 0. But {[ y,dv]); = {[dy, v]), (this follows from integration
by parts over ¢ and interchanging the arguments of the symplectic inner product),
so that

[dy,v]>, = 0. (G 2)

def

Let Y(6,t) = y(0+wt) (the I and R dependence is left implicit). Equivalently
def def
Y(0,t) = y,(0) (since in general f,(#) = f(6+wt)), or more simply Y({) =y, Since
Y(t) satisfies Hamilton’s equations, its derivative with respect to parameters,
d¥(t) = d(y,) = (dy),+dwtv, (G3)
Proc. R. Soc. Lond. A (1992)
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is a solution of (6.9). Substituting (G 3) into (6.11) we get that

—X[(dy),, A(dy) D +3[AY(E), AS(y, 1) -dy]>,—iK[dy, AdyT>,,  (G4)

as terms of the form {[dy, v]); vanish in light of (G 2). The first and third terms in
(G 4) are both equal to 2VE(I). Tt remains to show that the second term vanishes.

det
Letting w = dy/0l, and resolving dy into its v and w components,
dy = a’v+a"w. (G 5)

It is straightforward to verify that S(y,t) v = v, (or more explicitly, S(y(6),t) v(0) =
v(@+wt)) and S(y,t)-w = w,+ (0w/dl) tv,. Therefore

Sy, t)-dy = (¢’ + (Qw/0l) ta™) v, + a”'W,. (G 6)
Also, since wv = J- H'(y), it follows that
(w,v]= (1/w)w-H = (1/w)0H/d] = 1. (G17)

By using (G 3) and (G 5)—(G 7), the second term in (G 4) may be written as half the
time average of

(@), Ny p+ Qo fAI) (), Aoy — (&), AaD p—dw AL ) ¢ (G 8)
From (G 2), (G 5) and (G 7) it follows that
), = (a®), = 0. (G 9)

One can show that (G 9) implies the vamshmg of the time average of (G 8), which in
turn implies that V¢(I) = VH(I). (Note that t(a), vanishes in the generalized sense of
Appendix J.) A similar though more involved argument appears in Appendix K for
the periodic orbit two-form.

Let us point out that (G 1) has a geometrical interpretation similar to those
described in §6. Suppose we want the flux of V¥ (I) through (1. From a point y on
an invariant torus we draw vectors y, and y, to points on neighbouring tori with the
same actions and angles but with parameters R+r, and R+7r,. y, and y, span an area
element [,(0) in phase space, as drawn in figure 1e. According to (G 1), the required
flux is (minus) the symplectic area of [],(f) averaged over the torus. There is a similar
construction for the fundamental formula (1.2) for the quantum two-form V,,. From
[n(R)) we draw vectors |n,» and |n,) in Hilbert space to |[n(R+7,)) and |[n(R+7,)).
|n,> and |n,» span an area element [, in Hilbert space, as in figure 1d. According

o (1.2), the flux of V, through [ is just (minus) the symplectic area of [, (as
defined in Appendix E). In this light, the correspondence of the quantum and
classical two-forms, (1.2) and (G 1), is immediate.

Appendix H. Derivative at constant volume

The microcanonical average, regarded as a function of phase volume w rather than
energy kK, is given by
W= [az00-2,) (1)

def
where 2,(z) = Q(H(z)) is the volume of phase space with energy less than H(z). (More
def
explicitly, Q,(z,R) = Q(H(z,R),R).) Equation (H 1) is correctly normalized since

O(Q(E)—L2p(z)) = 0(E—H(z))/2' (B
Proc. R. Soc. Lond. A (1992)



The geometric phase for chaotic systems 657
Differentiating (H 1) with respect to parameters at fixed w, we get

d{¢>, = {d¢),— Jd”z O(0—=Qp)d2p N = <d¢>w—% dQp Ay, (H2)

But dQ, = dQ2+ Q'dH, and
dQ = —JdZNzé(E—H)dH =—Q'{dH).
Therefore
dQ, = —-Q'(dE—dH), (H 3)
ef

where dE = {dH). We substitute (H 3) into (H 2), and express the result in terms of
E rather than w, via w = Q(E). Noting that d/dw = (Q)"*d/dE,

d{¢> = {d¢)+ (1/2') (' ((AE—dH) A $))". (H 4)

Appendix 1. Derivations of (7.6) and (7.10)

First we derive (7.6). Starting with the expression 3{dH A [dZ(t), AdZ(t)]) on the
left side of (7.6), we express the time average as the residue of the Laplace transform
at the origin (as in Appendix J), and replace [dZ(t), A dZ(t)] by its expression in (6.6).
The result is

—%limsf dte"S‘def d7’ {dH A{(dH),, A (dH),}). (I1)
§—>0 0 0 0

In writing (I 1) we have used the symmetry of the 7 and 77 integrals to restrict the
domain of integration to 7 > 7’; this restriction is compensated by an additional
factor of 2. Reversing the order of the integrations allows the ¢ integral to be
performed, with the result

—%limsfoo dr’ fw dre " (dH A{(dH),, A (dH),}). (I2)

§—=>0 0

T A (dH)T’}> may be
AdH}). After changing variables from 7 to 7—77, (I 2)

Since microcanonical averages are time invariant, {dH A {(dH)
replaced by <dH_, A{(dH)
becomes

T—1"7

Clim | dr e f " dr e ((dH)_ A(dH),, A AHD. (13)

s>0J0 0

This expression may be written as limg_ ,G(s,s), where

0 e—ST 0 L,
G(s,sY=—| d s | dr'e*" F(r, 1),
(&) L s L (r.7) (14)

F(r,7") = {(dH)_, A{(dH),, NdAH}),
as asserted in (7.6) and (7.7). In passing from (I 3) to (I 4) we have in effect multiplied

and divided by s.
Next we derive (7.10). Consider

" amy,, AdHyy, (15)

limt [ drS
2/, s

s§=>0

Proc. R. Soc. Lond. A (1992)
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From (3.12), ({(dH),, AdH}) = (' (dH), AdH))' /Q’. Making this substitution in
(15) and 1ntegrat1ng by parts over T, We obtaln

iif% 2;J dr e~ (Q'(dH), A dHY) = ;5 f Ar(Q/(dH), AdHYY.  (16)

But from (3.15), this last expression is just V°(#), as asserted in (7.10).

Appendix J. Time average as residue of Laplace transform

Assuming that f exists, we show that

lim sF(s) = f, (J1)

§—=>0

where F' is the Laplace transform of f. The result is true for constant functions (easily
verified). Then taking f = f—f to be the oscillatory part of f, it suffices to show that

lim sF(s) = 0, (J2)
§—>0
where F is the Laplace transform of f. Integrating the left-hand side of (J 2) by parts,
we get
lim sF(s) = lim SZJ deg(t) e, (J 3)
s—>0 §—>0 0
where §(t) = [! de ). Since the time average offvanishes, |G(t)] /t -0 as t— oo. Thus

for any ¢ > 0 we can take 7' sufficiently large so that |§(¢)| < et for ¢t > 7'. Then dividing
the integral in (J 3) between [0, 7"] and [7', o0],

T 0
lim |sF(s)| < lim s* j de|g(t) e st + lim szj dtete . (J 4)
T

§—>0 §—>0 0 §>0

Taking the s->0 limit on the right-hand side, we get lim, _,|sF(s)| < e. Since ¢ is
arbitrary, (J 2) follows. If /' has a meromorphic extension to a neighbourhood of the
origin, (J 1) is equivalent to

f=Res, F(s), (J 5)
where Res, F(s) denotes the residue of F' at the origin. If f does not exist, we may
regard (J 5) as its definition. In this way we can say that {* (n > 0) and e have time
averages equal to zero.

Appendix K. The periodic orbit two-form

¥;(0,8,R) denotes a family of periodic orbits parametrized by an angle 6
(proportional to the time), action § and parameters R. For convenience we drop the
subscript j from y;. Usually the R dependence is left implicit, and sometimes the S
and ¢ dependence is left implicit as well. 7} is the period and w; = 21/7} is the

def
frequency of the orbit; v = Jy /06 is proportional to the velocity.
The periodic orbit two-form is given by
Vi(S) = =<ldy, Ady]);s. (K1)
{>;s denotes the orbit average (2m)~* [2*df. While we will not use this result, let us
Proc. R. Soc. Lond. A (1992)
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point out that V§(8) is closed, simply because dy(6,S) is closed. Note that in §8, the
periodic orbit two-form is a function of energy rather than action, as S is set equal
to S;(#). In general d(V§(S;(E)) # 0.

The 6-origin along each periodic orbit is arbitrary and may be shifted by the
transformation

y(0,8,R)>y(@+F(S,R),S, R). (K 2)

However V§(S) remains invariant under this transformation, as we now show. Under
(K 2), dy(0) >dy(0+F)+dFv(0+F), and the two-form (K 1) acquires an additional
term —2<[dy,v]};s AdF. We have that 3{[y,v]);s = {p-0,;q);s = §/2n. Differen-
tiating, d<{[y,v]);s = <[dy, v]};s+ <[y, dv]);s = 0. But {[ y,dv]};s = {[dy, v]);s (this
follows from integration by parts over ¢ and reversing the arguments of the
symplectic inner product). Therefore

{[dy, U]>js =0, (K 3)
which in turn implies the invariance of the two-form.
Next we derive (9.8). The energy of an orbit K,S,R)= H(y(0,S,R),R) is
independent of 6. Therefore its variation with R and S,

OH;, = (dH+H' (y)-dy) 3R+ (1/2n) (H'(y)- w) 38, (K 4)

def
where w = 2ndy/dS, is also #-independent. Averaging (K 4) around the orbit, and
using the fact that J-0H'(y) = w;v, we obtain

0H; = ((dH ;s + w;<[dy, v]);s) -8R + (w;/21) {[W, v]) ;5 BS. (K 5)

From (K 3) {[dy,v]);s vanishes. Also [w,v] = (2r/w,;) H (y)-0y/0S = T;0E,/0S = 1.
Therefore (K 5) becomes 8K; = {(dH ;s dR+8S/T}, or, if S is regarded as a function
of £ and R,

de = Tj(dE‘<dH>js)’ (9.8)

the required result (9.8).
The last result to be derived is (8.11). The starting point is the alternative formula
(6.11) for V3°(H), which remains valid if the microcanonical average is replaced
def
) =

by an orbit average. Let Y(0,t) =y(0+w;t) (the S and R dependence is left

def
implicit.) Equivalently Y(0,t) = y,(0) (since in general f,(0) = f(0+w;t)), or more
simply Y(t) = Y, Since Y(¢) satisfies Hamilton’s equations, its derivative with respect
to parameters,
d¥(t) = d(y,) = (dy), +do; v, (K 6)
is a solution of (6.9). From (K 6), (6.11) and (8.9) we obtain

Vie(B) = =il(dy)e, A (dp)e]D e +3<[dY (), AS(y, 1) dy]);p—iK[dy, /\dy]>jE(’K
7)

where the average (- ),z is taken over the orbit with energy £, and terms of the form
{[dy, v]);z vanish in light of (K 3). Both the first and third terms of (K 7) are equal
to 3V5(S;(£)). It remains to show that the second term vanishes.

Expressing its time average as the residue of the Laplace transform at the origin
(as in Appendix J), we may write the second term of (K 7) as Resy F(s), where F(s) is
the Laplace transform of

1) = <[AY(0), Sy, ) dY(0)] 5. (K 8)
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For the explicit evaluation of f(!) we introduce a Floquet basis along the orbit, in
terms of which the action of the linearized flow S(y,t) is simply expressed. The
Floquet basis consists of v = dy/00 tangent to the orbit, w = 2rndy/dS transverse to
the energy shell on which the orbit lies, and &%, &~ k = 1, ..., N—1, which span the
orbit’s stable and unstable manifolds respectively; v, w and &¥* are functions of
6, S, R. Then one can show that

S(y’t)'v:vta S(y’ )'W:Wt ‘/aS)tvt:
S(y. 1) &+ = eM’ft(é’”)-

(The first equation is written more explicitly as S(y(0),t) v(0) = v(0+w;t), and
similarly for the others.) Both A, and &% may be complex, but we assume that

Ay # inw, (K 10)

(K 9)

i.e. that the stability exponents are either elliptic or hyperbolic.
The Floquet basis can be chosen to be symplectic, so that

[EF, &M =0, [E7.&7]=0, [v,E"]=0, [w,E*]=0, (K 1la)
[€F. &7 =0y, (W] =L (K 116)

Among these relations, the homogeneous equations (K 11a) are a direct consequence
of (K 9). For example,

[EF. &M =[S, 1) &M, S, 1)) &™) = exp (= (A, +A,) Tj) [€", €

(the first equality follows from the invariance of the symplectic inner product and the
second from (K 9)). Therefore

(exp (— (A, +4,) Tj)" 1) [5’” &1 =0

Since exp (—(A,+A,)T;) #1 (cf. (K 10)), this implies that [£¥* &) =0. Of the
inhomogeneous equations (K 11b),[&*", E¥~] = Lissimply anormalization convention,
whereas [w, v] = 1 was shown in the discussion following (K 5).

Expanding dy in the Floquet basis,

N-1
d — avv+aww+ Z (ak+€k++ak/‘—ék—)’
d k=1 (K 12)
=[w,dyl, «=—[v,dy], of*=TF[EF dy];

the expressions for the coefficients o (which are functions of 6, S, R) follow from
(K 11). Substituting (K 9), (K 11) and (K 12) into (K 8) one can show that

J(t) = ¢V () 4§ (— 1) + (D, /8) F(t) t+ o A deo, 8

F 3 @), (K 13)
where
() = (") AaDsg,  @M(1) = (&) Ao pg,  PF(E) = (&), A5
(K 14)
From (K 3) and (K 12) it follows that
a5 = (), = 0. (K 15)
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Equation (K 15) in turn implies that the Laplace transform of the first three terms
in (K 13) have no poles at the origin. As for the remaining terms, since ¢*(t) is 7}-
periodic, the Laplace transform of ¢*(4+¢)exp(+A,¢) can have poles only at
+ A, +inw,;; from (K 10) none of these lie at the origin. Thus Res, F(s) = 0, and the
second term in (K 7) vanishes, as claimed. This implies in turn than Vi°(E) =
V5(S;(£)), the required result (8.11).
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