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Divergent series are the invention of the devil, and it is shameful to base on them any
demonstration whatever' (Abel, 1828)

'2+2=5, for sufficiently large values of 2' (Princeton asympiotic graffito)

1, INTRODUCTION

My purpose is to describe several recent developments in our understanding of
divergent serles and the accurate calculation of the functions they represent. All the work
has beenl 2 or is being published3, so this will be an informal account, emphasising the
new concepts and illustrating them with pictures.

It is useful to introduce some terminology. Typically, an asymptotic series for a
function depending on a large parameter k and several variables X=(X),X»....} has the form

ylk: X) = M{k; X)exp{ka(X)} EY,,(k.X). where Yo=1 and Y, k™ -
r=0

(Often k - which will not always be written explicitly - serves simply as a book-keeping
parameter, {o order the terms in the series.) In the cases we are interested in, the series
diverges and so is meaningless when interpreted conventionally. The usual 'asymptotics’
is the study of the series truncated at fixed order r=N: according to Poincaré's definition?,
the series Is asymptotic if the error is of order k- (V+1). However, as was known to Stokes 5
nearly half a century before Poincaré, much more accurate approximations can be
obtained by truncating not at fixed order but at the least term, which typically increases
with k. It is common to achieve errors of order exp(-k} with such optimal truncation,
which therefore constitutes ‘asymptotics beyond all orders’ or, as I will call it,
‘superasymptotics'’. (After introducing this term I felt at first shamed by Barbara Levi's
gentle satire® on physicists' predilection for terminological ‘'super‘iority, but was later
made unashamed by reading Lord Kelvin's memorial appreciation?, in which he
described Stokes' early work on divergent series as ‘'mathematical supersubtlety’.) We
shall also require a term for systematic improvements to the exponentially small
remainder of a optimally truncated series . I will call these "hyperasymptotics'. Thus
hypersaymptotics goes 'beyond asymptotics beyond all orders.’

Asymptotics beyond All Orders, Edited by H, Segur ef al,
Plenum Press, New York, 1991 1



Underlying the recent work are two ideas. First, that an asymptotic series such as
(1} is a compact encoding of a function, and its divergence should be regarded not as a
deficiency but as a source of information about the function. In particular, divergence
usually indicates the presence of exponentiaily small terms which the bare asymptotic
series, uninterpreted, cannot capture. This is why superasymptotics can yield
exponential accuracy. A consequence is that the late termns of the asymptotic series
associated with one exponential are frequently related by resurgence’ to the early terms of
the series associated with another exponentfal. Second, that the divergences of the serles
obtained by a variety of methods, and representing a variety of functions, follow a
commmon pattern: factorial divided by a power. Recognition of this universality and its
cause leads to powerful resummation techniques enabling the asymptotics to be decoded
to yield precise (hyperasymptotic) numerical information. These principles were
systematically explored and exploited by Dingle in the 1950s, and surmmnarised in his
1973 bookS, but are only now becoming widely knowmn.

In the new results I describe here, Dingle's work is extended in two ways. The first
concerns Stokes' phenomenon?, namely rapid jumps, as the variables X are changed, in
the multipliers M of a small (subdominant) exponential whilst hidden behind a big
(dominant) one. In a sense this is the very heart of asymptatics, beeause such changes in
form necessarily accompany the divergence of the asymptotic series associated with each
expenential, reflecting its inability to describe the other exponentials. In my opinion, the
persistent failure to understand Stokes' phenomenon (still evident in the literature) 1s in
large measure responsible for what Littlewood10 called the ‘aroma of paradox and
audacity’ that has hung about the whole subject of divergent series, connection formulae
in WKB theory, etc. By appropriate magnification and resummation, however, a precise
description of the change in the subdominant multiplier can be obtained, in terms of a
universal scaling function. This refinement and demystification of Stokes' phenomencn
can be regarded as the consequence of just the first step into hyperasymptotics.

The second result goes much further. By systematically exploiting resurgence, the
remainder in an cptimally truncated expansion can itself be expressed as an asymptotic
series, which has its own remainder..... Iteration of this hyperasymptotic process leads to
an intricate sequence of hyperseries in which the original asymptotic coefficients [the Y;
in (1)} are renormalised by certain universal functions. At the end, after
hyperasymptotics has come to a natural halt, the error is reduced, niot to zero but to less
than the square of the superasymptotic error. For integrals of exponentials with several
saddles, there is a remarkable resurgence identity connecting the expansions about the
different saddles; this can be employed to refine the method of steepest descent into an
exact technique, whose hyperasymptotics can be accomplished without resumming
divergent series.

I will fllustrate these general ideas with the Airy function:

u
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Here the infinite contour C runs from «exp(5mi/6) to «exp(ri/6), so that the integral
converges for all complex z. For real z, C can be deformed to the real axis, and Ai(z) is real.
For any z, Ai depends on two real quantities: the modulus and phase of z. In terms of the
general theory for the series (1), |zl (or rather |zI13/2) will be the large parameter k and arg
z will be the variable X. In § 2 we show the ordinary asymptotics and superasymptotics of
Ai, with and without the Stokes jump, which is represented as a discontinuity. In §3 the
universal smoothing is described. §4 contains an account of resurgence and
hyperasymptotics, again with Ai as an example.

Having these new techniques, I would like to hear from anybody who needs the
Airy function to twenty decimals, but am not expecting an early call. Probably no
application requires such accuracy. This being so, it is important to reveal the motivation
for this renewed interest in the oldest and simplest problems of asymptotics. This I leave
to the concluding §5.



2. DOMINANT AND SUBDOMINANT SERIES; STOKES' JUMP

‘We shall display several approximations to Ai(z) for large |z[, the aim being to
understand the asymptotics in the upper half-plane (fig. 1), that is as é=arg z varies from 0
to & For large 1z| it is appropriate to approximate (2) by the saddle-point method!l. There
are two saddles, at u=+iz1/2, at which the integrand is

CXp{i%F}sexp{$%23/2} B

{note the signs- see fig. 1). Following Dingle®, we have introduced the 'singulant' F. namely
the difference between the two exponents, The full significance of this quantity will
emerge later. In our first numerical illustrations we shall take the 'large parameter’
aslFl1=3, Le. 121=1.7171.

Study of the topology of the phase in (2) shows that when 8<120° the contour C can
be deformed into a steepest path passing through only one of the saddles, ylelding the
lowest approximation

Fig. 2 is an Argand plot comparing Ail with the exact Ai (computed to high precision, e.g.
by the convergent series) in the upper half-plane. Agreement is reasonable for small 8, but
rapidly deteriorates, becoming worst on the negative real axis, where Ail is complex
whereas Af is real.

The natural next step is to include higher-order corrections to Ail, giving the
approximation®

1 F1N r(r+—};)r(r+-§)
Al(z) = Al2(z, N} = — = expi = here ¥ =—m 81V 76/
(Z) (Z N) 221/4'\15 exp{ 7 }rz.] Yr where ¥ anrr(r+ 1) 8
For large corders (‘the asymptotics of the asymptotics'), the coefficients are
(r-11
Y 6
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Fig. 1 Upper half-plane of argument z of the Airy function Ai(z).



Thus the smallest term, corresponding to optimal truncation, i.e. superasymptotics, is
near N=r*=Int| Fi. The superasymptotic Ai2 is shown in fig.2. The agreement is much
better for small 8, but no better for 8=180°.

The reason for the poor agreement near the negative real axis is the neglect
of Stokes’ phenomenon: for 8>120° the steepest-descent deformation of C passes through
both saddles, so that the contribution of the second exponential in (3) should also be
included. 8=120° is the Stokes line for Ai, defined as the locus of greatest disparity between
the two exponentials, where Fis positive real and the terms Yy in the dominant series (5}
all have the same sign, so that the divergence of the series is most severe, Stokes® 12
argued that the extra exponential should be regarded as being born on this line, where it 15
smallest. Incorporating it into the lowest-order approximation gives
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where H denotes the unit step. Note the factor i in the new exponential. This birth 'in
quadrature’ not only makes the jump most unobtrusive but also ensures that Ai3 is real on
the negative axis, which is an anti-Stokes line for Ai, that is the locus of equal magnitude
of the two exponentials. Fig, 3 shows the considerable improvement that this produces:
the overall agreement is much better, and the discontinuity is indeed unocbtrusive.

Im(Ad)

Fig. 2. Argand plot of exact Airy function A {dashed line) in the upper hali-

plane, along the semicircular path shown in fig.1, for 1FI=3 {i.e. 1zI=1.7171),
compared with lowest-order (dominant exponential) asymptotics Ail {dotted line)
and superasymptotics Ai2 with N=3 (dominant exponential x optimaily truncated

series) (full line). 1 marks =0, n marks 8=180°,
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Fig. 3. As fig. 2, but comparing the exact Al (dashed line) with Ai3 (dotted line)
(Stokes jump included to lowest order) and Ai4 with N=3 (full line)(Stokes jump
included superasymptotically). The jumps are shown as bold lines.

Stokes' analysis indicated that the best approximation is obtained by including
the jump at the superasymptotic level, i.e, in the optimally truncated series. This gives

Al(z)= Al4(z,N)= @ﬂﬁ[e@{+§}§)¥ +1exp{—g}rgl(—1)r Y, H(6- 120°)}

@
As fig. 3 shows, Ai4 indeed gives a dramatic improvement, even here where | Fl=3 and the
new exponential appears with relative magnitude exp(-3)=0.0498, which is hardly small.

Figs. 2 and 3 extend a numerical experiment of Stokes® demonstrating the reality
of his phenomenon. Since then, many peoplele.g.13 4) have rediscovered the increased
accuracy achieved by correctly including small exponentials. For this to be a consistent
procedure, it is essential to go to the superasymptotic level, where the first neglected term
is exponentially small. Ordinary Poincaré asymptotics is inadequate because with this,
as has often been remarked, the small exponentials exp(- | FI) are lost in the truncation
errors 1 FI-N,

3. SMOOTHING STOKES' DISCONTINUITY

The exact Airy function changes smoothly, so that any discontinuity at the Stckes
line, where the subdominant exponential appears suddenly, must be an artefact of poor
resolution. To get an approximation without discontinuity, it is necessary to go beyond
superasyrnptotics. The first step into hyperasymptotics is sulficient to resolve the
structure near the Stokes line. This can be accomplished by taking seriously what
superasympiotics neglects, namely the tail of the series beyond the optimal truncation
limit N=r*. An important observation is that the late terms formula (8) (factorial divided
by a power) is not restricted to Al but has a very wide range of validity when modified as
follows:
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Here F denotes the difference between the exponent k¢ in (1) and the leading subdominant
exponent, which we call k¢, and M. the multiplier appropriate to the subdominant series
(for Ai, M.=M). The simplicity of (9) is remarkable. Anybody who has computed
asymptotic corrections in realistic (i.e. not textbook) applications knows that the algebra
gets very heavy and generates enormous formulae (see e.g. pp 119-121 of Dingle's bookS),

The underlying reason for the simplification, well explained by Dingle8, 1s that all
asymptotic methods (saddle-point and end-point integration, WKB solution of differential
equations, etc.) are generated by local expansions. Thus, successive terms in the
expansions involve successive derivatives, and late terms correspond to high derivatives.
But by Darboux's theorem® the high derivatives of a function ff) at, say.i=0 are dominated
by the nearest singularity, at t=¢*, say. Typically this will be a pole or branch point, and
then the high derivatives will indeed have the form factorial/power, A common case is the
simple pole

A
f(t) tot* (t_t*) (103

Successive differentiation swells the range of validity of this formula from the
neighbeurhood of * to =0, so that

r r!

—_— )] 5 :
di" f(0’ e A(t ,)r-i-l

(1))
For example®, if
1
T 0= g (12
Darboux's principle gives, from the pole at t*=¢"1-1,
d" =
r! Ff(o) =300 ( '?l r+l
e(l -€ ) (13

If r=0,this formula gives 0.58, in pocr agreement with the exact value 1, but for the late’
term r=8 it gives 22.8300, close to the exact value 38371/1680=22.8399.

Formally, we can write the expansion (1) as the optimally truncated series plus the
divergent tail with its terms approximated by (9}, in the form

y = Mexp{k¢} %_'-,Y,. +1M_Sexp{k¢_}, where
r=0

—i = {r-1)!
S(F}=—exp(F ——
(P22 5 04

In coded form, S(F) is the Stokes multiplier, describing the appearance of the
subdominant exponential across the Stokes line F positive real. To decode it, we employ
Borel summation, that is*8 writing the factorial in the familiar integral representation
and then evaluating the sum, This replaces {14) by a convergent integral, which must be
approximated for large | F| (this is ‘the asymptotics of the asymptotics of the asymptotics').
I have done this elsewhere!, and do not repeat the details here. The important point s that



the evaluation of the Borel integral is greatly simplified by optimal truncation, because
then (and only then) & pole and saddle in its integrandcoincide.

In the case (e.g. Al) where there is no subdominant exponential before’ the Stokes
line, i.e. for Im F<<0, the multiplier takes the very simple form

S(F)= %[H Eﬁ{%} ] 15

where Erf denotes the familiar error function! 5. As the argument of Erf increases from -
10 = {i.e. between the two anti-Stokes lines adjacent to the Stokes line Im F=0), S(F)
increases from -1 to 1. Recalling that Fis proportional to the large parameter k, we see
that the ‘width’ of the Stokes line, that is the range in the space of variables X over which
the subdominant exponential enters, scales as k'1/2,

I wish to make four remarks about the error-function smoothing formula. The
first concerns its generality. Although it provides a refined description of the Stokes
phenomenon in Airy, Bessel, hypergeometric, and Mathieu functions (and even the error
function itsel), it is not restricted to these special functions, nor to the solutions of
certain differential equations, nor to integrals with a large parameter. Its range of
applicability is all functions whose asymptotic series diverge as (factorial/power).

The second remark concerns the extent to which the derivation of the error-
function smeothing requires the resummation of divergent series. Until now,
resummation provides the most direct and context-free route to the formula. It does not
however seem to be popular amongst mathematicians - certainly not those who have
taken up the important question of providing a rigorous justification for the smoothing,
with error bounds. In particular cases where this has been possible16.18.19 it was
achieved by using special methods, appropriate to particular classes of integrals, where
the remainder can be expressed in closed form rather than as a divergent series [see §4 for
a wide generalisation of such cases). Other problems for which the smoothing can be
obtained without resummation, albeit sill non-rigorously, are certain second-order
differential equations29, or equivalent first-order systems?!.

The third remark concerns the importance of optimal truncation. Without this,
the Stokes multiplier is still defined as in (14), but with a different summation limit. This
change seems Innocuous but actually males a hig difference20-22, For non-optimal
truncation (which means that N lies outside the range | FI-VIFI to | FI+J1F1}, S(F) still
mcreas?? 2from 0 to 1, but with exponentially large oscillations and over an X-range bigger
than k1/=,

The fourth remark is that the smoothing has applications in physics. In wave
theory, small exponentials represent complex evanescent rays, so that Stokes’
phenomenon describes the gentle birth of rays!2- in contrast to caustics, which represent
the violentt transformation of real into complex rays. Mathematically, rays correspond
to saddles of diffraction integrals, Stokes' phenomenon to two saddles having the same
{imaginary part of) height, and caustics to two saddles colliding. For integrals more
complicated than that describing Ai, Stokes' phenomenon can occur on surfaces in the
space of real parameters X, and can take interesting forms?3, One direct application of the
smoothing formula is to the generation of exponentially weak reflections®?, for example
above a potential barrier in quantum mechanics. Another is to the history of a quantal
transition between two states, induced by a slowly changing field; in this case, optimal
truncation corresponds to a particular choice of basis states, and suggests new
experiments21-22 to detect the Stokes phenomenon.

Applied to Af, the smoothing (15) spreads the Stokes jump over the region between
the anti-Stokes lines at #=60° and ¢=180°, and gives the approximation



Al(z) = Ai5(z,N)
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(despite the step on the antiStokes line, there is no discontinuity). In fig. 4 this is
compared with the exact Ai. Evidently the agreement is again much improved: the curves
can hardly be distinguished over the whole range of 8. (Actually the approximation Ai5S is
defective in that it is not real when 8=180°, but the cure, which is o Include in the
subdominant contribution the first N terms of its asymptotic series (cf. (8)) - a procedure
for which there is theoretical justification? - leads to a curve which cannot be
distinguished from Ai5 in fig. 4.)

A more discriminating test is shown in fig. 5. Here the error-function smoothing
{15) is compared with the exact multiplier defined by (14) and (5), namely

S(F)y=-21z"4x e:tp(%)[-‘\i(z) - Ai2(z,r*)] a7

This multiplier, predicted to be of order unity, is the difference between two quantities
which near the Stokes line are both exponentiaily large: the exact Al and its
superasymptotic approximation. Even under this magnification, the agreement is
excellent, and, as expected, is beiter for the larger singulant | Fl=10 (refinement of the
general theory! shows that the error in the error-function smoothing is of order F1/2 for
Im S, and of order F'1 for Re S).

Imi(Af)

0.2¢4

Fig. 4. As fig. 2, but comparing the exact Al (dashed line}with A5 with N=3 (full
line) (superasymptotics + Stokes smoothing of subdominant exponential).
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Fig.5. Real part of Stokes multiplier for the Airy function, across the Stokes line
8=120°. The full lines are the exact S(F) {equation 17); the dashed lines are the
theoretical smoothing (15).

4. RESURGENCE

Deeper penetration of the asymptotic series (1) requires more accurate
asymptotics of the asymptotics’ than the leading term (9). Resurgence is a principle that
greatly assists the determination of such higher-order approximations to the late terms.
The idea is that if (1) is regarded as a complete asymptotic expansion which can represent
the function yl{icX) exactly, resummation of the late terms must yield not only the leading-

order subdominant exponential but also the corrections terms in its asymptotic series.
This must hold for all component asymptotic series, so each must contain, encoded in its
late terms, all the terms of all the other series. Systematic expleration of this
requirement of mutual consistency is still not completed. Dingle8 gave several examples
of resurgence; Ecalle24 described it at length (as well as inventing the term); Voros2%
applied it to differential equations (calling it ‘analytic bootstrap’); and Flagolet and
Odlyzko28 examined applications to generating functions with exotic singularitles.

Before illustrating resurgence, I shouid point out that for some simple functions it
occurs only in rudimentary form. One such class (which includes the integrals Ei and Erf)
is where the form (factorial/power) holds for all the terms Yy, not just as r—es; then a
single resummation terminates the series exactly. Another class (which includes log
I'(z)32) 1s where the Y; are given by an infinite convergent series of (factorial/power) terms,
each of which can be exactly terminated by a single resummation. (A curiosity is that the
superasymptotics of n! requires summing to the least term r=rn, which involves
{Int(2zn)}! - a case of runaway self-reference, if not resurgdence.)

Usually, though, we can expect resurgence to arise in all its glory, which will be
illustrated now with a brief description of a new result ocbtamed with Howls®. Consider
the integral

Iik)= |dzG{z)exp{-k¢(z)}
C{k) g

where G{z} and ¢(z) are nonsingular and ¢{z} has saddles at a number of points z;. C; (i is
one of the two infinite oriented steepest-descent contours through 2. It is convenient,
although not necessary, to think of k as complex, with | k! as the large parameter and arg
k as the variable X. Standard steepest-descents® yields the following series of the form (1),
in which for convenience the prefactor and the coefficients Yy have been amalgamated:
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The terms are
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) G{z)
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FJ(z)sk[¢(z)—¢J] 20

Here the subscript j means 'evaluated at 2, and the contour is a positive circuit of z ;. The
integrals can all be evaluated explicitly in terms of derivatives of ¢ and G at 2;. For
example,

1/2

2
Tylk)=|—=| G
-2 e,

21
(primes denote z derivatives).

The series (19) is a local expansion about the saddle j, and diverges because of the
other saddles L An explicit and exact expression, whose derivation3 , (involving P2C2E27
here) has been obtained for this resurgence, showing how the integrals through certain
other saddles give the remainder of the truncated series for a given saddle:

N-1
1;(k) = exp{-k¢ J}rgoTJr(k) +

o

exp{-k¢,} (-1t M2 ep(-v) [ (ko ), [Hw
T e e )
4]
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Here

Fp=k(¢1~¢y) ©3)

denotes the singulant giving the exponent difference beteween the two saddles. The
contributing other saddles l are determined by a topological rule: They are the saddles
reached by lines of constant phase of F{{2) issuing from z;. The sign of each contribution is
determined by y;,which is zero if the expanded loop contour through z; has the same sense
at z; as Cilkv/ Fyj), and unity otherwise. Being exact, (22) contains the Stokes phenomenorn
{contribution from the pole at v=Fj), and the higher terms of the original expansion (from
the expression of the v integral as a factorial for large M.

Substitution of the series {19) converts (22) into a formally exact resurgence
relation between the coeflicients for the saddle j and the contributing other saddles L

1
27

= (r-s-1)!
gy 5 o

s=0 (Fy) (24)

For large r, the leading contribution is the term s=0 from the saddle i for which | Fyl is
smallest. Denoting this singulant by F, we obtain

Ty =

10
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With appropriate identifications, this is the same as the previous late-terms
approximation (9). Now, however, we have the complete expression, giving all the
corrections, from all the contributing saddles. Of course it is only formal, because in the
terms s>r-1 the factorials diverge; but it can be made to converge by resummation, which
reproduces (22).

Hyperasymptotics consists of iterating {22), with optimal truncations, and
substituting at each stage the truncated asymptotic series for the I, a procedure that can be
regarded as muitiple scattering among the saddles. Each iteration produces an
exponential improvernent. The result is, in the general caseS, an intricate sequence of
truncated asymptotic serles, eventually involving all the saddles (l.e. not just those which
contribute to (22) at a given stage}. These series involve the original asymptotic
coelficients Tjy , which of course depend on the particular function being approximated,
and certain 'generalised terminants’, in the form of multiple integrals, which are
universal functions of the singulants Fy. The advantage of the integral (22) over the ‘pure
asymptotic’ resurgence (24) is that at every stage of hyperasymptotics there is an explicit
expression for the remainder, which will, we anticipate, be indispensable in constructing
rigorous error bounds.

Hyperasymptotics comes to a natural hait, because each hyperseries is shorter
than its predecessor, and eventually contains only one term. The decreasing length is a
consequence of the 'live now, pay later’ philosophy, natural in asymptotics, that the terms
must continue to decrease, not only within esich hyperseries but from each hyperseries to
the next. A typical resultZis that hyperasymptotics reduces the ultimate error from exp{-
| F1} (superasymptotics) to exp{-(1+2log2) | Fl}=exp|{-2.386 | Fl}; thus the error is reduced to
less than its square.

To illustrate hyperasymptotics, we again employ Al, defined by (2) This example is
special because there are only two saddles (and therefore only one singulant Fy= -Fjj= F).
and hyperasymptotic multiple scattering is stmply back and forth between them,
Moreover, the pre-exponential factor Is G=1. The terms in the dominant and subdominant
series, including the prefactors M in (1), are the same [(apart from signs) and the general
resurgence (24) reduces in the notation of (1) and (5) to

1 kel s
= r—-s—-1)}(-F) Y,
oo L s DF)Ys

r

g

This relation holds not only for integrals with two saddles but also - as was discovered by
DingleB - for the coefficients in the asymptolic expansion of solutions of second-order
linear ordinary differential equations with a single transition point2.17. Its compactified
form - a special case of (22) - is equivalent to the self-Stieltjes transform relation for Airy
functions, as noticed and exploited by Boyd!8. In this case, each hyperseries is half the
length of its predecessor, so hyperasymptotics stops after Intlogp | F1 stages, with a total of
2int| F| terms (as opposed to Int| F| terms in the zeroth stage of hyperasymptotics, namely
superasymptotics),

We express the numerical results in terms of ¥1z), defined (cf.5) by

T ra £ ) -
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Fig. 6. Decrease of the terms in the five hyperseries constituting
hyperasymptotics for ¥{-16) for the Airy function.

For F=-3 (Le. z= 1.7171), the exact value is ¥{-3)=0.96419.... Thus the lowest
approximationY~1 (i.e. Ail - cf. (4)) is in error by 0.036. Superasymptotics, i.e.Ai2
(equation 5) with N=4, gives ¥=0.95895..., an error of -0.00524, about ten times better, With
a single stage of hyperasymptotics we do much better: ¥=0.96410..., an error of -0.00009,
about 60 times better than superasymptotics

The improvements are even more dramatic for larger [ Fl. Fig. 6 (taken from 2)
shows the magnitudes of the terms in the five hyperseries for Al when F=-186, that is
2=+5.2414827884177932413..., corresponding to 8=0 (fig. 1). The exact value of Y (-16) is
0.99183679918826250891....Thus the lowest approximation Y~1 is in error by 8.163x10°3.
Superasymptotics, i.e. Ai2 with 16 terms, gives Y=0.99183679351132345911..., an error of
-5.877x10". With hyperasymptotics, taken to its natural halt, we cbtain
Y=0.99183679918826260060...., an error of 1.151x10"18 (close to that predicted
theoretically). Similar accuracy is obtained on the Stokes line 8=120° (fig.1) and on the
anti-Stokes line §=180°.[where, for example, hyperasymptotics can be employed to solve
the 'eigenvalue problem’ of determing the zeros of Af).

5. QUTLOOK

There are several scientific reasons, as well as purely mathematical ones, for
seeking such detailed understanding of the relatively simple asymptotic problems I have
been discussing. One is that asymptotics is often deeply involved in the conections
between physical theories28, 1t is common for a more general theory to reduce’ to a less
general theory when some parameter vanishes. For example, special relativity reduces to
Newtordan mechanics as the particle speed vanishes; wave optics reduces to ray optics as
the wavelength vanishes; quantum mechanics reduces to classical mechanics as Planck's
constant vanishes; Navier-Stokes fluid motion reduces to Eulerian flow as the viscosity
vanishes; statistical mechanics reduces to thermodynamics as the reciprocal number of
particles vanishes, etc., etc. Only in the first of these examples is the limit regular and the
expansion in the small parameter convergent. In all the other cases, the limits are
singular and lead to divergent series. Associated with the singularities are important
phenomena such as ray caustics, turbulence and eritical behaviour. This connection
between asymptotics and theory reduction, not appreciated by philosophers (at least in
my experience), is sufficient reason to try to understand divergent series as deeply as
possible,

A more concrete reason is that in practice we cften encounter asymptotics which is
intrinsically more complicated than what I have been describing here, and there is no
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hope of understanding the complicated problems unless we penetrate the stmpler ones
first. One important extension would be to the case of many exponentials. In Stokes'
phenomenon and its smoothing (§§3 and 4) only two exponentials are essentially
involved: the dominant and leading subdominant ones, With the resurgence relation (22)
we make the first step towards the consistent treatment of many exponentials . However,
the integral (18) only involves a single variable, and the topology involved in the
derivation? of {22) suggests that the results might not be the same when many
exponentials arise in the multiple integrals of diffraction theory, or the infinite-
dimensional functional integrals of quantum mechanics, statistical mechanics and fleld
thecry.

Another complication is that when many exponentials appear they need not
always be ordered in a dominance hierarchy: the singulants can all be imaginary. An
important class of such problems occurs in quantum chaologyzs. that is the semiclassical
asymptotics of quantum systems whose classical counterparts have chaotic trajectories.
There, the exponentials appearing in the asymptotic expansion of (for example) the
density of energy levels are assoclated with classical perfodic orbits. Even In lowest order,
where each exponential is included bare - that is, without its correction terms - the
proliferation of periodic orbits makes the sum diverge, in ways that are still mysterious
and probably related to the Riemann hypothesis of arithmetic. There are strong
hints28:28 that at this higher level resurgence may again prove to be an important guiding
principle, this time relating the exponentials associated with long and short orbits rather
than the late and early terms of the series associated with individual orbits.

There are many directions for further research. One is to break through the
exp(-2.386 | F1} barrier (ultraasymptotics?). Another is to extend hyperasymptotics to
multiple integrals, and to the Schradinger equation wilth many transition points (the
work of Balian and Bloch3C, Knoll and Schaeffer®!, and Voros2® could be helpful here).
Yet another is to provide rigorous mathematical underpinning for the results already
obtained, hopefully going beyond proofs for particular functions18-18.19 to generieity
theorems which would delineate the universality class for which the results (for example
the smoothing (15} ) are valid. Going further, it would be helpful to know something about
the late terms of the asymptotic series corresponding to each of the classical closed orbifs
in quantum chaelogy (for example whether the divergences of these individual series are
related to the divergence of the sum over lowest-order exponentials for all the orbits).
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