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ABSTRACT  Ohn fine scales, caustics produced with white
light show vividly colored diffraction fringes. For caustics
described by the elementary catastrophes of singularity the-
ory, the colors are characteristic of the type of singularity. We
study the diffraction colors of the fold and cusp catastrophes.
The colors can be simulated computationally as the superpo-
sition of monochromatic patterns for different wavelengths.
Far from the caustic, where the luminosity contrast is negli-
gible, the fringe colors persist; an asymptotic theory explains
why. Experiments with caustics produced by refraction
through irregular bathroom-window glass show good agree-
ment with theory, Colored fringes near the cusp reveal fine
lines that are not present in any of the monochromatic
components; these lines are explained in terms of partial deco-
herence between rays with widely differing path differences,

Optical caustics are surfaces (in space) and curves (in the
plang) where light rays are focused. They are as familiar as
rainbows and the dancing bright lines of sunlight focused by
water waves onto the bottoms of swimming pools. Caustics are
the singularities of geometrical optics and can be classified
mathcmatically as the elementary catastrophes (1-4) of sin-
gularity thcory. In the plane, the classification gives two
singularities: smooth caustic curves, which are “fold” catas-
trophes, and points where two fold caustics meet on opposite
sides ol a common tangent, which arc “cusp” catastrophes. The
classification contains those caustics that are stable under
perturbations—e.g., of the optical arrangemenl giving rise to
them—and so excludes unstable caustics, such as the isolated
point focus.

On fine scales, which for monochromatic light are deter-
mined by the wavelength A, the geometrical singularities are
softened and decorated by diffraction fringes. Each type of
caustic has its characteristic “diffraction-catastrophe™ pattern.
The fold diffraction catastrophe is Airy’s function (5), and the
cusp diffraction catastrophe is Pearcey’s function (6); Fig. 1
shows the corrsponding intensitly profiles.

Our purpose here is to extend the study of diffraction ncar
caustics by exploring the fringes produced by white light, that
is, by a superposition of wavelengths. Then the fringes are
colored because the interference maxima for the different
wavelengths oceur at different places. (Here, we use the terms
diffraction and interference interchangeably.) We find that
these diffraction colors are surprisingly vivid and persist far
into rcgions of large path lengths where it might be thought
that the supecrpositions would give white, Apart from a de-
pendence on the spectrum of the source of white light (here,
assumed (o be continuous), the colors are characteristic of the
geometrical singularity, a fact that justifies the title of this
paper. We present theoretical and experimental studies of the
colored fold and colored cusp diffraction catastrophes.

In practice, the colors of caustics are often influenced by two
cffects that we shall ignore here. The first is physiological: with
fringes whose spacing is a few arc minutes—i.e., near the limit
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of reselution of the eye—the colors disappear, Icading to the
apparently oxymoronic black-and-white fringes; this powerful
illusion has been studied elsewhere {rcf. 8, see also refs. 9-11),
The second is refractive dispersion, which can color geomel-
rical causlics even in the abscnce of diffraction; the most
familiar refraction colors occur in the rainbow [although
diffraction plays a large part too, especially for small raindrops
{12, 13}]. For the fold, the balance between refraclion and
diffraction colors was studied in ref. 8 and quantified by a
parameter a: with water, ¢ > { describes maximum-deviation
caustics with blue edges, such as those from thin irregular
droplet “lenses”, and ¢ << 0 describes minimum-deviation
caustics with red edges, such as rainbows.

Theory

As a function of coordinates r =x, y,. .. = {x;} and wuvelength
A, the opticul wavefunction y(r,A) that describes, for mono-
chromatic light, the decoration of a given geometrical singu-
larity is cxpresscd in terms of a diffraction catastrophe func-
tion W(E, m, . . .), where A enters through the following scaling

rclation
_ Eq,( X )
Plr,A) = AP 2ol 1]

in which Cis a constant (3). For the fold, ¥ is the Airy function:

Y = 2mAif) = J'w dt cxp{i(% P+ §r)], 2]

where the geometrical singularity is at £ = 0, with £ < 0 lit by two
rays and £ > 0 in shadow. For the cusp, ‘¥ is Pearcey’s function:

* 1 1
Wit =PiEm) = J dt 6XP{5(5 i+ 5 &+ nt)}. [31

Here, the geometrical singularity is the curve

= * 5 (e [4)

As already mentioned, this consists of two fold lines that meet
with a common tangent at £ = n = 0 on the symmetry (£) axis.
“Inside” the cusp—e.g., near the negative & axis—there are
three rays; “outside™ there is one.

According to Eq. 1, the emergence of the singularity in the
geometrical optics limit A — 0 of vanishing wavelength is
determined by the singularity exponents 8 and oy the diver-
genee of the intensity |2 on the caustic is governed by g, and
the diminishing size of the interference fringes in the direction
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FiG. 1. Density plots of intensity of the monochromatic diffraction
catastrophes for the fold (Airy function: —10 = £ = 3) (a) and the cusp
(Pearcey function: ordinate, —9 = ¢ = 2; abscissa, —10 = n = 1) (b).

with coordinate x; by o;. For the fold and cusp, these exponents
are the following:

fold; B=1/6,0=2/3
cusp; B=1/4, 0, = 1/2, 0, = 3/4. [5]

It follows that for the fold the intensity diverges as A~'/3 and
the fringe size is proportional to A*/2. For the cusp, the fringes
(cf. Fig. 1) are more intense (diverging as A~'/?) and are
thinner across the cusp—i.e., A*4 in y—than along it—i.e., A!/2
in x.

For a white-light source with spectral distribution S(A), the
intensity spectrum of the diffracted light at each field point r is

I(r,\)=S () [w(r, )7 (6]

[in what follows, we will model S(A) by a black-body distribu-
tion with specified temperature—e.g., about 3300 K for a
quartz—halogen lamp]. The theoretical prediction of the color
at r requires the calculation of three tristimulus values in the
system of the Commission International d’Eclairage (CIE)
(14), namely,

Uilr) = fdf\l(r,/\)ﬂ,-()\),

where U,‘ = {U,V;I’V}; u; = {L_‘a‘_"aw}' (7]

Here the u;(A) are the spectral tristimulus values that are
derived from the mixture of primary colors that match a
monochromatic light of wavelength A and are related to the
spectral responses of the three types of cone in the eye of a
standard observer. In particular, the tristimulus value V' rep-
resents the luminosity. Standard tabulations (15) give the ;(A)
at 81 values across the visible range 380 nm < A < 780 nm,
enabling the integral in Eq. 7 to be evaluated as a sum.
Calculations of the colored diffraction catastrophes from
Eq. 7 were made by using the program MATHEMATICA. It was
necessary to evaluate the integrals in Eqgs. 2 and 3 for each of
the 81 wavelengths across a grid of positions r. For the fold, this
was easy, first because the grid is one dimensional and second
because MATHEMATICA contains an efficient and accurate
routine for the Airy function. For the cusp, we calculated the
Pearcey integral P in Eq. 3 over the grid {-9 = £ = 2}, {0 =
n = 10} with steps of 0.1 in £ and n, and obtained intermediate
values by interpolation between these 11,000 points. To com-
pute P, we used numerical integration over a range —lmax <t
< Imax. Te€placing the integral over # > fn, by its asymptotic
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approximation based on expansion about t,, (see ref. 7 for
this method of calculating P, and ref. 16 for a related method);
for each (& m), fmax Was chosen so that all the real saddles of
the integrand were captured in the numerical integration.
The diffraction colors were rendered by transforming the
tristimulus values to RGB (red-green-blue) coordinates. This
two-stage transformation is dependent on the display, and will
be illustrated for an Apple Macintosh color monitor. The first
stage is generated by a constant matrix, determined by the
(measured) tristimulus values of the screen’s red, green and blue:

R U 3.78 —1.72 -0.57
G|=M|V | where M= —1.20 —=2.06 0.05 [8]
B W, 0.03 -0.19 0.76/.

The second stage is the gamma correction to compensate for
the (measured) nonlinearity of the screen:

R MI/V
G| >¥"" |, where vy=19, [9]
B/ 3w/

Simulations produced in this way are shown in Fig. 2a for the
fold, and Fig. 3a for the cusp.

Asymptotic Colors

Colors persist deep into the interference regions of diffraction
catastrophes, where it might be thought that the superposition
of colors would give white. This can be explained and the
calculation of tristimulus values (Eq. 7) greatly simplified by an
argument based on three observations. First, in this lit region,
the diffraction-catastrophe intensities can be approximated
(by using the method of stationary phase) by expressing W as
the sum of contributions from a few interfering rays and
incorporating the wavelength scalings in Eqgs. 1 and 5. It is
convenient to define the wavenumber by

k= Ay/A, [10]

where Ay = 560 nm is the wavelength of yellow light. For the
fold, we have (17)

K3 AP (K x) =~

% (1 + sin[i k(—x)3f2}) (x<<0) [11]
271' \le 3

a b

FiG. 2. Colors of the fold diffraction catastrophe. (a) Theoretical
simulation (—7.36 = x/Ay*/3 = 1.47). (b) Experiment.
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a

Fi1G. 3. Colors of the cusp diffraction catastrophe. (@) Theoretical
simulation (ordinate, —7.2 = x/A,!/? = 1.6; abscissa, —7.2 = y/A3/*
= 7.2). (b) Experiment.

For the cusp, we have, in the interference region and near the
symmetry axis (7),

k"f2|P(k”2x, k3/4y)|2 ~

| Y e D Y —

L ‘
] \%(2 +2 @sin{a kxz]cos{ky \.'(—x)]

" cos[zky \.-T—?)}) << 0, ly] << |xl). 1121

It will be important that in these approximate formulae all
trigonometric functions have arguments proportional to k.

Second, when the integration variable in Eq. 7 is trans-
formed from A to k, the factors S(A), u;(A) and the Jacobian
1/k? can collectively be approximated with high accuracy by
Gaussians. The approximations (Fig. 4) are

1 _ 2792
PS(/\)M(/\) = a,) exp _(k - kul) /25‘“1

+ a,2 exp{ _(k - kuZ)z/zs.ﬁz}

[13]
1 =2 = 2192
PS(A)V(:\) = a, exp) —(k — k,)*/2s;
1 — 2792
@S(A)W(A) =~ a, exp| —(k — k,)"/2s,, )
where, for a source with temperature 3300 K,
a, =155, ky =0.925, s, =0.05
a,,=0.087, k,o=124, s5,,=0.06 14
a,=105, k =0974, s, =007 114}
a, =0486, k,=122, s,=0.065

Third, with the substitutions of Eqs. 12 and 13, the integra-
tions over k can be performed analytically (after the inconse-
quential extension of the range of integration to k = —=). We
state the result for the tristimulus value V(x) for the coloured
fold diffraction catastrophe:
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FiG. 4. Gaussian approximations (Eq. 13) involving the spectral
tristimulus values. (a) u. (b) v. (¢) w. Full lines, r.h.s. of Eq. 13; dots,
I.h.s. of Eq. 13.

W(x) = ﬂ (1  E sin[gkv(—x)yz]exp{— gsg(—x).’;})

2mlx|
(x << 0). [15]

Analogous formulae hold for U(x) and W(x) and for the Ui(x, y)
for the cusp; in all the formulae, the trigonometric factors
representing interference are damped by exponentials involving
the widths s in Eq. 13.

Now note that in Eq. 14 the largest width is s,, corresponding
to the tristimulus value V giving the luminosity of the fringes.
Therefore, as —x increases, that is, farther into the interference
region near the caustic, the luminosity contrast will be damped
(by the exponential in Eq. 15) faster than the color contrast
(whose damping is governed by the analogous exponentials in
U and W). This is the explanation of the persistence of colors
deep into the interference region. To illustrate this, we show
the tristimulus values for the fold in Fig. 5, and, in Fig. 6a, a
color rendering of this region, to be compared with the
rendering of the luminosity shown in Fig. 60 and the mono-
chromatic intensity shown in Fig. 6¢c. Note also that in Figs. 4
and 5 the predominantly blue tristimuli w and W are relatively
faint (because of the low color temperature of the source).
Therefore, in the deep-interference region, the predominant
colors should alternate between red and green. That this is
indeed the case for the fold can be seen in Fig. 6a; we postpone
discussion of the cusp until the final section.

Experiment

Colored diffraction catastrophes were created in the far field
of white light refracted by a pane of bathroom-window glass G
(Pilkington’s “Atlantic”); this is randomly corrugated on one
side, with irregularities whose typical linear dimensions are 1
mm. The optical arrangement is shown in Fig. 7. From a
tungsten-xenon lamp TX (equivalent to a 3300 K blackbody),
light diverged from a pinhole P,, was focused by a lens L (focal
length 20 mm, whose purpose is to reduce the angular aperture
of Py as seen from afar), and diverged again to strike a second
pinhole P, which selected a region of about 1 mm? of G.

fold tristimuli

2 4 6 8 10 12 14

Fig. 5. Tristimulus values for the fold colored diffraction catas-
trophe in the interference region —15 < x/Ay~ < —1, calculated with
the approximations of Egs. 11, 12, and 13. The dashed curve is U(x),
the bold curve is the luminosity F(x), and the light curve is W(x). Note
that Wis fainter than U and 1" and that the oscillations in V" are damped
faster than those in U.
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FiG. 6. (a) Colors of the fold diffraction catastrophe in the interference region —15 <x/Ay~ < —1. (b) Density plot of luminosity of the pattern
in a, showing that the intensity contrast decays faster than the color contrast. (c) Density plot of the intensity Ai?(x) of the monochromatic fringes.

The light focused by G forms a caustic surface whose far
field (beginning about 10 mm beyond G) expands with dis-
tance, the typical angular size being 15°. Fringes, formed by
interference between several refracted rays traversing the
same region, decorate the caustic on fine scales; their typical
angular size is 5-20'. The caustics were photographed without
lenses by allowing the light to fall directly onto the film plane
of a camera C. The form of the far-field caustics varied with
the region of G that was selected; Fig. 8 is a typical example,
showing the folds (smooth caustic curves) and cusps (cf. Eq. 4)
that are the stable singularities (1-4) in the plane. To obtain
photographs showing details of these features, the regions
containing them were magnified simply by moving C away
from G. At the highest level of detail, the images were very
faint: with the slide film Kodak Ektachrome 64T, we needed
exposures of up to 15 min.

Because we are studying diffraction colors and neglecting
refraction colors, it is important to work with caustics that are
geometrically achromatic. In our bathroom-window glass ex-
periments it was easy to achieve this by selecting the central

FiG. 7. Arrangement for observing colored diffraction catastro-
phes. C, camera; G, glass; L, lens; Py and P, pinholes 1 and 2; and TX,
tungsten—xenon lamp.

region of the patterns; this procedure succeeds because the
refractive spreading is proportional to the ray deflection and
so is small near the forward direction. White cusps (accom-
panied by fold caustics showing strong refraction colors) were
previously observed in light scattered backwards from oblate
water drops (18) under conditions later shown (19) to be
geometrically achromatic; however, the fringes near these
cusps were too small to show diffraction colors.

In this way we obtained the detailed photographs of the fold
and cusp colored diffraction catastrophes shown in Figs. 2b
and 3b. These should be compared with the theoretical sim-
ulations shown in Figs. 2a and 3a. The color balance is not
identical in each pair of pictures, perhaps, because the film we
used incorporates a correction to bring the effective color
temperature closer to that of daylight. To partially compensate
for this, we normalized the raw monitor images (by using the
program PHOTOSHOP) so that the colors of the brightest and

F1G. 8. Typical colored far-field caustic. Note the fine lines issuing
from the cusps and crossing in the center of the pattern.
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a

F1G. 9. (a) Colored cusp of Fig. 3b, at lower magnification, showing
fine lines parallel to the symmetry axis. (b) Same caustic as in a
photographed through a green filter, which causes the lines to disappear.

darkest parts of the theoretical images were the same as those in
the experiments. It is possible to make further adjustments of the
theoretical colors, to bring them closer to those in the experi-
ments, but we did not do this. Overall, the agreement is rather
good, with delicate observed tints being captured by the theory.

Lines of Partial Decoherence

A surprising feature of the colored cusp, visible in the “mac-
roscopic” caustic of Fig. 8 but not in the magnifications of Fig.
3, is the set of fine lines parallel to the symmetry axis of the
cusp. These can be clearly seen in the intermediate magnifi-
cation of Fig. 9a. The lines can often be seen with the naked
eye at night, in cusps produced from distant white lights by
irregular raindrop “lenses™ on spectacle lenses. What is sur-
prising about the lines is that they disappear when the colored
caustic is filtered into one of its monochromatic components,

a b
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as in Fig. 9b (which is in good agreement with the theoretical
monochromatic cusp of Fig. 1b). The lines are not present in
any of the components and so must be artifacts of the
superposition of different colors.

The key to understanding the lines is the observation that
the integration over A in Eq. 7 corresponds to a particular kind
of smoothing or blurring of the monochromatic Pearcey func-
tion P(&, n) of Eq. 3, namely,

)

1

[16]

P31

This is a multiplicative (in A) parametric smoothing along
segments of lines obtained by scaling the caustic, namely,

T (g) [17]

X

Ufr) = Cljdm,-()\)su)

The length of the segments is determined by the limits A.;, to
Amax (=2Amin) Of the visible spectrum (the functions u; vanish
outside these limits) and by the values x and y. Near the cusp
point, the segments are short, and the smoothing is ineffectual;
this is why the colored diffraction catastrophe is white near the
cusp point (see also the final paragraph below).

In the interference region and close to the symmetry
axis—i.e., where y << (—x)?/>—the line segments of Eq. 17 are
close to the £ axis and parallel to it and get longer as x increases.
The effect of smoothing along these lines is to reduce the
contrast along x—i.e., parallel to the symmetry axis of the
cusp—while leaving virtually unaffected the contrast across x.
Thus, the lattice of interference maxima (Figs. 16 and 9b) near
the negative x axis gets replaced by line fringes, as observed.

There is another way to regard this phenomenon of A
smoothing, in which the coherence of some fringes is destroyed
but other fringes are preserved. Each point inside the cusp is
reached by three rays, whose interference in monochromatic
light gives the pattern of maxima and minima in Figs. 1b and
9b. If the rays have very different phases, the effect of A
smoothing will be to destroy the fringes by decoherence. If two
of the rays r, and r; have a very small phase difference and

C

F1G. 10. Deep inside the colored cusp (ordinate, 4.3 = ---x/AIY;z = 12; abscissa, —2.7 = J\;/A“Y”J = 2.7). (a) Theoretical colors. (b) Experiment.
() Density plot of luminosity of coloured pattern. (d) Density plot of intensity of monochromatic pattern |P(x, y)|2.
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differ greatly in phasc from the third ray #3, then the fringes
assecialed with the interference of ry and r» will be prescrved,
while that associated with their interlerence with ry will be
destroyed. Precisely this partial decoherence occurs inside the
cusp and near the axis; in Eq. 12, the first term—i.e., 2—in the
brackets represents the sum of the intensities of the three rays,
the third term represents the interference between ry and rs,
and the second Lerm (involving kx?) represents their interfer-
ence with rs. It is now obvious that the effect of making 4
incoherent with r; and r» is indeed to oblilerate the {ringes
along x—i.e, to eliminate the second term in Eq. 12—while
preserving those across x.

If this cxplanation is correct, extension of the theoretical
calculation of the cotored cusp diffraction catastrophe of Fig,
3a 1o include more of the interference region deep inside the
cusp should reveal the lines. As shown in Fig. 10a, it docs, and
the lines agree with those seen experimentally (Fig. 105).
Moreover, the lines are also present in the luminesity of the
patterns {Fig. 10c) but not, of course, in the monochromalic
intensity (Fig. 10d).

It should be noted that this onc-dimensional A-induced
smoothing along the lines specified by Eq. 17 is very different
in its effects from the more familiar two-dimensional smooth-
ing produced, for example, by degrading the spatial coherence
of a monochromatic source, such as a laser. This latter
smoothing does not produce the fine axial lings but simply
blurs the whole pattern, as the simple experiment of defocusing
a slide of Fig. 1b or Fig. 90 shows.

Finally, observe thal in Fig. 9¢ not only is the principal
maximuim at the cusp point white but the maxima far along the
fold lines emanating from the cusp are while 100; the first few
maxima on the fold are colored. To explain these facts, we nole
that on the fold lines two of the three rays are degenerate, and
therefore their contribution gives white wherever the third ray
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is negligible, and this is the case far from the cusp. Al the cusp
itself, all three rays are degenerate and so, as we have seen
already, the principal maximum is white. Only for the first few
maxima along the fold is the third ray bright enough for its
phase difference with the other two to generate colors,

We thank Professor J. F. Nye for several helpful suggestions.
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