The Levitron™: an adiabatic trap for spins

By M. V. BERRY
H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, UK

A magnet in the form of a spinning-top can float stably above a repelling magnetic
base. The principal mechanism of stability is static equilibrium in a potential en-
ergy field F, arising dynamically from the adiabatic coupling of the spin with the
magnetic field B of the base and involving the magnitude B of this field. E is close
to a harmonic potential, that is, one whose Laplacian is zero, for which Earnshaw’s
theorem would forbid stable equilibrium. Therefore its minimum is very shallow, and
requires the mass of the top to be adjusted delicately so that it hangs within a small
interval of height. The stability interval is increased by a post-adiabatic dynamic
coupling of the velocity of the top to B, through an effective ‘geometric magnetic
field’ constructed from the spatial derivatives of B; this effect gets stronger as the
top is spun faster. The device is analogous to several traps for microscopic particles.

1. Introduction

An ingenious mechanical device, recently developed by Mr W. Hones and distributed
commercially by him, is called the Levitron™. It consists of a magnet in the form
of a spinning-top, that can be lifted so as to float in mid-air, gently bobbing and
weaving for several minutes about an equilibrium point above a heavy base contain-
ing a magnetized ceramic slab (figure 1). My purpose here is to develop a theory for
this device, which relies on, and is a fine illustration of, the application to mechanics
of adiabatic theory and its first-order improvement, namely geometric magnetism
(Berry & Robbins 1993a,b). The aim is not to give a quantitatively accurate simu-
lation of the device, but rather to expose the mechanical principles underlying its
operation.

The top is a rotationally symmetric rigid body with mass m and angular mo-
mentum S, whose centre of mass is located at r = (z,y, ). It can be regarded as a
magnetic dipole with vector moment p (fixed magnitude p) located at r and directed
along the axis of symmetry. The base provides a magnetic field B(r). The gradients
of this field compensate the gravitational force mg by providing a repulsive force
that acts on u in the presence of the spin S (whose gyroscopic effect prevents the
top from overturning and falling) and must provide the mechanism for the top to
spin stably above the base.

That this mechanism must be subtle is shown by the failure of the following naive
argument. In the region where the top floats, both B(r) and p (parallel to the axis
of the top) are approximately vertical, that is parallel to the z direction. Therefore
the magnetic energy —u - B(r) (cf. equation (2.1) below) is approximately —uB,,
and the upward repulsive force, holding the top in equilibrium against gravity, is
approximately u0,B,. At equilibrium, the total energy (magnetic + gravitational)
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Figure 1. Diagram of the Levitron™,

has a critical point, that is its gradient vanishes. For the equilibrium to be stable,
the critical point must be a minimum. But this is impossible, by the theorem of
Earnshaw (1842; see also Page & Adams 1958): both gravity and B, are harmonic
potential fields (cf. equation (2.9) below), whose only critical points are saddles. This
means that if the top were in stable equilibrium vertically, it would be unstable hor-
izontally, and vice versa. (Edge (1995) describes a two-dimensional potential model
for the Levitron™, that is stable in the plane, but it is unstable in the perpendicular
direction.)

Nevertheless, it is possible for the top to float stably in a static - that is, time-
independent - potential field, whose origin (§2) is dynamical. The potential is the
sum of gravity and the magnetic energy of the dipole p averaged over its precession
around B; the averaged energy involves the magnitude B rather than the component
B,. In mechanics this procedure of separating fast and slow variables is lowest-order
adiabatic averaging (Arnold et al. 1988; Lochak & Meunier 1988); in chemistry it
would be called the Born—Oppenheimer approximation (Messiah 1962). Stability
requires the potential to possess a minimum, which, since it arises from the small
difference between B and B, (that is, deviations of B from vertical near the axis),
exists only for a narrow range of the mass m (§3). The range depends sensitively on
the form of B(r), which can change with temperature. This explains why the mass
required to keep the top floating (which can be altered by addition of small washers
— see §3) changes rapidly — sometimes over a few minutes.

The adiabatic averaging underlying static stability is not exact, and the first cor-
rection to it is an additional force depending on the velocity v = 7 with which the
top is moving through the magnetic field. This force is geometric magnetism, that
is, it has the form v x Bg(r), where Bg(7) is an effective field (§4) constructed in
an interesting way from the derivatives of the components of B(r). The formula was
previously obtained quantum-mechanically (Berry 1986), but for this case the clas-
sical limit is the same. When applied (§5) to the Levitron™, its effect is to slightly
increase the vertical range of stability.

Stable levitation requires three speeds to be very different. Starting with the
fastest, these are the spin angular velocity of the top, its precession angular velocity,
and the rate at which the inhomogeneous field B changes as seen by the moving top.
In §6 it is shown that there exists a range of spin angular velocities for which the
assumed separation of time scales is a good approximation.

It is possible to regard the Levitron™ as a macroscopic analogue of certain traps
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for microscopic particles (Dehmelt 1990; Paul 1990). These analogies are explored in
87.

The top slows down because of air resistance. After a few minutes it can no longer
spin upright, and falls. If the base and the top were metal rather than ceramic, an
additional source of dissipation would be induced eddy currents, and the top would
fall faster.

2. Static stability

The potential energy of the top, including gravitational and magnetic contribu-
tions, is

E =mgz — - B(r) (2.1)
and the spin changes as the result of the magnetic torque p x B, that is
$(t) = ut) x B(r(). (2:2)

Underlying (2.1) is the assumption that the top is small, in the sense that its dis-
tributed magnetism can be approximated by a point dipole, and higher multipoles
neglected.

Now we make the approximation that the top is fast, in the sense that its angular
momentum can be regarded as parallel to both its angular velocity vector and the
symmetry axis. The condition for this is that the spin is much faster than the pre-
cession. Later (§6) we shall see that this condition holds. In the present application,
its importance is that it ensures that S is parallel to p. This enables the equation of
motion (2.2) for the spin to be written in terms of the magnitude B and direction b
of the field seen by the moving top, that is

B(r(t)) = B(t)b(t). (2.3)
Thus the dynamics of the spin is determined by
S(t) = 2(t)b(t) x S(t), (2.4)
where
2 =—-uB/S. (2.5)

Equation (2.4) describes precession of the axis of the top around the instantaneous
field direction b(t), with the magnitude S conserved. If the precession is fast, that is
if |2 > |b|, then S is slaved to b in the sense that the component S-b — the adiabatic
invariant — is approximately conserved (Arnold et al. 1988; Lochak & Meunier 1988).
Then the component

pp = p(t) - b(t) (2.6)
is also an adiabatic invariant, and the energy (2.1) becomes
E = E(r) = mgz — ugB(r). (2.7)

This approximation will be examined in §4; there, it will be shown that the adiabatic
slaving of S to b cannot be exact if b is not constant, and this fact will be used to
obtain the first-order (in b) correction to adiabaticity. It is important to note that
the adiabatic assumption, that the precession is fast, is distinct from the assumption
of the preceding paragraph that the top is fast. Indeed, it might appear that these
assumptions conflict, since the fast top requires S to be large while adiabaticity
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requires {2 to be large, which from (2.5) seems to require S to be small. In fact there
is no conflict, as will be shown in §6.

With the above assumptions, the top will float stably above the base if E(r) has
a minimum there. This requires

VE(r) =0 i.e. equilibrium (a)
O%E(r) > 0 i.e. vertical stability (b) (2.8)
92E(r) >0 and O2E(r) >0, ie. horizontal stability (c)

Here the existence of a minimum will be investigated only on the vertical symmetry
axis of the base; I have not explored the possibility that there could be minima off
this axis.

Because r is outside the base, there are no currents contributing to the field B(r)
from the base, so B is curl-free. Since V - B = 0, the field can be written

B(r) = -V &(r), where V29(r) = 0. (2.9)

In horizontal planes z, the potential @ is stationary at x = y = 0, and to second order
has circular symmetry in x and y; this is true whenever the base has the symmetry
of an equilateral triangle or higher polygon, and applies to the Levitron™ where the
base is square. Defining

R=(z,y) and R = |R| (2.10)
the potential near the axis can now be written
d(r) = (0,0,2) + $026(0,0,2)R* + ... (2.11)
A convenient notation is
on(z) = 07 9(0,0, 2). (2.12)
The requirement that (2.11) satisfies Laplace’s equation in (2.9) now gives
P(r) = ¢o(z) — $¢2(2)R* + ... (2.13)

The adiabatic energy (2.7) involves the magnitude of B, which to second order in R
is, from (2.9) and (2.13),

R* (¢3 o3
B(r) = 1+ —(2-22)]..., 2.14
(r) = s |1+ 7 (% -252) (2.14)
where the z dependence of the ¢, has not been written explicitly.

On the axis, horizontal equilibrium in (2.8a) is guaranteed by symmetry. Vertical
equilibrium requires that gravity is balanced by an upward magnetic force determined
by the gradient of the magnitude of the field, that is

mg = ugd,B = upps sgne;. (2.15)
Of course mg must be positive, and this, together with the stability conditions (2.8b,
2.8c), gives the conditions
wpda sgng; > 0 for equilibrium (a)
uBdssgng, < 0 for vertical stability (b) (2.16)
pp sgnoy (2¢3 — ¢2/¢1) > 0 for horizontal stability (c)

It is impossible to satisfy these conditions for g > 0, because then (b) implies that
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¢1 and ¢3 have opposite signs and (c) is violated because both terms on its left-
hand side are negative. Therefore up < 0, that is, the projection of p along B is
antiparallel to B, and the conditions for stable equilibrium become

¢1 and ¢, have opposite signs (equilibrium) (a)
¢1 and ¢3 have the same signs (vertical stability) (b) (2.17)
3 — 2¢3¢1 > 0 (horizontal stability) (c)

Without the term ¢3 in (c¢) it would be impossible to satisfy conditions (b) and
(c¢) simultaneously, and the fact that this term arises precisely from the difference
between B and B confirms that the adiabatic potential (2.7) does indeed give the
possibility for the top to float stably in spite of Earnshaw’s theorem.

3. Magnetic field on the axis

The base can be regarded as a planar distribution of vertically oriented dipole
sources of magnetic field, with density p(R) (where R = 0 is the centre of the hole),
and the formula (Jackson 1975) for the potential of a dipole gives

¢0(Z —° //base d2R R2 + Z3)3/2 (31)

Without loss of generality, p can be taken positive, that is, the dipoles in the base
point up. Then the construction of the Levitron™ is such that the dipoles in the
spinning top point down (i.e. ., < 0) (this can be confirmed by observing that when
the top is held upright and close to the material of the top of the base, it is repelled
(unlike dipoles repel, unlike unlike poles).

In the Levitron™, the base is a square slab that is uniformly magnetized apart
from a central unmagnetized hole, whose purpose is to provide an approximately
field-free zone where the top can be spun up by hand before being lifted — on a plastic
plate — to the position where it can float stably. The stability analysis is however
the same for a circular disk (radius a, with p constant), and can be conveniently
illustrated for this case because the analysis is simpler.

Equation (3.1) gives, for a uniformly magnetized disk,

z
¢o (2) = 27mp <1 m) . (3.2)
The derivatives ¢; and ¢ are respectively negative and positive, so that condition
(2.17a) is always satisfied: gravity can be made to balance magnetic repulsion at
any height by choosing the mass according to (2.15). ¢ is positive for z < 1a and
negative for z > la so that (2.17b) ensures vertical stability when z > Za. The
function in (2.17¢) is proportional to 2a? — 522, so that horizontal stability requires

z < a\/g =a x 0.6325. ... Thus the zone of stable equilibrium is

3 <zla< 32 (3.3)

It is interesting to see how the minimum (stable equilibrium) of the adiabatic
potential energy (2.7) appears and disappears as the mass is increased so that the
equilibrium height varies through the rather narrow zone of stability. Defining di-
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mensionless coordinates, energy and mass by

x Yy z Ea mga?
=, ==, (= = == e 3.4
Ee "TFe fSa 2r|pslp 2muslp (34)
we find from (2.7), (2.14) and (3.2) that the potential energy near the axis is
3(62 +n?)(2 - 5¢2
E(&,n,¢) = M¢ + (€ ) ). (3.5)

(1+¢2)%2 8(1+¢2)7/?

The critical range of masses M satisfying (3.3) is determined by the equilibrium
condition (2.15), which gives

3¢
M= e 3.6
T+ oy 39
This has a maximum at the lower stability limit ¢ = %, where the mass is
48

When M > M, , no equilibrium is possible and the top will fall. At the upper stability

limit ¢ = /2, the mass is

75+/2
M- = 75/2

When M < M_, the top can be in vertically stable equilibrium but is horizontally
unstable. The stable interval M_ < M < M, is only about 5% of the mean stable
mass.

Figure 2 shows contours of potential energy (2.7) as a function of the position
of the top, for a sequence of masses including the stable interval. Between figures
2b and 2f, corresponding to M_ and M,, the potential has a minimum. This is
created from an axial saddle (unstable equilibrium) as M increases through M_,
by a local bifurcation which also generates a ring of saddles that recedes from the
axis. It is destroyed as M increases through M, by a different local bifurcation:
annihilation with an axial saddle from below. In the stable range, a critical event
is the saddle-connection (non-local bifurcation) at figure 2d, where the contours
through the saddles change topology; this occurs at Mgc where the three saddles all
have the same height, and a little analysis gives

Mgc = 0.847837..... (3.9)

For each M in the zone of stability, the basin of stable motion of the top is
the interior of the surface of revolution corresponding to the largest closed contour
surrounding the potential minimum. This is widest at M = Mg, and a calculation
based on (3.5) gives the extent of this ‘most stable motion’ as

= 0.818147.... (3.8)

VETIE < \/WW(MSC ~ M) = 0.20160..... (3.10)
1875
In this case, the minimum is at {s¢ = 0.565373.. ..
For small deviations from the minimum, the potential (3.5) is quadratic in &, n
and ¢, and the motion consists of harmonic oscillations with three frequencies (see § 5
for more discussion of this). For larger deviations, the vertical component of angular
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Figure 2. Contour maps of axial sections ¢, £ (with n = 0) of the (rotationally symmetric)
scaled potential energy (3.5) of the top, in the space above a base in the shape of a uniformly
magnetized disk, for different scaled masses. (a) M = 0.81000; (b) M = M_ = 0.818147; (c)
M = 0.84000; (d) M = Msc = 0.847837; (¢) M = 0.85500; (f) M = M, = 0.85865; (g)
M = 0.86200.

momentum is conserved, because the potential (3.5) is rotationally invariant, and so
is the total energy (kinetic plus potential). But because the horizontal and vertical
variables are not separable, motion is probably nonintegrable, with chaos being more
pronounced near the saddles. Although the exact motion in the potential (3.5) is
worth studying further, it should be remembered that this is an approximation,
valid near the axis: farther away, there will be nonquadratic corrections, which for
non-circular base magnets will break the degenerate ring of saddles into a finite
number of isolated critical points (which might include weak minima).

For the more realistic model of the base as a uniformly magnetized square slab
(side 2a) with an unmagnetized central hole (radius w), (3.1) gives

$o(2) = 2mp (3.11)

z z
—————— — 8parcsin { ————— .
V2?2 + w? P {\/2(z2+a2)}

In the Levitron™, w/a ~ 1. Then, stability analysis based on (2.17) (slightly more
complicated than for the disk) leads to the result that the top can float stably in the
rather narrow region

3.976 < z/w < 4.360. (3.12)
The value of the stable height — between about 4.0 and 4.4 hole radii above the
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centroid of the base — is in comfortable agreement with observation (I measured
¢ = 4.3, where now b = z/w). The mass of the top must be carefully chosen so that
the solution of (2.15) lies in the stable interval. From (2.15), the change of equilibrium
height d( resulting from a change dm of the mass is

é2
®3
In the stable interval, the amplification factor |¢,/¢3| decreases from infinity to a
smallest value which for (3.11) with w/a & 1 is 7.05; the value at the midpoint of the
interval is 12.2. For the washers supplied with the Levitron™  dm/m ranges from
0.003 to 0.06. Therefore the effect of adding the lightest washer is, roughly (that
is, using the midpoint value of the amplification factor), to change the height by
d¢ ~ 0.04, that is, by about one-tenth of the stable interval. For the heaviest washer,
d¢ ~ 0.7, which is about twice the stable interval.

dc = -4m |22 (3.13)

m

4. Geometric magnetism

The adiabatic assumption embodied in (2.7), and the first post-adiabatic cor-
rection to be discussed in this section, can be justified by general theory (see, for
example, Berry & Robbins 1993b), but it instructive to give the reasoning for this
particular case. The following elementary argument was given by Dr J. H. Hannay
(personal communication) (see also Aharonov & Stern 1992).

The motion of the top is determined by the gravitational and magnetic forces on
it. From (2.1), the force is

F = —mge, + Fyy = —mge, + Vu(t) - B(r) (4.1)

where e, is the upward unit vector. Splitting p into components along and perpen-
dicular to the instantaneous field B, namely

p(t) = psb(t) + po(t) (4.2)
enables the magnetic force to be written as
Fy = Fp + Fg = LLBVB(T)+[.LJ_(t)-VB(T) (4.3)

where the dot product connects pu, and B. Fp and Fg denote the ‘adiabatic’ and
‘geometric’ parts of the magnetic force (terms that will be explained later), whose
time averages, over the precession — which is regarded as fast — will now be discussed.

With the fast top assumption, p satisfies the same equation of motion (2.4) as S,
so the separation (4.2) gives

fo=figb+ ppb+ i, = Qb x . (4.4)

The lowest-order adiabatic procedure is to regard the precession, about the instanta-
neous field direction b(t), as fast, and argue that the average value of the transverse
component p; is zero. However, this cannot be exactly true, as can be seen from the
special case where p is initially parallel to b. Then the last member in (3.7) would
be zero, and if u were completely slaved to b(t) would remain so, contradicting the
first member which would be proportional to b. Therefore we must be a little more

careful, and allow for the precession to be about a direction slightly different from
b(t).

Proc. R. Soc. Lond. A (1996)



The Levitron™: an adiabatic trap for spins 1215

To the next approximation — sufficient for the present purpose — the precession-
averaged welocity [+, can be set equal to zero, but not the component g, itself.
In this post-adiabatic approximation, the parallel and perpendicular components of
(4.4) now give

jp~0 and ), ~ Jig‘ib x b. (4.5)

The first equation is the conservation of the adiabatic invariant, so that Fy in (4.3)
is indeed the lowest-order adiabatic force that would be obtained from (2.7), and
which leads to the conditions for static stability obtained in §2 and §3.

The second equation in (4.5) gives Fg as

Fs = —%B(b x b) - VB(r) = %(b x b) - VB(r). (4.6)

(Use has been made of (2.5) and the fast-top assumption that S is parallel to u,

and Sg = S - b.) The change b is caused by the motion of the top through the
inhomogeneous field B(r), so that

b= (v-V)b(r). (4.7)

Thus the post-adiabatic force Fg depends on the velocity as well as the position of
the top:

Fg = %‘?‘3- [B x (v-V)B]-VB(r). (4.8)

Here the vector product connects B and B inside [ ], and the second scalar product
connects the vectors [ | and B. This is Hannay’s derivation.
Some vector algebra enables (4.8) to be written in the form

FG =v X B(;('r) (49)

where v = 7 and the effective ‘magnetic field’ Bg depends on the components of the
actual magnetic field B according to

Sp
B
The force Fg is called geometric magnetism. It is ‘magnetism’ because it has the
same velocity-dependence as the Lorentz force: it is as though the top carried a
unit electric charge responding to the field Bg. It is ‘geometric’ because of another
role played by Bg(r): it is the vector whose flux through a loop in r space gives
the quantum geometric phase (Shapere & Wilczek 1989) or the classical Hannay
angle (Hannay 1985) acquired by a spin transported round that loop. The formula
(4.10) appeared previously in a study of the geometric phase for quantum spins
(Berry 1986). Geometric magnetism is thus a post-adiabatic force of reaction (Berry
& Robbins 1993a,b), of the ‘fast’ spin S(¢) of the top on its ‘slow’ centre-of-mass
motion ().

There is a curious hierarchy of geometric magnetic reactions. In the argument just
given, the motion of S (precession) is regarded as fast, that is, slaved to the slow
variables r, and S reacts magnetically on r. However, Berry & Robbins (1993a)
showed that the precession can itself be regarded as geometric, because S(¢) — the
motion of the azis of the top — is a slow variable compared with the spin of the top;
that is, S is slaved to the spin. We showed that the precession, averaged over the
nutation (wobbling) of the axis, can be considered as a geometric reaction, caused

B = (B,VB, x VB, + B,VB, x VB, + B,VB, x VB,). (4.10)
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by a monopole source of magnetism at the fixed point of the precession (here this
is the centre of mass of the top, but for the more familiar gravitationally precessing
top it is the point of contact with the surface on which the top is spinning).

5. Geometric extension of stability

The equation of motion of the top under gravity and the two magnetic forces
(equations (4.1), (4.3) and (4.9)) is

mit = —mge, + ugVB(r) + v x Bg(r). (5.1)
For the static (adiabatic) magnetic force in (4.3), (2.14) and (2.10) give
VB = sgn¢, [— (f;? 2¢3) R+ ¢2ez] . (5.2)

For the geometric magnetic field (4.10) on the axis, (2.9) and (2.13) give

B¢ = Spsgng; 4¢ (5.3)

¢2
Thus the vertical motion is unaffected by geometric magnetism, and depends only
on the static forces of gravity and Fj, as discussed in §2 and §3 and embodied in
the conditions (2.17a,b).

Geometric magnetism does however affect the horizontal motion, whose acceler-
ation is given by the following linear equation, whose coefficients depend on height
z:

J (%—2%>R+Sgsgn¢l4¢¢2 Rxe, (5.4)
(4B has been eliminated using equation (2.15)). The definition
u(t) = z(t) +iy(¢) (5.5)
enables (5.4) to be written in the scalar form
i = a(z)u + if(z)u. (5.6)

The general solution is

u(t) = uy exp{iws(2)t} + u_ exp{iw_(2)t} (5.7)

=38+ VB - 4a). (5.8)

Horizontal stability requires real wy, that is 8 > 4a, for which (5.4) gives

2l (@3- ~ 1) (5.9)
¢l \ 93 2

(in writing the modulus sign, equation (2.17a) has been invoked). This is automat-
ically satisfied if the condition (2.17¢) for horizontal stability in the lowest-order
adiabatic approximation is satisfied, since then G(z) is negative. If G(z) is positive,
(2.17¢) is violated — this occurs, for example, when ¢ > /2 for the circular base.
Nevertheless, (5.9) shows that geometric magnetism can pr0v1de post-adiabatic sta-
bilization if the top is spun fast enough.

where

b >G(z) =32

mQQ
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To estimate the size of this effect, let the top have a vertical axis, radius of gyration
d, and spin frequency v, and evaluate the last member of (5.9) with the potential
(3.2) of the disk with radius a. Then the horizontal motion will be stable if ( = z/a
satisfies

Sp_antrd | G) 166G -G+ .y 8letidl
m2ga3  gad a3 ¢s T 3 " 686ga3
(5.10)

For the Levitron™ a ~ 5cm (approximating the base by a disk), d ~ 1.13 cm
(=radius/4/2, approximating the top by a disk), and for hand spinning v ~ 20 Hz.
Then stability requires ¢ — / % < 0.0062. In this case, geometric magnetism con-
tributes only a modest increase of about 5% in the statically stable interval % <
¢ <+ % However, if the top could be made to spin faster (perhaps by encircling
it with a hoop — like a toy gyroscope — and pulling a string wound round its axis)
the geometric effect could be greatly enhanced. For example, if v = 40 Hz geometric
magnetism would increase the interval of stability by 20%; 100 Hz would double it
(but would destabilize the top for other reasons — see the end of §6).

6. Adiabatic conditions

Since all principal moments of inertia of the top are roughly the same size, the
condition for the top to be fast (spin parallel to angular velocity and along the
symmetry axis) is

spin angular velocity 27y >> precession angular velocity |2]. (6.1)

Using (2.5) and (2.15), and introducing the radius of gyration d of the top and the
radius a of the base, this can be expressed in terms of the magnetic potential as

V> Unin = =—— Zl (6.2)
2
In terms of vy,;,, the precession frequency is
2 l/x?nin
— = 2 6.3
27 v (6.3)

The adiabatic condition is that the precession is much faster than the rate (4.7)
at which the driving field b is changing, that is

[2] > |(v-V)b|. (6.4)
From (2.9) and (2.13) follows
P2 P2 }
b=<qx—-,y——,—sgne; p + ... 6.5
ot vy oo (69
so (6.3) depends only on the transverse speed v, of the top. After a little algebra,
the adiabatic condition becomes
2\/§ ¢1 5/2 Vmin
Ul>>__d—<@> v . (66)
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A related quantity is the frequency of the top in its small oscillations about equilib-
rium. Here I consider only the vertical (bobbing) motion, for which (5.1) gives the

frequency
1 [ g 1 [gac-1) |
T\ 96| T 2ar e C (G D) (67)

where the last equality refers to the circular disk base.

In the following numerical estimates, we use the values a = 5cm, d = 1.13 cm,
n = 20 Hz. Over the stability interval + < ¢ < /%, the potential (3.2) implies that
the quantity |¢1/p2| varies from 0.73a to 0.83a. Then

0.88 /ga
Umin ~ 37{'_ ﬁ (68)

This gives vmin ~ 8.7 Hz, which is well below hand-spinning speed for the top From
(6.3), the precession frequency is {2/2m = 3.8 Hz. Therefore the Levitron™ is a fast
top.

From (6.6) follows v; > 387 cm s~ x (8.7/v (Hz)). For hand spinning, the horizon-
tal speed of the top is much slower than this upper limit, so the adiabatic condition
is comfortably satisfied too. This can also be seen from (6.7), which for the mass
Mg corresponding to the most stable motion ((sc = 0.565373) gives

0.61106 d
vV, = \/E ~ 0.69 Vmin — (69)
2 a a

This gives v, = 1.4 Hz, which is roughly the observed bobbing frequency, and several
times less than the precession frequency.

However, a much faster spin would destabilize the top, because the adiabatic con-
dition (6.6) would be violated: the precession frequency (6.3) would be smaller, and
the axis of precession could no longer follow b. Perhaps this explains the observation
by W. Hones and E. Hones (personal communication) that the top indeed becomes
unstable when v is increased with air jets.

7. Connection with traps for microscopic particles

Closely analogous to the Levitron™ are traps for neutral particles (e.g. neutrons)

with spin and magnetic moment (Paul 1990). Just as in the theory of § 2 and § 3, these
confine particles by a magnetic field, and Earnshaw’s theorem can be circumvented
because the magnitude B, unlike the components of B, can possess a minimum —
indeed, the formula (2.7) for the adiabatic potential energy appeared in a paper by
Vladimirskii (1960) in which these traps were proposed. There are however several
differences from the top. First, the spin is not an independent parameter but a fixed
quantity coupled to the magnetic moment; one consequence of this is that the neutral
particle trap works only for one sense of spin, whereas the top can levitate for either.
Second, the spin component along the field is quantized: it must be a multiple of & /2.
Third, in traps for neutral particles the magnetic field is small in the confinement
region, so that (cf. equation (2.5)) the precession frequency is small and care must
be taken to prevent non-adiabatic transitions between spin states.

It is interesting to consider the circumstances in which geometric magnetism (§4
and §5) can make a significant contribution to the stability of the neutral-particle
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Table 1. Comparison of Levitron™ and particle traps

Levitron™ and neutral particle trap Penning trap
spinning magnet (classical or quantum) charge

magnetic field magnitude B electric potential
geometric magnetic field Bg magnetic field

traps. Consider a neutron, for which Sg = h/2. Then the geometric magnetism
stability condition (5.10), for the case where G(z) > 0 — that is, where the neutron
would be unstable statically — can be written

45/3

a < Lyeutron (7]_)
42 +1) (5¢2 - 2)°
where
72 1/3
Lpeutron = (‘Tﬁg‘g‘) = 7.40 pm. (72)

The disk radius a can be regarded as a measure of the linear size of the trap. A
conclusion from (7.1) is that a neutron trap dominated by geometric magnetism
would have to be very small unless it operated close to the stability border { = / %
(The gravitational length Lyeusron has appeared — for essentially dimensional reasons —
in a quite different context (Berry 1982): the size of the interference fringes decorating
a caustic formed by neutrons sprayed upwards from a small source.)

Another interesting analogue is the Penning trap (Dehmelt 1990), for charged
particles (e.g. electrons). These can be held in stable vertical equilibrium against
gravity by a quadrupole electric field. The potential of this electric field is analogous
(table 1) to the magnetic field strength that provides the potential (2.7) for the dipole
in the spinning top. But the electric potential, unlike the magnitude of a magnetic
field, cannot possess a minimum, so there is no counterpart of the small regions of
static stability found for the top in §2 and § 3. This means that Earnshaw’s theorem
would apply, and horizontal motion in the electric field would always be unstable. To
provide horizontal stability, the Penning trap includes a strong magnetic field, giving
a Lorentz force. This is analogous to the geometric magnetic force on the top (§4),
which can provide horizontal stability even outside the interval of static stability
(§5).

The parameter ranges in which the top and Penning trap operate are completely
different. The top operates near the border of stability, where geometric magnetism
is a small effect, so the discriminant 8% — 4« in (5.8), which must be positive in order
that the frequency w be real, is small. A consequence of this is that the three modes
of small oscillation about stable equilibrium have comparable frequencies (w ~ /),
and the small oscillations are roughly in oblique ellipses, in accordance with the ob-
served bobbing and weaving. In the Penning trap, however, the magnetic field (anal-
ogous to geometric magnetism) is large, so 3% > 4« and the three frequencies are
very different: Larmor winding frequency 8 > vertical oscillation frequency/a >
magnetron frequency a/(.
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