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Abstract
Stationary lines of phase singularity for monochromatic electromagnetic
fields can be defined as the zeros of a complex scalar field �(r) constructed
from the real fields Ereal + iBreal. In terms of the Riemann–Silberstein vector
F = Ereal + iBreal, �(r) is the time average of F(r, t) · F(r, t). For paraxial
waves, �(r) can be specified entirely in terms of the transverse complex
electric (or magnetic) field and its spatial derivatives. The accuracy of the
paraxial theory is illustrated numerically.

Keywords: polarization, singularities, vortices, paraxial

1. Introduction

In seminal papers, Nye and Hajnal [1, 2] reported the discovery
of lines of singular polarization—purely circular and purely
linear—for electric and magnetic fields in space. This research
generalized their earlier studies [3–6] of the singularities of
the transverse components of the fields with respect to a
specified direction (e.g. of well-defined propagation). Because
they refer to the electric and magnetic fields separately, these
singularities are not invariant under Lorentz transformations.
This does not compromise their applicability to situations with
a natural rest frame, for example when sources, receivers, and
diffracting objects are not in relative motion, or where waves
propagate in a stationary refracting medium; in such cases, it is
sensible to regard the electric and magnetic fields as separate.

However, it is interesting from a fundamental theoreti-
cal viewpoint to investigate relativistically invariant line sin-
gularities of the full electromagnetic field. Such singulari-
ties are the Riemann–Silberstein vortices studied recently [7]
by Bialynicki-Birula and Bialynicka-Birula. In terms of the
real electromagnetic fields Ereal(r, t), Breal(r, t), where r =
{x, y, z}, these vortices are defined by

F(r, t) · F(r, t) = 0, (1)

where the complex scalar field F is the Riemann–Silberstein
vector

F(r, t) = Ereal(r, t) + icBreal(r, t). (2)

Zeros of F ·F are lines in space, on which the phase arg F ·F is
singular and around which the phase gradient vector circulates;
in spacetime, the singularities are surfaces.

For the important case of general monochromatic waves
(superpositions of plane waves with the same frequency ω),
the advantage of Riemann–Silberstein vortices is lost, because
monochromaticity is not preserved under Lorentz boosts:
plane-wave components travelling in different directions get
differently Doppler-shifted. Reflecting this, the Riemann–
Silberstein vortices for general monochromatic waves oscillate
with frequency 2ω, making them difficult to observe at optical
frequencies. There are some exceptions, for example, Gauss–
Laguerre beams, where the fields have spatial symmetry, and
the recently-discovered important class of helicity states [8]
(superpositions of purely left- or right-handed circularly
polarized plane waves), for which the Riemann–Silberstein
vortex lines are stationary. Nevertheless, for general
monochromatic waves, the vortices move.

It is however possible to define stationary lines for
general monochromatic waves: they are the zeros of the time-
average 〈F · F〉time. In terms of the complex fields E(r) and
B(r), defined by

Ereal(r, t) = Re(E(r) exp(−iωt)),

Breal(r, t) = Re(B(r) exp(−iωt)),
(3)

the time-averaged complex scalar field is

�(r) = 2〈F · F〉time = E∗ · E − c2B∗ · B + 2ic Re B∗ · E

= (E∗ + icB∗) · (E + icB). (4)

My purpose here is to point out that the condition for
the line zeros of �(r) takes a particularly interesting form for
monochromatic paraxial waves. These are superpositions of
plane waves whose directions span a small range of angles,
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Figure 1. (a) Riemann–Silberstein vortices, shown as intersections
of contours of arg �(x, y) (equation (4)) at intervals of π/4, for the
three-wave electromagnetic superposition described in the text.
(b) Magnification of dashed region of (a), showing vortices
computed from the exact fields (filled squares) and from the
approximation (11) (open circles).

centred on the z direction, say. If the spatial frequency is
k = 2π/λ = ω/c, paraxial waves take the form

E(r), B(r) = exp(ikz) × vectors varying slowly with r. (5)

For paraxial waves, it is convenient to separate the
transverse and longitudinal fields:

E = {Et, Ez}, B = {Bt, Bz},
where Et = {Ex , Ey}, Bt = {Bx , By}. (6)

Then Maxwell’s equations enable the Ez , Bz, and the transverse
magnetic field Bt , to be approximated, to lowest order in 1/k,
in terms of the transverse electric field Et , leading to

Ez ≈ i

k
∇t · Et, Bz ≈ i

k
∇t · Bt,

Bz ≈ i

kc

(
−∂Ey

∂x
+

∂Ex
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)
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)

≈ 1
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(7)

where ∇t = {∂/∂x, ∂/∂y}.
After some elementary manipulations of equation (4), the

scalar field �(r) becomes

�(r) ≈ 1

2k2

[(
∂2

∂x2
− ∂2

∂y2
+ 2i

∂2

∂x ∂y

)

× (|Ex |2 − |Ey|2 − 2i Re E∗
x Ey)

]
. (8)

If the 1/k2 corrections are neglected, then � = 0 and the
entire field is ‘vortical’, rendering the concept nugatory; this
is obvious from (4), since in this extreme paraxial limit E and
B are transverse and orthogonal, and |B| = |E|/c.

With the corrections included, paraxial fields typically
possess isolated Riemann–Silberstein vortex lines, that can
be studied as points in the x , y plane. This is illustrated in
figure 1(a), which is a phase map of �(r) for a superposition
of three symmetrically arrayed plane waves whose directions

make an angle 25◦ with the z axis, elliptically polarized
with the same handedness and ellipticity 0.6, with one of the
polarization ellipses perpendicular to the other two, computed
exactly from the vanishing of (4). This is similar to a
field nominally studied experimentally [2]; for an explicit
expression, see [9]. The vortices are the intersections of the
phase contours.

The paraxial field � takes a particularly interesting form
in terms of the circular components of the transverse electric
field, namely

EL(ζ, ζ̄ ) = 1√
2
(Ex +iEy), ER(ζ, ζ̄ ) = 1√

2
(Ex −iEy),

(9)
written in terms of the complex coordinates

ζ = x + iy, ζ̄ = x − iy. (10)

Then (8) can be written as

�(r) ≈ 4

k2

∂2

∂ζ̄ 2
(E∗

L ER). (11)

Figure 1(b) shows how accurately several of the vortices from
figure 1(a) are approximated by the vanishing of this paraxial
expression, even though 25◦ is not a very small angle.

There is a mathematical analogy [10] between Riemann–
Silberstein vortices and the circular polarization (C) lines of
the electric or magnetic fields, because each sort of singularity
is specified by the vanishing of a complex scalar field. But
the vanishing of �(r) in (4) has no connection to circular
polarization, and is satisfied identically for a plane wave.
Similarly, there is a mathematical analogy [10] between the
linear polarization (L) lines of the electric or magnetic fields,
and the (non-Lorentz-invariant) vanishing of the Poynting
vector V = Ereal×Breal, because each sort of singularity defines
lines by the condition that two real 3-vectors are parallel. But
the lines V = 0 have no connection with linear polarization,
and the singularities defined by the time average 〈V〉 = 0 are
surfaces for purely transverse waves (and do not exist at all in
the approximation where E and B are orthogonal), and collapse
to points when longitudinal fields are included.
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