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Abstract

For monochromatic waves satisfying the Helmholtz equation with wavenumber
k0, superoscillations correspond to local wavenumbers (magnitude of phase
gradient) greater than k0. Large values of local wavenumber are associated
with phase singularities. For isotropic random waves (superpositions of many
nonevanescent waves) in D dimensions, we show that the probability that a point
in the field is superoscillatory increases from 0.293 to 0.394 as D increases from
1 to infinity. The peculiar case D = 1 is examined in detail.

PACS numbers: 02.30.Nw, 03.65.Vf, 42.25.Hz, 42.30.Kq, 42.30.Ms

1. Introduction

It is now understood that band-limited functions can oscillate faster than their fastest Fourier
components [1, 2]. This apparently paradoxical behaviour is demystified by the observation,
now well understood [3], that such ‘superoscillations’ occur in regions where the amplitude
of the function is small. Several constructions have been devised, leading to functions that
superoscillate arbitrarily rapidly in arbitrarily large domains.

Here we will consider superoscillations occurring naturally in band-limited functions of a
special but physically important type: monochromatic complex scalar waves in D dimensions.
These have the form

ψ(r) = u(r) + iv(r) = ρ(r) exp{iχ(r)}, r = {x1, . . . , xD}, (1.1)

with ψ satisfying the Helmholtz equation

∇2ψ + k2
0ψ = 0, (1.2)

in which k0 is the free-space wavenumber. Superoscillations will correspond to ψ varying on
subwavelength scales, that is, scales smaller than the wavelength 2π/k0.

A natural measure of the oscillation at r is the rate at which the phase χ (r) is changing;
this is the local wavenumber:

k(r) ≡ |∇χ(r)| = Im[∇ log ψ(r)] = |u(r)∇v(r) − v(r)∇u(r)|
ρ(r)2

. (1.3)
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Figure 1. Superoscillations for D = 2, calculated from the plane-wave superposition (1.5) for N =
10 and k0 = 2π (i.e. wavelength λ = 1), showing wavefronts at phase intervals π/2, intersecting
at the vortices (black lines) and the superocillatory region where k(r) > k0 (white).

There are two situations in which k(r) can exceed k0. In the first, the decomposition of ψ into
plane waves includes evanescent waves. A two-dimensional example is

ψ(r) = exp{iKx} exp
{−y

√
K2 − k2

0

}
, K > k0. (1.4)

Obviously, k(r) = K: there are subwavelength oscillations transverse to the decaying direction;
these are not superoscillations, because the fast variation is present in the spectrum of ψ . We
are interested in the contrary case, where ψ contains only real plane waves; then regions where
k(r) > k0 correspond to genuine superoscillations. We expect these regions to be centred on
wave vortices [4–7], that is, the phase singularities, where the functions vanish and the phase
varies infinitely rapidly. By constructing waves with a cluster of many close-lying vortices,
the superoscillations can be made faster and more numerous [7].

We seek to quantify the degree of superoscillation not in artificial constructions but in
naturally occurring monochromatic waves. We model these by isotropic superpositions of
many plane waves:

ψ(r) =
N∑

n=1

an exp{ikn · r}, N � 1, |kn| = k0, (1.5)

in which the amplitudes an are random complex numbers and the wavevector directions kn/k0

are uniformly distributed. Figures 1 and 2 depict sample functions for D = 2 and D = 3. As
expected, the regions of superoscillation (highlighted) include the wave vortices.

The simplest measure of superoscillation is the probability PD super that k(r) > k0 for a
randomly chosen point r. We will calculate this for general D in section 2, using the fact
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Figure 2. Superoscillations for D = 3, for a superposition (1.5) with N = 100. The shaded surface
is the boundary k(r) = k0 of the superoscillatory region, which includes the phase singularities
(black lines). The volume displayed is one cubic wavelength.

(a consequence of the central limit theorem) that the waves defined by (1.5) are isotropic
Gaussian random functions. This generalizes the recent result P2 super = 1/3 by one of us [8].
The case D = 1 is peculiar, and deserves a special discussion (section 3).

2. Superoscillation probability

The desired quantity is

PD super =
∫ ∞

k0

dkPD(k), (2.1)

where PD(k) is the probability distribution of k(r) for waves in D dimensions. From (1.3), this
is

PD(k) = �DkD−1

〈
δ

(
k − u∇v − v∇u

ρ2

)〉

= �DkD−1

(2π)D

∫
dDs exp {−ik · s}

〈
exp

{
is · u∇v − v∇u

ρ2

}〉
,

(2.2)

where

�D = 2πD/2

	
(

1
2D

) (2.3)

is the surface area of the unit sphere in D dimensions, and 〈· · ·〉 denotes averaging over u, v
and ∇u, ∇v.

We use the following facts: u and v are statistically independent of ∇u and ∇v; u and
v are independent of each other and have the same distribution; ∇u and ∇v are independent
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Figure 3. Probability distributions PD (k) (equation (2.7)) for the indicated values of D.

of each other and have the same distribution; and for isotropic randomness, the components
∂ iu and ∂ ju are independent of each other for i �= j and have the same distribution. Thus,
evaluating the averages over the gradients first, and in an obvious notation,〈

exp

{
is · u∇v − v∇u

ρ2

}〉
=

〈
exp

{
− 1

2ρ2
〈(s · (cos χ∇v − sin χ∇u))2〉∇u,∇v

}〉
ρ,χ

=
〈
exp

{
− 1

2ρ2
s2〈(∂xu)2〉

}〉
ρ,χ

. (2.4)

From isotropy and monochromaticity follows

〈(∂xu)2〉 = 1

D
〈|∇u|2〉 = k2

0

D
〈u2〉, (2.5)

and so, performing the average over u and v by integrating over ρ and χ ,

PD(k) = �DkD−1DD/2

(2π)D/2kD
0 〈u2〉D/2

〈
ρD exp

{
− Dk2ρ2

2k2
0〈u2〉

}〉
ρ,χ

= �DkD−1DD/2

(2π)D/2kD
0 〈u2〉D/2+1

∞∫
0

dρ ρD+1 exp

{
− ρ2

2〈u2〉
(

Dk2

k2
0

+ 1

)}
. (2.6)

Thus

PD(k) = k2
0k

D−1

(
k2 + k2

0

/
D

) 1
2 D+1

. (2.7)

Several of these distributions are shown in figure 3. In the limit D → ∞,

P∞(k) = k2
0

k3
exp

{
− k2

0

2k2D

}
. (2.8)

Now (2.1) gives our main result: the superoscillation probability

PD super = 1 −
(

D

D + 1

)D/2

. (2.9)
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These numbers slowly increase with D; a few values are

P1 super = 1 − 1√
2

= 0.292 89, P2 super = 1

3
,

P3 super = 1 − 3
√

3

8
= 0.350 48, . . . , P∞ super = 1 − 1√

e
= 0.393 47.

(2.10)

The distributions (2.7) decay as k−3 for large k, so moments of order 2 or higher diverge.
The first moment—the mean value of k(r)—is

〈k〉D =
∫ ∞

0
dk kPD(k) =

√
π

D

	
(

1
2 (1 + D)

)
	

(
1
2D

) , (2.11)

and increases from 1 to
√

π/2 as D increases from 1 to infinity.

3. Superoscillations for D = 1

For this section only, it is convenient to define the local wavenumber k(x) without the modulus
sign in (1.3), so that it can take positive as well as negative values, that is

k(x) = ∂xχ(x) = Im[∂x log ψ (x)]. (3.1)

The formulae in the previous section have sensible limits when D = 1. This might seem
strange, because the plane-wave components of a monochromatic wave ψ(x) are concentrated
at kn = +k0 and kn = −k0, and it is hard to see how such a function can superoscillate. It would
seem that the local wavenumber k(x) should be +k0 if the positive amplitude dominates, or −k0

if the negative amplitude dominates. Nevertheless, monochromatic waves in one dimension
can superoscillate, as we show now.

It is necessary to take the limit of a nonmonochromatic wave as its spectrum is concentrated
onto wavenumbers +k0 and −k0, that is

ψ(x) =
N∑

n=1

an exp{iknx},

−k0 � kn � −k0(1 − δ) for 1 � n � 1
2N,

k0(1 − δ) � kn � k0 for 1
2N + 1 � n � N, N � 1, δ � 1.

(3.2)

As numerical simulation indicates (figure 4), the distribution of local wavenumbers
matches the theoretical distribution very well. And the superoscillation fractions for
superpositions of N = 50 waves, with 25 wavenumbers randomly distributed between −k0

and −0.99k0 and 25 randomly distributed between 0.99k0 and k0 (i.e. δ = 0.01 in (3.1)),
typically agree with the theoretical value P1 super = 0.292 89 to better than 1% in runs of 105

samples.
A sample wave of this type, together with the corresponding local wavenumber k(x), is

shown in figure 5. It is clear that the large values of k(x) occur close to the places where |ψ(x)|
is small—places that in more dimensions would be the phase singularities.

To understand how this generates the asymptotic superoscillatory distribution P∞(k) →
k2

0/k3 for k � k0 (cf (2.7)), it will suffice to study the simple two-wave model,

ψ(x) = (1 + ε) exp{ix} + exp{−ix}, (3.3)

where ε � 1 is a real number (any change in the phase of the amplitude can be accommodated
by shifting x). From (3.1), the local wavenumber is

k(x) = 2ε + ε2

ε2 + 4 cos2 x
. (3.4)
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Figure 4. Dashed curve: probability distribution P1(k), from simulation of 105 samples of the
wave (3.2) with N = 50, δ = 0.01; thin curve (barely visible behind): theoretical distribution (2.7).
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Figure 5. Sample wave (3.2) for D = 1, with N = 50, δ = 0.1, k0 = 1. (a) Thin curve, Re ψ(x);
dashed curve, Im ψ(x); thick curve, |ψ(x)|. (b) Magnification of (a). (c) Local wavenumber k(x)
corresponding to (a). (d) Magnification of (c).

As figure 6 illustrates (for a negative value of ε), the maxima of k(x), of magnitude 2/ε,
coincide with the minima of |ψ(x)|, of magnitude |ε|, at x = π/2 (mod π ).

We are interested in large values of k(x), for which

k

(
1

2
+ ξ

)
≈ 2

ε
− 8ξ 2

ε3
. (3.5)
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Figure 6. (a) Two-wave superposition (3.3) with ε = −0.1: thin curve, Re ψ(x); dashed curve,
Im ψ(x); thick curve, |ψ(x)|. (b) Local wavenumber k(x) (3.4) corresponding to (a).

For fixed ε, this basic narrow-parabola model gives the probability distribution of the local
wavenumber as

P(ε, k) = 2

ε

∫ ε/2

0
d ξδ

(
k −

(
2

ε
− 8ξ 2

ε3

))
= ε

4
√

1 − 1
2kε



(
k − 2

ε

)
. (3.6)

In the Gaussian random waves ψ we are interested in, the minimum values ε of |ψ | are not
fixed but fluctuate. Therefore, we can estimate P1(k) by averaging over ε, using the fact that
the distribution of minimum values vanishes linearly as ε → 0. Thus

P1(k) ≈ 1

2

∫ 2

0
dεεP (ε, k) = 2

15k3
(8 − (1 − k)

√
1 − k(8 + 4k + 3k2))

= 16

15k3
if k > 1,

(3.7)

thereby explaining the superoscillations for D = 1.

4. Discussion

We have shown that typical waves superoscillate over surprisingly large regions of D-
dimensional space, increasing from a fraction 0.293 for D = 1 to 0.394 as D → ∞. This
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reinforces and extends the result 1/3 recently obtained [8] for D = 2. In comparison with
the extreme superoscillations that can be artificially constructed [1], those considered here
are relatively modest: typically a single large spike in k(r) as r passes a nearby phase
singularity. Nevertheless, the probability distribution of k(r) has a long superoscillatory tail,
slowly decaying as k−3.

Beyond statistics, much remains to be explored about the geometry and topology of
superoscillatory regions. Preliminary evidence for D = 2 suggests that these regions are
usually connected, including infinitely many wave vortices in percolating clusters. The same
could be true for D > 2, but we do not know.

We have concentrated on the superoscillations, for which k(r) > k0, and the related large-k
asymptotics of PD(k). However, we note that for k → 0, that is suboscillations (phase variations
much slower than the common wavelength λ), PD(k) vanishes as kD−1 (equation (2.7)), and is
nonanalytic for D = ∞ (equation (2.8)).

Wave superoscillations have quantum implications that will be explored elsewhere. In
brief, large values of k(r) could be measured in a quantum weak measurement [9], as high-
momentum impulses from quanta (photons in the case of optical fields) detected by detectors
small compared with the wavelength, for example narrow slits [10]. Momentum arises because
k(r) can be regarded as the local expectation value of the momentum operator. In an obvious
quantum notation,

k(r) = 〈ψ |p̂(r)|ψ〉, (4.1)

where

p̂(r) = 1
2 (δ(r̂ − r)p̂ + p̂δ(r̂ − r)), (4.2)

and, in position representation,

p̂ = −i∇. (4.3)
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