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Abstract
Weak values, resulting from the action of an operator on a preselected state
when measured after postselection by a different state, can lie outside the
spectrum of eigenvalues of the operator: they can be ‘superweak’. This
phenomenon can be quantified by averaging over an ensemble of the two
states, and calculating the probability distribution of the weak values. If there
are many eigenvalues, distributed within a finite range, this distribution takes a
simple universal generalized lorentzian form, and the ‘superweak probablility’,
of weak values outside the spectrum, can be as large as 1–1/

√
2 = 0.293. . . .

By contrast, the familiar expectation values always lie within the spectral range,
and their distribution, although approximately gaussian for many eigenvalues,
is not universal.

PACS numbers: 02.50.Ey, 03.65.Ta, 03.67.Lx

1. Introduction

In the familiar type of quantum measurement, the expectation value of an operator Â in a
normalized preselected state |ψ〉 is

Aexp = 〈ψ |Â|ψ〉. (1.1)

If the spectrum of Â is bounded, with all eigenvalues An lying in the range Amin � An � Amax,
Aexp can never lie outside this range. The situation is different for the ‘weak measurements’
introduced by Aharonov and his colleagues [1], in which the effect of Â on |ψ〉 is detected,
by coupling to a system sensitive to Â, when a different state |φ〉 is postselected. There, what
is detected is the ‘weak value’

Aweak = 〈φ|Â|ψ〉
〈φ|ψ〉 ≡ A + iA′. (1.2)

This is usually a complex number, with the following significance [2–4].
If the initial state of the detector is represented by a real wavepacket (e.g. a minimal

gaussian), the effect of the weak measurement is to shift the expectation value of Â by a
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multiple of Re Aweak. In a weak measurement, Re Aweak can lie outside the interval Amin � An �
Amax: it can be ‘superweak’. (The expectation of the dynamical variable canonically conjugate
to Â is shifted by an amount proportional to Im Aweak, with the constant of proportionality
depending on the width of the initial packet.)

Here we ask: How are weak values typically distributed, if the states |ψ〉 and |φ〉 are
randomly distributed? Are superweak values common or rare? To answer these questions, we
calculate the probability distribution P(A) of Re Aweak over an ensemble of states |ψ〉 and |φ〉,
and hence the superweak probability

Psuper =
∫ Amin

−∞
dAP(A)+

∫ ∞

Amax

dAP(A) (1.3)

of the weak value lying outside the spectrum of Â.
The calculation (section 2) concerns the spectrum of Â containing N eigenvalues

distributed in the interval Amin � An � Amax, when N � 1, that is for high-dimensional Hilbert
spaces. The result is that the distribution P(A), and therefore the superweak probability, is
universal, in the sense of being independent of N for N � 1, of the statistics assumed for
|ψ〉 and |φ〉, and of whether the eigenvalues An are randomly distributed or regularly (rigidly)
arranged. The distribution is different if the states |ψ〉 and |φ〉 are assumed real in the Â basis,
but is still universal for this class of states (of course Im Aweak = 0 for real states).

In equation (1.2), the matrix element is divided by the overlap 〈φ|ψ〉 between the pre- and
post-selected states, leading to the interpretation of Aweak as a quantum conditional probability
[2]. This denominator will play an important part in our calculations – indeed, the very
existence of superweak values depends on it.

The type of statistical calculation we perform here was pioneered by Botero [5], who
obtained a different result by calculating the distribution of weak values for a different situation:
when the preselected state |ψ〉 is fixed and only the postselected state |φ〉 is random. In another
anticipation, Dennis [6] calculated the probability distribution of local wavenumbers |k(r)|
(gradient of phase of the wavefunction) for random monochromatic waves (the preselected
states |ψ〉) in the plane, satisfying the Helmholtz equation with wavenumber k0. k(r) is the
real part of the weak value of Â = momentum/h̄, and the postselected state is a position
eigenstate, that is |φ〉 = |r〉. Superweak values of k(r) correspond to superoscillations [7, 8],
where the local wave oscillates faster than the wavenumber k0 of all the fourier components
of the wave. The resulting superoscillation probability is 1/3. Later, this two-dimensional
calculation was extended to waves in spaces of any dimension [9].

In section 3 we calculate the very different probability distribution of expectation values
(1.1). This is not universal: it depends on N, and is different for randomly spaced and regularly
arranged eigenvalues.

2. Universal weak value distributions

In terms of the spectrum of Â, defined by

Â|αn〉 = An|αn〉, 1 � n � N, Amin � An � Amax, (2.1)

we can expand the states |ψ〉 and |φ〉:

|ψ〉 =
N∑

n=1

ψn|αn〉, |φ〉 =
N∑

n=1

φn|αn〉. (2.2)
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Thus the weak value (1.2) can be written

A = Re

∑N
n=1 φ∗

nψnAn∑N
n=1 φ∗

nψn

. (2.3)

We seek the distribution of values of A that are typical, in the sense that |ψ〉 and |φ〉 are
regarded as random states, and for N � 1. To implement this, we write

φ∗
nψn ≡ bn = bn1 + ibn2, (2.4)

and treat the numbers bn1 and bn2, as well as the eigenvalues An, as independent random
variables with zero mean. Thus the distribution of A, given by (2.3), is

P(A) =
〈
δ

(
A − Re

N∑
n=1

bnAn

/ N∑
n=1

bn

)〉

= 1

2π

∫ ∞

−∞
ds exp(−iAs)

〈
exp

(
is Re

N∑
n=1

bnAn

/ N∑
n=1

bn

)〉
, (2.5)

in which 〈· · ·〉 denotes an average over the distribution of the random variables. The
denominator in the exponential makes direct averaging awkward, so we treat

N∑
n=1

bn ≡ c = c1 + ic2 (2.6)

as a constraint, implemented by a double δ-function which can then be written as fourier
integrals:

P(A) = 1

(2π)3

∫ ∞

−∞
ds

∫ ∞

−∞
dc1

∫ ∞

−∞
dc2

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 exp {−i (As + c1t1 + c2t2)}

×
〈

exp

{
i

N∑
n=1

[
sAn Re

(
bn1 + ibn2

c1 + ic2

)
+ t1bn1 + t2bn2

]}〉
. (2.7)

The central limit theorem implies that for N � 1 the exponent, denoted X, is a gaussian
random variable with zero mean, because it is a sum over many random numbers, irrespective
of the distribution of bn1 and bn2. Thus we can use the relation

〈exp(iX)〉 = exp
(− 1

2 〈X2〉). (2.8)

With no essential loss of generality, we can shift the spectral range to −Amax � An � Amax,
and we will make the simplification that the distribution of the An is symmetric about An = 0,
with variance

〈
A2

n

〉
, and define the common variance of bn1 and bn2:〈

b2
1n

〉 = 〈
b2

2n

〉 ≡ B2. (2.9)

Thus the average in (2.7) becomes〈
exp

{
i

N∑
n=1

[
sAn Re

(
bn1 + ibn2

c1 + ic2

)
+ t1bn1 + t2bn2

]}〉

= exp

{
−1

2
N

[
s2B2

〈
A2

n

〉
(
c2

1 + c2
2

) + B2
(
t2
1 + t2

2

)]}
. (2.10)

In the integration (2.7), N and B can now be eliminated by the following scaling of the
integration variables:

B
√

N{t1, t2} → {t1, t2}, (B
√

N)−1{c1, c2} → {c1, c2}, (2.11)
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leaving an expression free from parameters, i.e. universal. The integrations over s, t1 and t2
are gaussian, leaving

P(A) = 1

(2π)3/2
√〈

A2
n

〉
∫ ∞

−∞
dc1

∫ ∞

−∞
dc2

√(
c2

1 + c2
2

)
exp

{
−1

2

(
c2

1 + c2
2

) (
1 +

A2〈
A2

n

〉
)}

. (2.12)

This is also an elementary integral, giving our main result

P(A) =
〈
A2

n

〉
2
(〈
A2

n

〉
+ A2

)3/2 . (2.13)

Note that this does not involve the spectrum’s boundary value Amax. The cauchy (lorentz)-like,
rather than gaussian, form (2.13) has been generated by the integrations over the denominator
variables c1 and c2, reflecting the essential role of the overlap 〈φ|ψ〉 in the weak value
formula (1.3).

For the probability of superweak values, (1.3) gives

Psuper = 2
∫ ∞

Amax

dAP(A) = 1 − Amax√〈
A2

n

〉
+ A2

max

(2.14)

Interesting special eigenvalue distributions are

(a) uniform:

〈A2〉 = 1

3
A2

max ⇒ Psuper = 1 −
√

3

2
= 0.133 98 . . .

(b) random-matrix (semicircle):

〈A2〉 = 1

4
A2

max ⇒ Psuper = 1 − 2√
5

= 0.105 57 . . . (2.15)

(c) concentrated at ±Amax:

〈A2〉 = A2
max ⇒ Psuper = 1 − 1√

2
= 0.292 89 . . .

The largest superweak probability occurs for case (c), where N/2 eigenvalues are concentrated
near −Amax and N/2 near +Amax.

To test the formula for P(A), we simulated (2.3) by sampling An from a uniform distribution
(case (2.15a)), and bn1 and bn2 from gaussian distributions, over the interval {−1,1}, for
different values of N. As figure 1 illustrates, the fit is excellent, even for N = 5. The fit is
equally good if bn1 and bn2 are sampled from a uniform distribution; only the variance B2 is
changed, but this quantity has been scaled away.

The foregoing argument survives almost unchanged if the eigenvalues are regularly
arranged on {−Amax, Amax}, rather than randomly distributed, that is (corresponding to
case (2.15a)

An =
(

2 (n − 1)

N − 1
− 1

)
Amax, {1 � n � N} . (2.16)

The only changes in P(A) and Psuper arise from the variance of the eigenvalues, which is now

〈
A2

n

〉 = (N + 1)

3(N − 1)
A2

max. (2.17)

4



J. Phys. A: Math. Theor. 43 (2010) 354024 M V Berry and P Shukla

4 2 0 2 4
0.0

0.2

0.4

0.6

0.8

4 2 0 2 4

-6

-4

-2

0

4 2 0 2 4
0.0

0.2

0.4

0.6

0.8

4 2 0 2 4
-8

-6

-4

-2

0

A

P logP

(a)

(c)

(a)

(c)

(b)

(d )

Figure 1. (a), (c) full curves: theoretical probability distribution P(A) of weak values (equation
(2.13)) for eigenvalues uniformly distributed (case 2.15a) on the range {−1,1}; dashed curves:
P(A) computed from (2.3) with 105 sample spectra with (a) 100 eigenvalues, (c) 5 eigenvalues.
(b), (d) as (a), (c) for logP(A). In the shaded regions the weak values are superweak, lying outside
the spectrum of Â.

An intriguing observation is that for A′ = Im Aweak the probability distribution P(A′) is
identical to that for A = Re Aweak. This is surprising at first, but is obvious from the analysis
leading to (2.13), and we have confirmed it by numerical simulation.

However, the distribution of weak values is different if the eigenstates |αn〉, and the states
|ψ〉 and |φ〉, can be represented as real, for example if there is time-reversal symmetry. Then
b2 and c2 are zero and the calculation is simpler. We do not give the details but only the
formulas that replace (2.13) and (2.14) for this different universality class:

Preal(A) =
√〈

A2
n

〉
π
(〈
A2

n

〉
+ A2

) , Psuper, real = 1 − 2

π
tan−1 Amax√〈

A2
n

〉 . (2.18)

As in the more general complex case (illustrated in figure 1), simulation gives good agreement.
Of course A′ = Im Aweak = 0 for this case.

3. Expectation value distributions

In the eigenbasis (2.1) of Â, the expectation value (1.1) is

Aexp =
∑N

n=1

∣∣ψ2
n

∣∣An∑N
n=1

∣∣ψ2
n

∣∣ . (3.1)

This form of writing is convenient for numerical simulations, because it is not necessary
to normalize the states |ψ〉. But for N � 1 the denominator is self-averaging, so it is not

5



J. Phys. A: Math. Theor. 43 (2010) 354024 M V Berry and P Shukla

necessary to include it explicitly provided the probability distribution of the coefficients |ψn|2
is chosen to satisfy

〈|ψn|2〉 = 1

N
. (3.2)

Thus the probability distribution of the expectation values is

P(Aexp) =
〈
δ

(
Aexp −

N∑
n=1

∣∣ψ2
n

∣∣An

)〉

= 1

2π

∫ ∞

−∞
ds exp(−isAexp)

〈
exp

(
is

N∑
n=1

∣∣ψ2
n

∣∣An

)〉
. (3.3)

By the central limit theorem, the sum in the exponential is a gaussian variable, so,
using (2.8),

P(Aexp) = 1

2π

∫ ∞

−∞
ds exp(−isAexp) exp

⎧⎨
⎩−1

2
s2

〈(
N∑

n=1

∣∣ψ2
n

∣∣An

)2〉⎫⎬
⎭

= 1√
2π

〈(∑N
n=1

∣∣ψ2
n

∣∣An

)2〉 exp

⎧⎨
⎩−1

2
A2

exp

/〈(
N∑

n=1

∣∣ψ2
n

∣∣An

)2〉⎫⎬
⎭ . (3.4)

The average is 〈(
N∑

n=1

∣∣ψ2
n

∣∣An

)2〉
= N

〈
A2

n

〉〈|ψn|4〉. (3.5)

For the coefficients |ψn|2, the simplest distribution follows from choosing gauss-distributed
Re ψn and Im ψn:

P(|ψn|2) = 1
2 exp

(− 1
2 |ψn|2

)
. (3.6)

Thus in (3.5)

〈|ψn|4〉 = 2

N2
, (3.7)

and (3.4) gives

P(Aexp) = 1

2

√
N

π
〈
A2

n

〉 exp

(
−1

4
N

A2
exp〈

A2
n

〉
)

. (3.8)

Figures 2(b)–(d), again for the uniform distribution (2.15a), show that this is an excellent
approximation. It does not vanish outside the interval −Amax � Aexp � Amax as the exact
P(Aexp) must, but for N � 1 the outside contributions are minuscule. Unlike the distribution
(2.13) of weak values, the formula (3.8) is not universal: P(Aexp) gets narrower as N increases,
and the width depends on the distribution of the coefficients |ψn|2.

Although the large N approximation (3.8) is good even for rather small N, as figures 2(b),
(c) illustrate, it does fail for N = 2. Then P(Aexp) can be evaluated exactly for the uniform
distribution (2.15a), as shown in the appendix and illustrated in figure 2(a):

6



J. Phys. A: Math. Theor. 43 (2010) 354024 M V Berry and P Shukla

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.0 0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

1.0 0.5 0.0 0.5 1.0
0

1

2

3

4

5

P

A
exp

(a) (b)

(d )(c)

Figure 2. Probability distributions P(Aexp) of expectation values for eigenvalues uniformly
distributed (case 2.15a) on the range {−1,1}, for (a) N = 2, (b) N = 5, (c) N = 10, (d) N =
100. Full curves: theoretical distributions, (3.8) for (b)–(d), and (3.9) for (a); dashed curves:
P(Aexp) computed from (3.1) with 105 sample spectra.

P(Aexp) = 1

Amax

[
log 2 − 1

2

((
1 − Aexp

Amax

)
log

(
1 − Aexp

Amax

)

+

(
1 +

Aexp

Amax

)
log

(
1 +

Aexp

Amax

))]
. (3.9)

In section 2 we found that if the eigenvalues are regularly arranged, as in (2.15), the
distribution of weak values is slightly modified (cf (2.17). For P(Aexp) the effect is more
significant. Instead of (3.5)–(3.7), the relevant average is〈(

N∑
n=1

∣∣ψ2
n

∣∣An

)2〉
=

N∑
m=1

N∑
n=1

AmAn(δmn〈|ψn|4〉+(1 − δnm)〈|ψm|2〉〈|ψn|2〉)

= 2

3N

(
1 + 1/N

1 − 1/N

)
A2

max − 1

3N

(
1 + 1/N

1 − 1/N

)
A2

max

= 1

3N

(
1 + 1/N

1 − 1/N

)
A2

max, (3.10)

so instead of (3.8) the distribution is

P(Aexp) = 1

Amax

√
3N(1 − 1/N)

2π(1 + 1/N)
exp

(
−3

2
N

(
1 − 1/N

1 + 1/N

)
A2

exp

A2
max

)
. (3.11)

This shows that even for N � 1 the width of the distribution is smaller by
√

2 for regularly
arranged eigenvalues than for randomly distributed ones.
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Finally, for N = 2, and eigenvalues A1 = −Amax, A2 = +Amax, the argument in appendix
shows that the expectation values are uniformly distributed:

P(Aexp) = 1

2Amax
�(Amax − |Aexp|), (3.12)

in which � denotes the unit step. This particularly simple form is a consequence of the choice
of the distribution (3.6) for |ψn|2; for other distributions, P(Aexp) is not uniform.

4. Concluding remarks

The main results (2.13) and (2.14) indicate an unanticipated universality in the distribution
of weak and superweak values. Superweak values – results of weak measurements outside
the spectral range of the operator being measured – are quite common: in the rather general
situation considered here, there can be an almost 30% chance (for the case (2.15c)) of a weak
value being superweak. We have considered two universality classes: the generic case, in
which the overlap of the pre- and post-selected states with the eigenstates of the operator being
measured are complex numbers, and the case of time-reversal symmetry, in which the overlaps
are real. For the more familiar expectation values, the distribution is not universal; it depends
on the number of states in the spectrum, and the probability distribution of the coefficients.

The weak value probability distribution (2.13) is similar to, but in general distinct from,
those found recently for superoscillations in monochromatic waves in two [6] and D [9]
dimensions. In these studies, a single eigenvalue was considered (the wavenumber k0) which
was degenerate (corresponding to the different directions of plane waves, i.e. momentum
eigenstates). By contrast, we have considered discrete nondegenerate eigenvalues distributed
over a finite range. The two cases coincide when D = 1 for superoscillations (section 3 of [9])
and our eigenvalue distribution is concentrated at the extremes (case (2.15c)).

Extensions of our analysis can be envisaged. For example, the spectrum of eigenvalues
could be continuous, or the spectral range could be infinite (in which case there would be
no superweak values); or the eigenstates could be degenerate. The ensemble of pre- and
post-selected states that we have considered is equivalent to a density matrix, which in some
applications could represent a thermal ensemble.
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Appendix

This is the derivation of (3.9) and (3.12). With the notation

|ψ1|2 ≡ x, |ψ2|2 ≡ y, (A.1)

the probability distribution of expectation values when there are just two eigenvalues,
uniformly distributed between −Amax and +Amax, is

P(Aexp) =
∫ ∞

−∞
dx P (x)

∫ ∞

−∞
dy P (y)

〈
δ

(
Aexp − A1x + A2y

x + y

)〉

=
∫ ∞

−∞
dx xP (x)

〈
P

(
x

(Aexp − A1)

(A2 − Aexp)

)
(A2 − A1)

(A2 − Aexp)2

〉
, (A.2)
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in whch the average is

〈· · ·〉 = 1

2Amax

∫ Amax

−Amax

dA1

∫ Amax

−Amax

dA2 · · · (A.3)

With the distribution (3.6) for |ψn|2, the integral over x gives

P(Aexp) =
〈

1

|A2 − A1|�
(

1 −
∣∣∣∣2Aexp − A1 − A2

A1 − A2

∣∣∣∣
)〉

. (A.4)

Evaluating the average (A.3) leads to (3.9). If the eigenvalues are fixed at A1 = −Amax, A2 =
+Amax, there is no need to average, and (A.4) becomes (3.12).
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