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Abstract
For wavefunctions whose fourier spectrum (wavenumber or frequency) is
positive, the local phase gradient can sometimes be negative; examples of this
‘backflow’ occur in quantum mechanics and optics. The backflow probability
P (fraction of the region that is backflowing) is calculated for several cases.
For waves that are superpositions of many uncorrelated components, P =
(1 − r)/2, where r is a measure of the dispersion (mean/r.m.s.) of the
component frequencies or wavenumbers. In two dimensions (backflow in
spacetime, or wave propagation in the plane) the boundary of the backflowing
region includes the phase singularities of the wave.

PACS numbers: 02.30.Nw, 02.50.Ey, 02.65.Vf, 03.65.Ta, 42.25.Fx, 42.30.Kq

1. Introduction

It might seem that a complex wavefunction containing only wavenumbers that are positive
semidefinite, namely

ψ(x) =
N∑

n=0

cn exp(iknx), kn � 0, cn complex (1.1)

must always represent a wave travelling forwards, that is, towards positive x. But this need
not be true. To understand why, consider the same function written not as an N + 1 wave
superposition but in the amplitude-phase form

ψ(x) = ρ(x) exp

{
i
∫ x

0
dx ′k(x ′)

}
, (1.2)

in which both the amplitude ρ(x) and the local wavenumber

k(x) = ∂x arg ψ(x) = ∂x Im log ψ(x) = Im
∂xψ(x)

ψ(x)
(1.3)

are real. When k(x) > 0, the wave is locally travelling forwards, and when k(x) < 0 it is
travelling backwards. It is known ([1], especially Appendix C, and [2]) that k(x) < 0 can
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occur for waves of the form (1.1), that is, waves containing only positive momenta can travel
backwards in certain regions of the x axis.

This phenomenon is known as ‘backflow’, and my aim here is to understand some aspects
of it and related effects. A previous study [2] has explored the probability that a quantum
free particle, in a state consisting only of positive momenta, will be detected on the half-line
x < 0; backflow can, counterintuitively, cause this quantity to increase as the state evolves.
And unexpected connections were discovered [1, 3] between backflow and quantum arrival
times, and explored in detail (see [4], especially section 5.3). Here the emphasis will be rather
different: I will concentrate on the distribution and evolution of the regions of the x axis for
which k(x) < 0, that is, the backflowing regions.

Section 2 gives the simple introductory example of a two-wave superposition: N = 1
in (1.1). Then, section 3 is a calculation of the probability that a given x lies in a region
of backflow, that is, the measure of the backflowing regions, for the case N � 1 in (1.1),
where the superposition contains many fourier components which are uncorrelated. The result
extends recent studies [5, 6] of the statistics of wavevectors in random waves. It is possible to
construct many-wave superpositions in which the components are strongly correlated, and for
which the backflow probability approaches the maximum value of 1/2; this ‘strong backflow’is
illustrated in section 5.

If ψ(x) in (1.1) represents the initial state of a quantum wavefunction �(x, t) evolving
freely according to the Schrödinger equation, it is natural to ask how the backflowing regions
evolve, that is, what are the shapes of the regions k(x, t) < 0 in spacetime. This question
is addressed in section 5. Associated with the time-development of the wave is the local
frequency

ω (x, t) = −Im ∂t log �(x, t) = −Im
∂t�(x, t)

�(x, t)
. (1.4)

For superpositions in which all component frequencies are positive, the wave in optical
terminology is the ‘analytic signal’ [7], and ω(x, t) < 0 corresponds to events for which the
local frequency is negative. If the waves represent quantum particles, ω(x, t) < 0 corresponds
to negative energy. This is also discussed in section 5. For particles governed by the Dirac
equation, it raises the intriguing possibility that particles might sometimes (literally: for some
time intervals) masquerade as antiparticles.

Section 6 concerns an alternative interpretation of backflow, in which (1.1) represents
the z = 0 section of a monochromatic optical wave �(x, z) propagating into the half-plane
−∞ < x < +∞, 0 � z < ∞, and governed by the Helmholtz equation with wavenumber
k0. Then backflow corresponds to places in the plane where the wave is locally travelling to
the left even though all component waves are right-moving. For a wave propagating towards
positive z, all z components of the constituent wavevectors are positive. Nevertheless, the z

component of the local wavevector, namely

kz(x, z) = −Im ∂z log �(x, z) = −Im
∂z�(x, z)

�(x, z)
, (1.5)

can be negative, and regions of the plane corresponding to ‘retro-propagation’ are also studied
in section 6.

For these cases involving two variables (e.g. x, t or x, z), the points of phase singularity
(optical vortices), where � = 0, must lie on the boundaries of the backflowing or retro-
propagating regions. Moreover the boundary curve at such points must be tangent to the
direction of the relevant component of the phase gradient. To show this, consider retro-
propagation, and a wave with a zero at x = 0, z = 0. The local form is

�(x, z) = ax + bz + · · · (a, b complex), (1.6)
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so (1.5) gives

kz(x, z) = Im
b

ax + bz
= x

|ax + bz|2 Im a∗b. (1.7)

Thus, locally, the retro-propagation boundary is x = 0, that is, tangent to the z direction.
Returning to (1.3), we remark that k(x) can be regarded, apart from a factor h̄, as the local

expectation value of the momentum operator. This can easily be seen using operator and Dirac
notation: a short calculation gives

k(x) = ∂x Im log〈x/ψ〉 = 〈ψ | 1
2 (δ(x − x̂)k̂ + k̂δ(x − x̂))|ψ〉

〈ψ |δ(x − x̂)|ψ〉 (1.8)

where, in position representation,

〈x|k̂|ψ〉 = −i∂xψ(x) (1.9)

Backflow is closely related to superoscillation [8–10], in which waves vary on scales
unrepresented in their fourier spectrum. More generally the local wavenumber can be regarded
as the result of a ‘weak measurement’ [11] Aweak of the operator Â = k̂ in the preselected
state |ψ〉, with the state |φ〉 = |x〉 postselected. The reason is that, as a short calculation
shows, general theory gives, for this case of a weak measurement of momentum with position
postselected,

Aweak = Re
〈φ|Â|ψ〉
〈φ/ψ〉 = k(x), (1.10)

with k(x) given by (1.3) or (1.4).

2. Two interfering waves

The simplest wave illustrating backflow (echoing an earlier study [2]) is

ψ(x) = 1 − a exp(ix), (2.1)

for which (1.3) gives the local wavenumber

k(x) = a
(a − cos x)

1 + a2 − 2a cos x
. (2.2)

In this periodic function, backflow occurs for a < 1, within the interval |x| < arccos a (see
figure 1). As a gets smaller, the backflowing region gets wider, and as a approaches zero it
grows to occupy half the x axis. The backflowing fraction of the x axis is (cf (3.1) to follow)

Pback = cos−1 a

π
. (2.3)

3. Backflow statistics for typical many-wave superpositions

The backflow probability Pback is the fraction of the x axis for which k(x) < 0, that is

Pback = lim
L→∞

1

2L

∫ L

−L

dx
(−k(x)) =
∫ 0

−∞
dkPk(k), (3.1)

in which 
 is the unit step function and Pk is the probability density of the local wavenumber,
namely

Pk(k) = lim
L→∞

1

2L

∫ L

−L

dxδ(k − k(x)). (3.2)
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Figure 1. Local wavenumber k(x) (equation (2.2)) for the two-wave superposition (2.1), with the
regions of backflow indicated by black bars, for (a) a = 0.001, (b) a = 0.2, (c) a = 0.5, (d) a =
0.9. Note the decreasing width of the region of backflow as a increases and the degree of backflow
increases, i.e. as k(x) reaches larger negative values.

For N � 1 and uncorrelated amplitudes cn in (1.1), the central limit theorem implies that
real and imaginary parts u(x) and v(x) can be regarded as gaussian random functions, enabling
the integrals over x to be replaced by ensemble averages, using (cf (1.3))

k(x) = u(x)∂xv(x) − v(x)∂xu(x)

u(x)2 + v(x)2
. (3.3)

A complication for functions of the type (1.1), where the spectrum of component wavenumbers
is unsymmetrical (all kn � 0), is that although u and v are independent identially distributed
random variables, as are ∂xu and ∂xv, u and ∂xv are correlated, as are v and ∂xu. The direct
calculation can still be performed, but it is easier to bypass it by using the following adaptation
of a known result.

For an operator Â with many eigenvalues An symmetrically distributed in the range
−Amax � An � +An, the probability distribution of weak values Aweak, with randomly chosen
pre- and post-selected states, takes the recently-derived universal form [12]

P(Aweak) =
〈
A2

n

〉
2
(
A2

weak +
〈
A2

n

〉)3/2 , (3.4)

where here and hereafter 〈· · ·〉 denotes an ensemble average (not quantum expectation values
as in section 1). Specialising to a distribution of positive semidefinite wavenumbers as in
(1.1), by writing

Aweak = −Amax + k, An = −Amax + kn, (3.5)

(3.4) becomes

Pk(k) =
〈
k2
n

〉 − 〈kn〉2

2
(
k2 − 2k〈kn〉 +

〈
k2
n

〉)3/2 . (3.6)

Here

〈kn〉 =
∑N

k=0 |cn|2kn∑N
k=0 |cn|2

,
〈
k2
n

〉 =
∑N

k=0 |cn|2k2
n∑N

k=0 |cn|2
. (3.7)
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Figure 2. Local wavenumber k(x) (equation (2.2)) for the 20-wave superposition (3.10), with the
regions of backflow indicated by black bars.

For the backflow probability, (3.1) now gives, as the main result of this section,

Pback = 1 − rback

2
, (3.8)

where

rback ≡ 〈kn〉√〈
k2
n

〉 . (3.9)

Thus the backflow probability depends on how the component momenta kn are distributed:
Pback is larger if the spread is larger, and approaches its maximum value 1/2 when

〈
k2
n

〉 � 〈kn〉2.
Figure 2 shows a sample graph of k(x), for which, in (1.1)

N = 20, kn = n, c0 = 0, cn>0 = 1√
n

exp(iφn)

φn = random on [0, 2π ]
(3.10)

(this superposition is periodic in x with period 2π ). From (3.8) and (3.9), the predicted value
of Pback is 0.136, and the measured backflow fraction is Pback = 0.163, which for such a small
sample (nine backflow regions per period) constitutes reasonable agreement.

4. Strong backflow

The function

ψ(x) = (1 − a exp(ix))N , N � 1, a < 1 (4.1)

is a simple generalization of (2.1), and a variant of a function studied previously [10] in the
context of superoscillations. It has the form (1.1), with

kn = n, cn = (−a)n
N !

n!(N − n)!
. (4.2)

Although none of the kn are negative, the local wavenumber (cf (2.2))

k(x) = Na
(a − cos x)

1 + a2 − 2a cos x
(4.3)
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Figure 3. Power spectrum |cn|2 of the wave (4.1), for (a) N = 10, a = 0.8; (b) N = 40, a = 0.3.
Dots: exact spectrum (4.2); curves: approximation (4.5).

is negative near x = 0 for a < 1, the largest backflow being

k(0) = − Na

1 − a
(4.4)

The dramatic nature of this backflow can be seen from the power spectrum |cn|2 of ψ(x),
which is closely approximated (figure 3) by a gaussian for N � 1: Stirling’s formula gives

|cn|2 ≈ (1 + a)2N+2

2πNa
exp

{
− (1 + a)2

Na

(
n − Na

1 + a

)2
}

. (4.5)

This is strongly peaked about the mean value

〈kn〉 ≈ Na

1 + a
, (4.6)

which of course lies between 0 and N, in contrast to k(0), which from (4.4) lies completely
outside the spectrum.

The wave (4.1) has the same backflow fraction Pback of the x axis as (2.1), namely (2.3).
This is much larger than the value (3.8) that would be predicted on the basis of the power
spectrum (4.5) if the phases in the superposition were random, which would be

Pback ≈ 1

8Na
(4.7)

– small for N � 1, because the kn spectrum is concentrated near 〈kn〉. Of course, the large
value of Pback arises because the phases in (4.1) are not random.

6
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Figure 4. Backflow regions in spacetime (black) in the random wave (5.2) and (5.4).

5. Quantum backflow and negative energy in spacetime

Now consider the state ψ(x) in (1.1) as the initial form �(x, 0) of a quantum state �(x, t)
evolving according to the Schrödinger equation

i∂t� (x, t) = − 1
2∂2

x�(x, t), (5.1)

that is

� (x, t) =
N∑

n=0

cn exp
{
i
(
knx − 1

2k2
nt

)}
, (5.2)

or the alternative form

�(x, t) = 1√
2π it

∫ ∞

−∞
dx ′ψ(x ′) exp

{
i
(x ′ − x)2

2t

}
. (5.3)

It is natural to study the shape of the region k(x, t) < 0 in spacetime, to understand how the
regions of backflow evolve. For the random superpositions considered in section 3, we expect
the the measure Pback of the backflowing regions to be conserved on the average, because the
result (3.7) depends only on the power spectrum of the superposition, which is unchanged by
propagation, and on the assumption of random phases, which is unaffected by the additional
phases −k2

nt/2 in (5.2). The approximate conservation of Pback is illustrated in figure 4 for the
9-wave superposition

N = 8, kn = n, c0 = 5, cn>0 = exp(iφn)

φn = random on [0, 2π ]
(5.4)

(as well as being periodic in x with period 2π , this superposition is periodic in t with period
4π , that is, it exhibits quantum revivals). The velocity of the backflowing regions, that is, the

7
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Figure 5. As figure 4, for the evolution of the strongly backflowing initial wave (4.1) with a = 0.5
and N = 6.

slope of the black stripes in figure 4, is explained in terms of the largest fourier component in
(5.2): the slope should be x/t ∼ kN/2, which for (5.2) is 4, approximately as observed.

The situation is different for non-random initial superpositions such as (4.1) in which the
Pback is large. There, evolution soon destroys the delicate conspiracy of phases responsible for
the strong backflow, and reduces Pback to values comparable with those expected from random
superpositions (equation (3.8)). Figure 5 shows the strong backflow rapidly shrinking, as
well as the quantum revival at t = 2π which is a consequence of the initial ψ(x) being
periodic.

As N increases, the destruction of strong backflow exhibits a certain universality. The
form (1.2), together with the fact that k(x) is proportional to N (equation (4.3)), suggests
changing variables to

k(x) = Nκ(x), t = τ

N
, (5.5)

so the phase in the integral (5.3) becomes

N

(∫ x ′

0
dx ′′κ(x ′′) +

(x − x ′)2

2τ

)
, (5.6)

and applying the method of stationary phase. And indeed, as figure 6 shows, the destruction
of backflow takes a similar form for increasing N under N-magnification of the t scale.

But there are subtleties: although the right-hand boundaries of the backflowing regions
in figure 6 can be reproduced by the method of stationary phase (I do not give the argument
here), the left-hand boundaries exhibit undulations that get finer as N increases. As will be
demonstrated now, these are associated wiith the zeros of �(x, t), that is the wavefunction’s
spacetime vortices, which as was shown in section 1 must lie on the boundary of the region of
backflow.

8



J. Phys. A: Math. Theor. 43 (2010) 415302 M V Berry

x

τ

−π/2

−π/2−π/2

−π/2π/2

π/2π/2

π/2
00

0

0

0 00

0

π π

π π

(a) (b)

(c) (d)

Figure 6. Destruction of strong backflow in the inital stages of evolution, for the initial wave (4.1)
with a = 0.5 and (a) N = 6, (b) N = 10, (c) N = 14, (d) N = 18.

For the small t we are interested in, backflow occurs for rather small x, suggesting a
linearization of the initial wave (4.1). From the family of possible linearizations

ψ(x) = exp(iNxβ(a))[exp(−ixβ(a)) − a exp(ix(1 − β(a)))]N

≈ exp(iNxβ(a))[1 − a − ix(β(a) + a(1 − β(a)))]N, (5.7)

we choose β(a) such that the approximate wavenumber reproduces the zeros of the exact k(x),
that is x = ± cos−1a (cf (2.2)). This β(a) satisfies

a(1 − a)

β(a)(a + β(a)(1 − a))2
= (cos−1 a)2 (5.8)

(β(a) increases from 0 to 1/2 as a increases from 0 to 1). Then the evolution integral (5.3)
becomes

�
(
x,

τ

N

)
≈ 1√

2π it

∫ ∞

−∞
dx ′[1 − a − ix ′(β(a) + a(1 − β(a)))]N

× exp

{
iN

(
x ′β(a) +

(x ′ − x)2

2τ

)}
. (5.9)

This can be evaluated exactly in terms of Hermite polynomials, using (cf formula (18.10.7) of
[13]))

1√
π

∫ ∞

−∞
ds(s − s0)

N exp(−s2) =
( i

2

)N

Hn(is0). (5.10)

Thus, in this linearized approximation, the local wavenumber becomes

k(x, τ ) = Nβ(a) −
√

N

2τ
Im

[
exp

(
1

4
iπ

)
H ′

N(X)

HN(X)

]
, (5.11)

in which

X =
√

N

2τ

[
exp

(
−1

4
iπ

)
1 − a

a + β(a)(1 − a)
− exp

(
1

4
iπ

)
(x − τβ(a))

]
. (5.12)
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Figure 7. As figure 6, for the approximate wave (5.9) and (local wavenumber (5.11)). The zeros
of �(x, t) are located on the line (5.13), shown dashed in (d).

As figure 7 illustrates, this reproduces rather accurately the early stages of backflow destruction,
including the undulations (cf figure 6). To see the connection with the zeros of �(x, t), we
note that the zeros of the Hermite polynomials are real. From (5.12) this implies that the zeros
lie on the line

x = τβ(a) − 1 − a

a + β(a)(1 − a)
, (5.13)

and figure 7(d) shows that this intersects the left-hand boundary of the backflowing region
where this is horizontal, as anticipated in section 1.

Consider now the local frequency ω(x, t), which for waves satisfying (5.1) is the same as
the local kinetic energy:

ω(x, t) = −Im ∂t log �(x, t) = −1

2
Re

∂2
x�(x, t)

�(x, t)
(5.14)

(this is one of several possible definitions of kinetic energy [14], corresponding to different
possible experimental conditions). ω(x, t) can be negative, even though the component
frequencies 1

2k2
n in (5.2) are all positive. The theory of negative energy is similar to that

already given for k(x), but some details are different.
For random superpositions, the probability that a spacetime event x, t has negative local

kinetic energy is (cf (3.8))

Pneg = 1 − rneg

2
, (5.15)

where now (cf (3.9))

rneg ≡
〈
k2
n

〉
√〈

k4
n

〉 . (5.16)

10
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Figure 8. Negative kinetic energy regions in spacetime (black), for the initial wave (4.1) with a =
0.5 and N = 6.

From the fact that all kn are non-zero, it follows that Pneg � Pback; the proof uses symmetrization
of the sums for r2

back − r2
neg and the relation

a3 + b3 + c3 − 3abc = 1
2 (a + b + c)((a − b)2 + (a − c)2 + (b − c)2) � 0 (5.17)

for positive semidefinite a, b, c.
For the nonrandom initial state (4.1), �(x, t) exhibits strong negative energy for short

times, but evolution soon randomises the phases, and as with backflow the negative-energy
regions soon shrink to a fraction determined by Pback. For this function, with its concentrated
fourier spectrum (4.5), (5.15) and (5.16) give, for large N,

Pneg ≈ 1

2Na
(5.18)

– four times larger than its backflow counterpart (4.7), as figure 8 illustrates, when compared
with figure 5.

6. Optical retro-propagation

The wave ψ(x) in (1.1) can also be regarded as the boundary value �(x, 0) of a monochromatic
scalar wave �(x, z) with wavenumber K (representing a light beam, for example), travelling
in the positive z direction in the x, z half-plane. Solution of the Helmholtz equation then gives
the representation

�(x, z) =
N∑

n=0

cn exp
{
i
(
knx + z

√
K2 − k2

n

)}
. (6.1)

Here we are concerned only with nonevanescent waves, for which |kn| < K for all n.

11
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Figure 9. As figure 6, for the exact propagating beam (6.1) with K = 2√
3
N and z = 2√

3
τ , with

wavelengths λ = 2π/K indicated.

If all the kn are positive semidefinite, the situation is similar to that studied in earlier
sections: backflow corresponds to local propagation leftwards (towards negative x), even
though every constituent plane wave is travelling to the right. And if max(kn)  K it is
possible to replace (6.1) by its paraxial approximation, which is identical with the Schrödinger
equation (5.1), with z replacing t after suitable scaling. Backflow in the x, z plane is then
identical with that already demonstrated in the spacetime plane x, t, including, for boundary
functions ψ(x) that are periodic, the optical analogue of quantum revivals, namely the Talbot
effect [15, 16]): periodicity of the wave pattern in z as well as x.

Numerics confirms that the shape of the backflowing regions is not sensitive to the paraxial
approximation. This is illustrated in figure 9, which corresponds to a beam in the form of
an oblique fan of plane waves making directions with the z axis between 0◦ and 60◦, that
is K = γ kmax = γN, where γ = 2√

3
. To facilitate comparison with figure 6, figure 9

plotted in terms of the variable τ in (5.2) and (5.5), identified with z by expansion of the
square roots in (6.1) as τ = z/γ . Even for this scarcely paraxial 60◦ beam the shape of
the region of strong backflow is similar to that in the paraxial approximation (figure 6). An
unexpected consequence is that the strong backflow persists after propagation through many
wavelengths λ = 2π/K: backflow survives until τ∼π , which corresponds to z/λ = zK/2π ∼
γ 2N/2 � 1.

More interesting than transverse backflow is the z dependence, embodied in the z

component kz(x, z) (equation (1.5)) of the local wavevector. This can be negative (‘retro-
propagation’), even though the z components

kz,n =
√

K2 − k2
n (6.2)

of all constituent waves are positive. Now it is no longer necessary to assume that all the kn

are positive semidefinite. Retro-propagation is illustrated in figure 10 for the 21-wave beam

12
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Figure 10. Regions of retro-propagation (gray), superimposed on phase contours at intervals of
π/2, for the 21-wave beam (6.3).

N = 20, K = π, kn = π sin
( π

20
(n − 10)

)
,

cn = exp(iφn), φn = random on [0, 2π ].
(6.3)

Superimposed on the figure are the wavefronts: contours of �(x, z), illustrating the fact
(section 1) that the boundaries of the retro-propagating regions include the phase singularities
(intersections of phase contours) and are tangent to the z direction at these points. In
figure 10, approximately half of the retro-propagating regions include one phase singularity,
and half include two; calculating correponding fractions in the general case seems a difficult
statistical problem. Note that the regions of backflow are considerably smaller than the
wavelength; this reflects the well-known fact that in the neighbourhood of phase singularities
wavefunctions can vary on sub-wavelength scales.

It is evident that the retro-propagating regions are small. To understand why, we observe
that for typical superpositions with N � 1 their measure (probability) is, from preceding
theory

Pretro = 1 − rretro

2
, (6.4)

where (cf (3.9) and (5.16))

rretro ≡ 〈kz,n〉√〈
k2
z,n

〉 . (6.5)

To illustrate this, we note that the x wavenumber kn corresponds to waves travelling at an angle
θn = sin−1(kn/K) to the z axis, and consider a superposition of many plane waves uniformly
distributed between ±θmax; paraxiality corresponds to θmax  π/2, and figure 10 represents

13
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Figure 11. Pretro (equations (6.4) and (6.5)) as a function of beam angular half-width θmax, for
a uniform distribution of transverse wavevector components (full curve, from equation (6.6)) and
propagation angles (dashed curve, from equation (6.7)).

the opposite case of θmax = π/2. If this is interpreted as uniformity in kn, that is, in sin θ , (6.4)
gives

rretro =
(

θmax
sin θmax

+ cos θmax
)

2
√

1 − 1
3 sin2 θmax

, (6.6)

while for uniformity in θ

rretro =
√

2 sin θmax

θmax

√
1 + sin 2θmax

2θmax

. (6.7)

As figure 11 shows, both distributions lead to very small values of Pretro. The largest value is
0.050, corresponding to a superposition of plane waves uniformly distributed in θ over the full
range ±π/2; in figure 10, corresponding to this case, the measured value of Pretro is 0.057, in
reasonable agreement with the theoretical value. For paraxial beams, (6.5) and (6.6) both give

Pretro ≈ θ4
max

180

(
θmax  1

2π
)

(6.8)

Even for a 45◦ beam (θmax = π/4), Pretro is very small: close to 0.002 for both distributions
(6.6) and (6.7).
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