Weak value distributions for spin $\mathbf{1 / 2}$

M V Berry ${ }^{1}$, M R Dennis ${ }^{1}$, B McRoberts ${ }^{1}$ and P Shukla ${ }^{2}$
${ }^{1}$ H H Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, UK
${ }^{2}$ Department of Physics, Indian Institute of Technology, Kharagpur, India
E-mail: asymptotico@physics.bristol.ac.uk (M V Berry)

Received 7 February 2011, in final form 22 March 2011
Published 19 April 2011
Online at stacks.iop.org/JPhysA/44/205301

Abstract

The simplest weak measurement is of a component of spin $1 / 2$. For this observable, the probability distributions of the real and imaginary parts of the weak value, and their joint probability distribution, are calculated exactly for pre- and postselected states uniformly distributed over the surface of the Poincaré-Bloch sphere. The superweak probability, that the real part of the weak value lies outside the spectral range, is $1 / 3$. This case, with just two eigenvalues, complements our previous calculation (Berry and Shukla 2010 J. Phys. A: Math. Theor. 43 354024) of the universal form of the weak value probability distribution for an operator with many eigenvalues.

1. Introduction

A weak measurement [1,2] of a quantum observable \hat{A}, involving a preselected state $\left|\psi_{0}\right\rangle$ and a postselected state $\left|\psi_{1}\right\rangle$ leads to a weak value

$$
\begin{equation*}
A_{\text {weak }}=\frac{\left\langle\psi_{1}\right| \hat{A}\left|\psi_{0}\right\rangle}{\left\langle\psi_{1} \mid \psi_{0}\right\rangle}=A+\mathrm{i} A^{\prime} \tag{1.1}
\end{equation*}
$$

The real and imaginary parts can be interpreted, as is now well understood [1, 3, 4], in terms of the shift (A) and momentum $\left(A^{\prime}\right)$ of a pointer recording the measurement. An important feature of a weak measurement is that in contrast to the more familiar measurement, given by the expectation value $\langle\psi| \hat{A}|\psi\rangle$, the real part of the weak value A can lie far outside the spectrum of \hat{A} : it can be superweak [5], because the denominator in (1.1) is small when the pre- and postselected states are nearly orthogonal.

Recently [5], the typicality of superweakness was estimated, by calculating, for observables with $N \gg 1$ eigenvalues, the probability distribution of A over an ensemble of pre- and postselected states, and hence the probability that A lies outside the spectrum of \hat{A}. The result was a surprising universality: the distribution of A is largely independent of the ensemble of the states, with scaling governed by a single number characterising the distribution of eigenvalues. Moreover, superweakness for $N \gg 1$ was revealed as a surprisingly common
phenomenon, whose probability could be as large as $1-1 \sqrt{2}=0.293$. Numerics indicated that the universal large- N distribution was a good approximation even down to $N=5$. The study [5] generalized the earlier result [6] on the statistics of monochromatic superoscillations, that is waves in two dimensions that oscillate faster than the wavenumber of the consituent plane waves: the superoscillation probability was $1 / 3$ (later generalised [7] to waves in arbitrary dimension).

Our purpose here is to complement these earlier studies by calculating the weak value distribution for the simplest case, i.e. $N=2$. Without loss of generality, we can choose the observable for this 2 -state system proportional to the z component of spin, namely

$$
\hat{A}=\frac{2}{\hbar} \hat{S}_{z}=\left(\begin{array}{cc}
1 & 0 \tag{1.2}\\
0 & -1
\end{array}\right)
$$

with eigenvalues +1 and -1 . The states are represented by their directions on the PoincaréBloch sphere; in polar coordinates,
$\left|\psi_{0}\right\rangle=\binom{\exp \left(-\frac{1}{2} \mathrm{i} \phi_{0}\right) \cos \frac{1}{2} \theta_{0}}{\exp \left(\frac{1}{2} \mathrm{i} \phi_{0}\right) \sin \frac{1}{2} \theta_{0}}, \quad\left|\psi_{1}\right\rangle=\binom{\exp \left(-\frac{1}{2} \mathrm{i} \phi_{1}\right) \cos \frac{1}{2} \theta_{1}}{\exp \left(\frac{1}{2} \mathrm{i} \phi_{1}\right) \sin \frac{1}{2} \theta_{1}}$.
The natural ensemble for these pre- and postselected states consists of independent distributions of these two directions on the sphere, uniform over the area of the sphere, that is with measure $\sin \theta \mathrm{d} \theta \mathrm{d} \phi$.

The weak value is calculated in section 2 as a function of the directions of the pre- and postselected states. The joint probability distribution $P_{\text {joint }}\left(A, A^{\prime}\right)$ of the real and imaginary parts of the weak value is calculated in section 3, and from this, in section 4, are calculated the separate distributions $P_{\operatorname{Re}}(A)$ and $P_{\operatorname{Im}}\left(A^{\prime}\right)$. Superweak values correspond to $|A|>1$, and from $P_{\mathrm{Re}}(A)$ we show that the probability for A to be found in this interval is $1 / 3$. In a celebrated paper [8], it was shown that in a weak measurement the spin component of a spin $1 / 2$ particle could exceed $100 \hbar$; our formula for $P_{\operatorname{Re}}(A)$ enables the probability of this extraordinary occurrence to be calculated as $1 / 120000$.

2. Calculation of weak values

A straightforward calculation from (1.1)-(1.3) gives the weak values in terms of the directions of the pre-and postselected states as

$$
\begin{align*}
& A=\frac{\cos \theta_{0}+\cos \theta_{1}}{1+\cos \theta_{0} \cos \theta_{1}+\sin \theta_{0} \sin \theta_{1} \cos \phi} \\
& A^{\prime}=\frac{\sin \theta_{0} \sin \theta_{1} \sin \phi}{1+\cos \theta_{0} \cos \theta_{1}+\sin \theta_{0} \sin \theta_{1} \cos \phi} \tag{2.1}
\end{align*}
$$

where $\phi=\phi_{1}-\phi_{0}$ (reflecting the azimuthal symmetry with respect to the observable). The large superweak values are associated with the singularities at $\theta_{1}=\pi-\theta_{0}, \phi=\pi$ where the denominators vanish, corresponding to orthogonality of the pre- and postselected states.

Figure 1 illustrates the geometry of A and A^{\prime} in the natural space

$$
\begin{equation*}
c_{0}=\cos \theta_{0}, \quad c_{1}=\cos \theta_{1}, \quad \phi \tag{2.2}
\end{equation*}
$$

in whose volume the distribution of states is uniform.
For a technical reason that will become clear, it is convenient to immediately transform from polar coordinates θ, ϕ on the sphere to stereographic coordinates ρ, ϕ on the plane; the radial coordinate is

$$
\begin{equation*}
\rho=\tan \frac{1}{2} \theta . \tag{2.3}
\end{equation*}
$$

Figure 1. Real part $A(a)-(d)$ and imaginary part $A^{\prime}(e)-(h)$ of weak value for spin $1 / 2$ measurements as function of $c_{0}=\cos \theta_{0}$ and $c_{1}=\cos \theta_{1}$, for $(a),(e): \phi=\pi / 8,(b),(f)$: $\phi=\pi / 2,(c),(g): \phi=3 \pi / 4,(d),(f): \phi=31 \pi / 32$, as density-shaded contour plots (larger values lighter). The singularities at $c_{1}=-\mathrm{c}_{0}, \phi=\pi$ correspond to orthogonality of the pre- and postselected states.
(This figure is in colour only in the electronic version)

Then an elementary calculation from (1.1) gives the weak value for each pair of pre- and postselected states as

$$
\begin{align*}
A & =\frac{1-\rho_{0}^{2} \rho_{1}^{2}}{1+\rho_{0}^{2} \rho_{1}^{2}+2 \rho_{0} \rho_{1} \cos \phi} \equiv \frac{Y}{X} \tag{2.4}\\
A^{\prime} & =\frac{2 \rho_{0} \rho_{1} \sin \phi}{1+\rho_{0}^{2} \rho_{1}^{2}+2 \rho_{0} \rho_{1} \cos \phi} \equiv \frac{Z}{X}
\end{align*}
$$

3. Joint probability distribution of real and imaginary weak values

From the symmetry of the observable \hat{A} in (1.1), of the weak value (2.1) under exchange of $\left|\psi_{0}\right\rangle$ and $\left|\psi_{1}\right\rangle$, and the uniform distributions of $\left|\psi_{0}\right\rangle$ and $\left|\psi_{1}\right\rangle$ on the sphere, it follows that the joint distribution $P_{\text {joint }}\left(A, A^{\prime}\right)$ depends only on the absolute values $|A|$ and $\left|A^{\prime}\right|$, so we only need perform the calculations for $A \geqslant 0$ and $A^{\prime} \geqslant 0$. This will be assumed in what follows, though we will not always indicate the absolute values.

The desired probability distributions are
$P_{\operatorname{Re}}(A)=\int_{-\infty}^{\infty} \mathrm{d} A^{\prime} P_{\text {joint }}\left(A, A^{\prime}\right), \quad P_{\operatorname{Im}}\left(A^{\prime}\right)=\int_{-\infty}^{\infty} \mathrm{d} A P_{\text {joint }}\left(A, A^{\prime}\right)$
$P_{\text {joint }}\left(A, A^{\prime}\right)=\left\langle\delta\left(A-\frac{Y}{X}\right) \delta\left(A^{\prime}-\frac{Z}{X}\right)\right\rangle=\frac{Y^{2}}{A^{2}}\left\langle\delta(A X-Y) \delta\left(A^{\prime} X-Z\right)\right\rangle$,
where the angle brackets represent ensemble averages. Now we note that the radial dependencies in the weak values (2.4) only involve the combination $\rho_{0} \rho_{1}$. This leads to a simplification: for any function F, the average, incorporating uniform distribution on the sphere of states, is

$$
\begin{align*}
\left\langle F\left(\rho_{0} \rho_{1}, \phi\right)\right\rangle & =\frac{1}{8 \pi} \int_{0}^{\pi} \mathrm{d} \theta_{0} \sin \theta_{0} \int_{0}^{\pi} \mathrm{d} \theta_{1} \sin \theta_{1} \int_{0}^{2 \pi} \mathrm{~d} \phi F\left(\rho_{0} \rho_{1}, \phi\right) \\
& =\frac{2}{\pi} \int_{0}^{\infty} \frac{\mathrm{d} \rho_{0} \rho_{0}}{\left(1+\rho_{0}^{2}\right)^{2}} \int_{0}^{\infty} \frac{\mathrm{d} \rho_{1} \rho_{1}}{\left(1+\rho_{1}^{2}\right)^{2}} \int_{0}^{2 \pi} \mathrm{~d} \phi F\left(\rho_{0} \rho_{1}, \phi\right) \\
& =\frac{2}{\pi} \int_{0}^{\infty} \frac{\mathrm{d} \rho_{0} \rho_{0}^{3}}{\left(1+\rho_{0}^{2}\right)^{2}} \int_{0}^{\infty} \frac{\mathrm{d} v v}{\left(\rho_{0}^{2}+v^{2}\right)^{2}} \int_{0}^{2 \pi} \mathrm{~d} \phi F(v, \phi) \\
& =\frac{2}{\pi} \int_{0}^{\infty} \frac{\mathrm{d} v v}{\left(1-v^{2}\right)^{2}}\left(\frac{1+v^{2}}{1-v^{2}} \log \frac{1}{v}-1\right) \int_{0}^{2 \pi} \mathrm{~d} \phi F(v, \phi) \tag{3.2}
\end{align*}
$$

The third equality follows after substituting $\rho_{0} \rho_{1}=v$, and the fourth from evaluating the integral over ρ_{0}.

To calculate $P_{\text {joint }}\left(A, A^{\prime}\right)$, the two integrals will be eliminated by the two δ-functions in (3.1). For the ϕ integration, after using $\int \mathrm{d} x \delta(f(x)) \delta(g(x))=\sum_{i}\left|f\left(x_{i}\right)\right|^{-1} \delta\left(g_{i}(x)\right)$, where x_{i} are the zeros of $f(x)$ in the integration range, we get

$$
\begin{align*}
\int_{0}^{2 \pi} \mathrm{~d} \phi F(v, \phi) & =\frac{\left(1-v^{2}\right)}{A^{2}} \int_{0}^{2 \pi} \mathrm{~d} \phi \delta\left((A+1) v^{2}+2 A v \cos \phi+A-1\right) \\
& \times \delta\left(A^{\prime}\left(v^{2}+2 v \cos \phi+1\right)-2 v \sin \phi\right) \\
& =\frac{\left(1-v^{2}\right)}{2 A^{3}\left|\sin \phi_{\mathrm{c}}\right|}\left[\delta\left(A^{\prime}\left(v^{2}+2 v \cos \phi_{\mathrm{c}}+1\right)-2 v \sin \phi_{\mathrm{c}}\right)\right. \\
& \left.+\delta\left(A^{\prime}\left(v^{2}+2 v \cos \phi_{\mathrm{c}}+1\right)+2 v \sin \phi_{\mathrm{c}}\right)\right] \tag{3.3}
\end{align*}
$$

The second equality results from the δ-function containing A, and involves

$$
\begin{equation*}
\cos \phi_{\mathrm{c}}=\frac{1-A-(A+1) v^{2}}{2 A v}, \quad \sin \phi_{\mathrm{c}}=\frac{A+1}{2 A v} \sqrt{\left(1-v^{2}\right)\left(v^{2}-\left(\frac{A-1}{A+1}\right)^{2}\right)} \tag{3.4}
\end{equation*}
$$

in which the square root is positive and there are two terms because for each value of $\cos \phi_{c}$ there are two values of $\sin \phi_{c}$.

After noting that the v integration depends only on $v^{2}=u$, the joint probability distribution becomes

$$
\begin{align*}
P_{\mathrm{joint}}\left(A, A^{\prime}\right)= & \frac{1}{\pi A(A+1)} \int_{\left(\frac{A-1}{A+1}\right)^{2}}^{1} \frac{\mathrm{~d} u}{1-u} \frac{\left(\frac{1}{2}(1+u) \log \frac{1}{u}-(1-u)\right)}{\sqrt{(1-u)\left(u-\left(\frac{A-1}{A+1}\right)^{2}\right)}} \\
& \times \delta\left(A^{\prime}(1-u)-\sqrt{(1-u)\left(u-\left(\frac{A-1}{A+1}\right)^{2}\right)}\right) \tag{3.5}
\end{align*}
$$

in which the restriction of the limits of the integral arise from the condition $\left|\sin \phi_{c}\right| \leqslant 1$. The argument of the remaining δ-function vanishes for $u=u_{c 1}$ and $u=u_{c 2}$, where

$$
\begin{equation*}
u_{c 1}=1-\frac{4 A}{\left(1+A^{2}\right)\left(1+A^{\prime 2}\right)}, \quad u_{\mathrm{c} 2}=1 \tag{3.6}
\end{equation*}
$$

The value $u_{c 2}$ does not contribute, because the prefactor in (3.5) vanishes for $u=1$, leading to the final result for the joint distribution: reinstating the absolute value,

$$
\begin{equation*}
P_{\mathrm{joint}}\left(A, A^{\prime}\right)=\frac{(1+|A|)}{2 \pi A^{2}}\left(\frac{\left(1+u_{\mathrm{c} 1}\right)}{2\left(1-u_{\mathrm{c} 1}\right)} \log \frac{1}{u_{\mathrm{c} 1}}-1\right) \tag{3.7}
\end{equation*}
$$

Figure 2 shows the distribution. It is clear that A and A^{\prime} are strongly correlated. At the eigenvalues $A= \pm 1, A^{\prime}=0, P_{\text {joint }}$ has a logarithmic singularity, whose form is

$$
\begin{equation*}
P_{\mathrm{joint}}(1+\varepsilon, 0) \approx \frac{1}{\pi} \log \left(\frac{2}{\mathrm{e}|\varepsilon|}\right), \quad P_{\mathrm{joint}}(1, \varepsilon) \approx \frac{1}{\pi} \log \left(\frac{1}{\mathrm{e} \varepsilon}\right), \quad \varepsilon \ll 1 \tag{3.8}
\end{equation*}
$$

Away fom the eigenvalues, $P_{\text {joint }}$ decays rapidly.

4. Real and imaginary weak value distributions

For the real part of the weak value, (3.1), (3.6) and (3.7) give
$P_{\mathrm{Re}}(A)=2 \int_{0}^{\infty} \mathrm{d} A^{\prime} P_{\text {joint }}\left(A, A^{\prime}\right)=\frac{1}{3}\left(\Theta(1-|A|)+\frac{1}{\left|A^{3}\right|} \Theta(|A|-1)\right)$,
in which Θ denotes the unit step. (Actually, we found it simpler to obtain this result by integrating over A^{\prime} first and evaluating the u integral by a contour deformation around a branch cut, thereby eliminating the logarithm in (3.2).)

The distribution $P_{\operatorname{Re}}(A)$ (figure 3) is uniform for $|A|<1$, i.e. between the eigenvalues, and decays in the superweak region outside. The power-law decay is similar to those previously found [5-7] for statistics of quotients of random variables (here Y / X in (2.4)). The probability of finding a superweak value is

$$
\begin{equation*}
P_{\text {superweak }}=2 \int_{1}^{\infty} \mathrm{d} A P_{\operatorname{Re}}(A)=\frac{1}{3} \tag{4.2}
\end{equation*}
$$

In [8], it was envisaged that a weak measurement of a spin component could yield a value exceeding $100 \hbar$. The probability that this would occur with a random choice of pre- and postselected states can now be calculated:

$$
\begin{equation*}
P_{S_{z}>100 \hbar}=\frac{2}{3} \int_{200}^{\infty} \frac{\mathrm{d} A}{A^{3}}=\frac{1}{120000} \tag{4.3}
\end{equation*}
$$

Figure 2. Joint probability distribution $P_{\text {joint }}\left(A, A^{\prime}\right)$ of real and imaginary parts of $A_{\text {weak }}$ (equation (3.7)): (a) 3D plot, as a surface; (b) contour plot.

Figure 3. Probability distribution $P_{\operatorname{Re}}(A)$ for $A=\operatorname{Re} A_{\text {weak. }}$. Full curve: spin $1 / 2$ (equation (4.1)); dashed curve: universal result for many states, from [5].

Figure 4. Probability distribution $P_{\operatorname{Im}}\left(A^{\prime}\right)$ for $A^{\prime}=\operatorname{Im} A_{\text {weak }}$ (equation (4.4)).

Similarly, the distribution of the imaginary part is

$$
\begin{align*}
P_{\operatorname{Im}}\left(A^{\prime}\right)= & \frac{1}{\pi\left(1+A^{\prime 2}\right)} \\
& \times\left[2-3 A^{\prime 2}-6\left|A^{\prime}\right|\left(1+A^{\prime 2}\right) \tan ^{-1} \frac{1}{\left|A^{\prime}\right|}+\left(1+4 A^{\prime 2}+3 A^{\prime 4}\right)\left(\tan ^{-1} \frac{1}{\left|A^{\prime}\right|}\right)^{2}\right] \tag{4.4}
\end{align*}
$$

As illustrated in figure 4 (and not obvious from the formula), this is a rapidly decaying function, with asymptotic behaviour

$$
P_{\operatorname{Im}\left(A^{\prime}\right) \approx}^{\left.\frac{\pi}{4}+\frac{2}{\pi}-4 \right\rvert\, A^{\prime}\left(\left|A^{\prime}\right| \ll 1\right)} \begin{array}{ll}
\frac{2}{3 \pi\left|A^{\prime}\right|^{4}} & \left(\left|A^{\prime}\right| \gg 1\right) \tag{4.5}
\end{array}
$$

5. Concluding remarks

The weak value probability distributions (4.1) and (4.2) for this simplest case of just $N=2$ eigenvalues differ in two respects from the previously found distribution [5] that emerges as N increases and that is universal (as a consequence of the central limit theorem for the eigenvalue sums implicit in (1.1)). The first difference concerns $P_{\operatorname{Re}}(A)$. The universal distribution $P_{\operatorname{Re}}(A)$ is a smooth function, in which the only indication of the extent of the spectrum of the observable \hat{A} is a scaling variable quantifying the way in which the N eigenvalues are distributed within the spectral range. By contrast, for $N=2$ there is a discontinuity of slope at the eigenvalues $A= \pm 1$.

The second difference concerns $P_{\mathrm{Im}}\left(A^{\prime}\right)$. For large N, this is the same as $P_{\mathrm{Re}}(A)$ [5], but for $N=2$ the forms of $P_{\operatorname{Im}}\left(A^{\prime}\right)$ and $P_{\mathrm{Re}}(A)$ are very different.

Nevertheless, the distributions for $N=2$ and for large N decay in the same way for large $|A|$: as $1 /|A|^{3}$. Moreover, the superweak probabilities are not very different: for large $N, P_{\text {superweak }}$ can be as large as $1-1 / \sqrt{2}=0.293 \ldots$, whereas for $N=2, P_{\text {superweak }}=$ $1 / 3$ - intriguingly, the same as the superoscillation probability [6] for gaussian random
monochromatic waves in two dimensions. These similarities are compatible with our previous observation [5] that the $N \gg 1$ distribution fits those computed numerically even down to $N=5$.

Finally, we emphasize that the distribution of superweak values is very different from that of the expectation values in a conventional measurement. For the observable (1.2), the expectation value (which of course is real) is

$$
\begin{equation*}
A_{\exp }=\langle\psi| \hat{A}|\psi\rangle=\cos \theta \tag{5.1}
\end{equation*}
$$

whose probabilty distribution is

$$
\begin{equation*}
P_{\exp }\left(A_{\exp }\right)=\frac{1}{2} \int_{0}^{\pi} \mathrm{d} \theta \sin \theta \delta\left(A_{\exp }-\cos \theta\right)=\frac{1}{2} \Theta\left(1-\left|A_{\exp }\right|\right) \tag{5.2}
\end{equation*}
$$

This is restricted to the interval $|A| \leqslant 1$ and uniform within it.

Acknowledgments

MVB and PS thank Professor M Daniel of Bharathidasan University, Tiruchirapalli, India, for hospitality while some of this work was conducted. MRD's research is supported by the Royal Society.

References

[1] Aharonov Y and Rohrlich D 2005 Quantum Paradoxes: Quantum Theory for the Perplexed (Weinheim: WileyVCH)
[2] Aharonov Y, Popescu S and Tollaksen J 2010 A time-symmetric formulation of quantum mechanics Phys. Today 63 27-33
[3] Steinberg A M 1995 Conditional probabilities in quantum theory, and the tunneling time controversy Phys. Rev. A 52 32-42
[4] Jozsa R 2007 Complex weak values in quantum measurement Phys. Rev. A 76044103
[5] Berry M V and Shukla P 2010 Typical weak and superweak values J. Phys. A: Math. Theor. 43354024
[6] Dennis M R, Hamilton A C and Courtial J 2008 Superoscillation in speckle patterns Opt. Lett. 33 2976-8
[7] Berry M V and Dennis M R 2009 Natural superoscillations in monochromatic waves in D dimensions J. Phys. A: Math. Theor. 42022003
[8] Aharonov Y, Albert D Z and Vaidman L 1988 How the result of a measurement of a component of the spin of a spin $1 / 2$ particle can turn out to be 100 Phys. Rev. Lett. 60 1351-4

