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Abstract

The simplest weak measurement is of a component of spin 1/2. For this
observable, the probability distributions of the real and imaginary parts of
the weak value, and their joint probability distribution, are calculated exactly
for pre- and postselected states uniformly distributed over the surface of the
Poincaré-Bloch sphere. The superweak probability, that the real part of the
weak value lies outside the spectral range, is 1/3. This case, with just two
eigenvalues, complements our previous calculation (Berry and Shukla 2010
J. Phys. A: Math. Theor. 43 354024) of the universal form of the weak value
probability distribution for an operator with many eigenvalues.

1. Introduction

A weak measurement [ 1, 2] of a quantum observable A, involving a preselected state |1/) and
a postselected state |y/) leads to a weak value

A = AW _ i (.0

(V1 | Yo)
The real and imaginary parts can be interpreted, as is now well understood [1, 3, 4], in terms
of the shift (A) and momentum (A’) of a pointer recording the measurement. An important
feature of a weak measurement is that in contrast to the more familiar measurement, given
by the expectation value (/| A |1), the real part of the weak value A can lie far outside the
spectrum of A: it can be superweak [5], because the denominator in (1.1) is small when the
pre- and postselected states are nearly orthogonal.

Recently [5], the typicality of superweakness was estimated, by calculating, for
observables with N > 1 eigenvalues, the probability distribution of A over an ensemble of
pre- and postselected states, and hence the probability that A lies outside the spectrum of A.
The result was a surprising universality: the distribution of A is largely independent of the
ensemble of the states, with scaling governed by a single number characterising the distribution
of eigenvalues. Moreover, superweakness for N > 1 was revealed as a surprisingly common
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phenomenon, whose probability could be as large as 1 — 14/2 = 0.293. Numerics indicated
that the universal large-N distribution was a good approximation even down to N = 5. The study
[5] generalized the earlier result [6] on the statistics of monochromatic superoscillations, that
is waves in two dimensions that oscillate faster than the wavenumber of the consituent plane
waves: the superoscillation probability was 1/3 (later generalised [7] to waves in arbitrary
dimension).

Our purpose here is to complement these earlier studies by calculating the weak value
distribution for the simplest case, i.e. N = 2. Without loss of generality, we can choose the
observable for this 2-state system proportional to the z component of spin, namely

. 2. 1 0
Azr_,SF(o _1>, (1.2)

with eigenvalues +1 and —1. The states are represented by their directions on the Poincaré-
Bloch sphere; in polar coordinates,

_ (exp (—1igo) cos %00> _ (exp (—1ig) cos %01>

[¥o) = - 1 , ) = = 1 : (1.3)
exp (El(ﬁo) sin 56y exp (il(ﬁl) sin 56,

The natural ensemble for these pre- and postselected states consists of independent distributions

of these two directions on the sphere, uniform over the area of the sphere, that is with measure

sinf dO d¢.

The weak value is calculated in section 2 as a function of the directions of the pre- and
postselected states. The joint probability distribution Py (A, A/) of the real and imaginary
parts of the weak value is calculated in section 3, and from this, in section 4, are calculated the
separate distributions Pre (A) and Py, (A/). Superweak values correspond to |A|>1, and from
Pre (A) we show that the probability for A to be found in this interval is 1/3. In a celebrated
paper [8], it was shown that in a weak measurement the spin component of a spin 1/2 particle
could exceed 1007; our formula for Pg. (A) enables the probability of this extraordinary
occurrence to be calculated as 1/120 000.

2. Calculation of weak values

A straightforward calculation from (1.1)—(1.3) gives the weak values in terms of the directions
of the pre-and postselected states as

cos 6y + cos 6y

1 + cos By cos B + sin by sinB; cos ¢’
sin 6 sin 6 sin ¢

Q2.1

!/

" 1+4cos6cosby +sinby sin by cos¢’
where ¢ = ¢ —¢ (reflecting the azimuthal symmetry with respect to the observable). The
large superweak values are associated with the singularities at 6, = m — 6y, ¢ = m where the
denominators vanish, corresponding to orthogonality of the pre- and postselected states.
Figure 1 illustrates the geometry of A and A’ in the natural space

co = cos O, c; = cosby, ¢ 2.2)

in whose volume the distribution of states is uniform.

For a technical reason that will become clear, it is convenient to immediately transform
from polar coordinates 6, ¢ on the sphere to stereographic coordinates p, ¢ on the plane; the
radial coordinate is

1
p = tan 56. (2.3)
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Figure 1. Real part A (a)~(d) and imaginary part A’ (e)—(h) of weak value for spin 1/2
measurements as function of ¢y = cos 6 and c¢; = cos 0y, for (a), (e): ¢ = n/8, (b), (f):
¢ = m/2, (¢), (g): ¢ = 3n/4, (d), (f): ¢ = 31xw/32, as density-shaded contour plots (larger
values lighter). The singularities at ¢c;j=—c¢, ¢ = 7 correspond to orthogonality of the pre- and
postselected states.

(This figure is in colour only in the electronic version)

Then an elementary calculation from (1.1) gives the weak value for each pair of pre- and
postselected states as

_ 1-— ,05,012 Y
1+ p2p? +2p0p1cosp X 04
A= 2p0p1 sin ¢ _Z '
1+ p2p} +2pop1cosp X'
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3. Joint probability distribution of real and imaginary weak values

From the symmetry of the observable A in (1.1), of the weak value (2.1) under exchange of
|Y0) and |y1), and the uniform distributions of |1) and |y;) on the sphere, it follows that the
joint distribution Pigin (A, A’) depends only on the absolute values |A| and |A’|, so we only
need perform the calculations for A > 0 and A” > 0. This will be assumed in what follows,
though we will not always indicate the absolute values.

The desired probability distributions are

o0 o0
Pre(A) = / A Pam(A, A),  Pn(A) = f dAPom(A, A)

Point(A, A)=(5( A Y(SA/ z —YZSAX Y)S(A'X —Z
]oml( > )—<( _§> < _§>>—F<( - )( - )>,

3.1

where the angle brackets represent ensemble averages. Now we note that the radial
dependencies in the weak values (2.4) only involve the combination pgp;. This leads to
a simplification: for any function F, the average, incorporating uniform distribution on the
sphere of states, is

2

1 s T .
(F(pop1 ) = o / a6 sin by / a6, sin ), / A6 F (pop1. )
0 0 0
00 d [ee) d 2
=—/ 2oit f A0 [ aoF )
1+,o0 o (L+pf)" Jo
0 dp p [} dov 2w
—/ i / zf dpF (v, )
7 Jo (1+,o0) o (p3+v?)"Jo

3/00 dvv <1+”21 l—l)/hd Fv. ) (3.2)
7t (1—=v2)2\1-22 8% 0 PE Q. 9). ’

The third equality follows after substituting ppp; = v, and the fourth from evaluating the
integral over py.

To calculate Pjoint (A, A/), the two integrals will be eliminated by the two §-functions
in (3.1). For the ¢ integration, after using f dx8 (f (xS (g =D 1f )78 (g (x)),
where x; are the zeros of f(x) in the integration range, we get

(1-v%)
A2

2 2
f dpF (v, ¢) = / dpS((A+ 1)v> +2Avcosdp + A — 1)
0 0

x 8(A'(v? +2vcos ¢ + 1) — 2usin @)
(1—v?)

T 2A%sing|

+8(A' (v +2vcos g + 1) + 2using)]. 3.3)

[8(A (v +2vcos¢. + 1) — 2vsin )

The second equality results from the §-function containing A, and involves

_A— 2 N2
Cosqbc:l A (A+1)v7 sin¢c=A+1 (1_v2)<v2_<u> )’ (3.4)

2Av 2Av A+1

in which the square root is positive and there are two terms because for each value of cos¢,
there are two values of sin ¢...
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After noting that the v integration depends only on v? = u, the joint probability distribution
becomes

1 fl du (3(1+wlogl—(1—w)
7TA(A+]) (%)Zl—u \/(l_u)(u_(%)Z)

slaqa 1 A=ty 35
X I—-uw)— |(1—-wu) u—<A+1> , (3.5)

in which the restriction of the limits of the integral arise from the condition [sin ¢.|<1. The
argument of the remaining §-function vanishes for u = u,; and u = u,,, where
4A
1+A)(1+A?)’

Pjoim(A , A/) =

U =1 uo = 1. 3.6)
The value u., does not contribute, because the prefactor in (3.5) vanishes for u = 1, leading to
the final result for the joint distribution: reinstating the absolute value,

(1 +1AD ( (I +ucr) 1 )

log— —1
2w A? 2(1 — ucr) o8 Ucl

Pioini(A, A') = (3.7
Figure 2 shows the distribution. It is clear that A and A’ are strongly correlated. At the
eigenvalues A = £1, A’ = 0, Pjoiy has a logarithmic singularity, whose form is

1 2 1 1
Pjoim(1 +e, 0) ~ = 10g < ) ’ Pjoint(l’ 8) ~ = lOg ( ) s ek 1. (38)
b4 ele] T ee

Away fom the eigenvalues, Pjin decays rapidly.

4. Real and imaginary weak value distributions

For the real part of the weak value, (3.1), (3.6) and (3.7) give

Prea) =2 [0 P4, 4 =3 (001 = 1D + 00141 - 1)) , @)
in which ® denotes the unit step. (Actually, we found it simpler to obtain this result by
integrating over A’ first and evaluating the u integral by a contour deformation around a
branch cut, thereby eliminating the logarithm in (3.2).)

The distribution Pg.(A) (figure 3) is uniform for |A| <1, i.e. between the eigenvalues, and
decays in the superweak region outside. The power-law decay is similar to those previously
found [5-7] for statistics of quotients of random variables (here Y/X in (2.4)). The probability
of finding a superweak value is

> 1
Psuperweak = 2/ dA Pre(A) = 5 (42)
1

In [8], it was envisaged that a weak measurement of a spin component could yield a
value exceeding 1007%. The probability that this would occur with a random choice of pre- and
postselected states can now be calculated:

» 2 /00 da 1 “3)
S0 3 L0 A3 T 120000 '
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Figure 2. Joint probability distribution Pjoin(A, A’) of real and imaginary parts of Ayeak
(equation (3.7)): (a) 3D plot, as a surface; (b) contour plot.
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Figure 3. Probability distribution Pre(A) for A = ReAyeqk. Full curve: spin 1/2 (equation (4.1));
dashed curve: universal result for many states, from [5].
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Figure 4. Probability distribution Pyy,(A’) for A’=ImA yeax (equation (4.4)).

Similarly, the distribution of the imaginary part is
1

Pin(A) = 0547

1 1\*
X [2—3/4/2 —6]A"|(1+ A% tan™! Y +(1+4A% +3A4™) (tan_l |A,|> }

(4.4)

As illustrated in figure 4 (and not obvious from the formula), this is a rapidly decaying function,
with asymptotic behaviour

T 2 PR
17 —41A" (A"« 1)

Pin(A) ~ 2 ) 4.5)
A (A" > D).

5. Concluding remarks

The weak value probability distributions (4.1) and (4.2) for this simplest case of just N = 2
eigenvalues differ in two respects from the previously found distribution [5] that emerges as N
increases and that is universal (as a consequence of the central limit theorem for the eigenvalue
sums implicitin (1.1)). The first difference concerns Pre(A). The universal distribution Pg.(A)
is a smooth function, in which the only indication of the extent of the spectrum of the observable
A is a scaling variable quantifying the way in which the N eigenvalues are distributed within
the spectral range. By contrast, for N = 2 there is a discontinuity of slope at the eigenvalues
A==l

The second difference concerns P, (A’). For large N, this is the same as Pg.(A) [5], but
for N = 2 the forms of Py, (A") and Pre(A) are very different.

Nevertheless, the distributions for N = 2 and for large N decay in the same way for
large |A|: as 1/|A|3. Moreover, the superweak probabilities are not very different: for large
N, Pgperweak Can be as large as 1 — 1/ V2 = 0.293..., whereas for N = 2, Pgperweak =
1/3 — intriguingly, the same as the superoscillation probability [6] for gaussian random
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monochromatic waves in two dimensions. These similarities are compatible with our previous
observation [5] that the N>>1 distribution fits those computed numerically even down to
N=5.

Finally, we emphasize that the distribution of superweak values is very different from
that of the expectation values in a conventional measurement. For the observable (1.2), the
expectation value (which of course is real) is

Aexp = (V]A|Y) = cos?, (5.1

whose probabilty distribution is
T
Pexp(Aexp) = 3 / dO Sin 6 8(Aexp — c0s0) = 2O(1 — |Aexp)). (5.2)
0

This is restricted to the interval |A|<1 and uniform within it.
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