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Abstract
The simplest weak measurement is of a component of spin 1/2. For this
observable, the probability distributions of the real and imaginary parts of
the weak value, and their joint probability distribution, are calculated exactly
for pre- and postselected states uniformly distributed over the surface of the
Poincaré-Bloch sphere. The superweak probability, that the real part of the
weak value lies outside the spectral range, is 1/3. This case, with just two
eigenvalues, complements our previous calculation (Berry and Shukla 2010
J. Phys. A: Math. Theor. 43 354024) of the universal form of the weak value
probability distribution for an operator with many eigenvalues.

1. Introduction

A weak measurement [1, 2] of a quantum observable Â, involving a preselected state |ψ0〉 and
a postselected state |ψ1〉 leads to a weak value

Aweak = 〈ψ1| Â |ψ0〉
〈ψ1 | ψ0〉 = A + iA′. (1.1)

The real and imaginary parts can be interpreted, as is now well understood [1, 3, 4], in terms
of the shift (A) and momentum (A′) of a pointer recording the measurement. An important
feature of a weak measurement is that in contrast to the more familiar measurement, given
by the expectation value 〈ψ | Â |ψ〉, the real part of the weak value A can lie far outside the
spectrum of Â: it can be superweak [5], because the denominator in (1.1) is small when the
pre- and postselected states are nearly orthogonal.

Recently [5], the typicality of superweakness was estimated, by calculating, for
observables with N � 1 eigenvalues, the probability distribution of A over an ensemble of
pre- and postselected states, and hence the probability that A lies outside the spectrum of Â.
The result was a surprising universality: the distribution of A is largely independent of the
ensemble of the states, with scaling governed by a single number characterising the distribution
of eigenvalues. Moreover, superweakness for N � 1 was revealed as a surprisingly common
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phenomenon, whose probability could be as large as 1 − 1
√

2 = 0.293. Numerics indicated
that the universal large-N distribution was a good approximation even down to N = 5. The study
[5] generalized the earlier result [6] on the statistics of monochromatic superoscillations, that
is waves in two dimensions that oscillate faster than the wavenumber of the consituent plane
waves: the superoscillation probability was 1/3 (later generalised [7] to waves in arbitrary
dimension).

Our purpose here is to complement these earlier studies by calculating the weak value
distribution for the simplest case, i.e. N = 2. Without loss of generality, we can choose the
observable for this 2-state system proportional to the z component of spin, namely

Â = 2

h̄
Ŝz =

(
1 0
0 −1

)
, (1.2)

with eigenvalues +1 and −1. The states are represented by their directions on the Poincaré-
Bloch sphere; in polar coordinates,

|ψ0〉 =
(

exp
(− 1

2 iφ0
)

cos 1
2θ0

exp
(

1
2 iφ0

)
sin 1

2θ0

)
, |ψ1〉 =

(
exp

(− 1
2 iφ1

)
cos 1

2θ1

exp
(

1
2 iφ1

)
sin 1

2θ1

)
. (1.3)

The natural ensemble for these pre- and postselected states consists of independent distributions
of these two directions on the sphere, uniform over the area of the sphere, that is with measure
sinθ dθ dφ.

The weak value is calculated in section 2 as a function of the directions of the pre- and
postselected states. The joint probability distribution Pjoint

(
A,A′) of the real and imaginary

parts of the weak value is calculated in section 3, and from this, in section 4, are calculated the
separate distributions PRe (A) and PIm

(
A′). Superweak values correspond to |A|>1, and from

PRe (A) we show that the probability for A to be found in this interval is 1/3. In a celebrated
paper [8], it was shown that in a weak measurement the spin component of a spin 1/2 particle
could exceed 100h̄; our formula for PRe (A) enables the probability of this extraordinary
occurrence to be calculated as 1/120 000.

2. Calculation of weak values

A straightforward calculation from (1.1)–(1.3) gives the weak values in terms of the directions
of the pre-and postselected states as

A = cos θ0 + cos θ1

1 + cos θ0 cos θ1 + sin θ0 sin θ1 cos φ
,

A′ = sin θ0 sin θ1 sin φ

1 + cos θ0 cos θ1 + sin θ0 sin θ1 cos φ
,

(2.1)

where φ = φ1−φ0 (reflecting the azimuthal symmetry with respect to the observable). The
large superweak values are associated with the singularities at θ1 = π − θ0, φ = π where the
denominators vanish, corresponding to orthogonality of the pre- and postselected states.

Figure 1 illustrates the geometry of A and A′ in the natural space

c0 = cos θ0, c1 = cos θ1, φ (2.2)

in whose volume the distribution of states is uniform.
For a technical reason that will become clear, it is convenient to immediately transform

from polar coordinates θ , φ on the sphere to stereographic coordinates ρ, φ on the plane; the
radial coordinate is

ρ = tan 1
2θ. (2.3)
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Figure 1. Real part A (a)–(d) and imaginary part A′ (e)–(h) of weak value for spin 1/2
measurements as function of c0 = cos θ0 and c1 = cos θ1, for (a), (e): φ = π /8, (b), (f ):
φ = π /2, (c), (g): φ = 3π /4, (d), (f ): φ = 31π /32, as density-shaded contour plots (larger
values lighter). The singularities at c1=–c0, φ = π correspond to orthogonality of the pre- and
postselected states.

(This figure is in colour only in the electronic version)

Then an elementary calculation from (1.1) gives the weak value for each pair of pre- and
postselected states as

A = 1 − ρ2
0ρ

2
1

1 + ρ2
0ρ

2
1 + 2ρ0ρ1 cos φ

≡ Y

X

A′ = 2ρ0ρ1 sin φ

1 + ρ2
0ρ2

1 + 2ρ0ρ1 cos φ
≡ Z

X
.

(2.4)
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3. Joint probability distribution of real and imaginary weak values

From the symmetry of the observable Â in (1.1), of the weak value (2.1) under exchange of
|ψ0〉 and |ψ1〉, and the uniform distributions of |ψ0〉 and |ψ1〉 on the sphere, it follows that the
joint distribution Pjoint(A,A′) depends only on the absolute values |A| and |A′|, so we only
need perform the calculations for A � 0 and A′ � 0. This will be assumed in what follows,
though we will not always indicate the absolute values.

The desired probability distributions are

PRe(A) =
∫ ∞

−∞
dA′Pjoint(A,A′), PIm(A′) =

∫ ∞

−∞
dAPjoint(A,A′)

Pjoint(A,A′) =
〈
δ

(
A − Y

X

)
δ

(
A′ − Z

X

)〉
= Y 2

A2
〈δ(AX − Y )δ(A′X − Z)〉,

(3.1)

where the angle brackets represent ensemble averages. Now we note that the radial
dependencies in the weak values (2.4) only involve the combination ρ0ρ1. This leads to
a simplification: for any function F, the average, incorporating uniform distribution on the
sphere of states, is

〈F(ρ0ρ1, φ)〉 = 1

8π

∫ π

0
dθ0 sin θ0

∫ π

0
dθ1 sin θ1

∫ 2π

0
dφF(ρ0ρ1, φ)

= 2

π

∫ ∞

0

dρ0ρ0(
1 + ρ2

0

)2

∫ ∞

0

dρ1ρ1(
1 + ρ2

1

)2

∫ 2π

0
dφF(ρ0ρ1, φ)

= 2

π

∫ ∞

0

dρ0ρ
3
0(

1 + ρ2
0

)2

∫ ∞

0

dvv(
ρ2

0 + v2
)2

∫ 2π

0
dφF(v, φ)

= 2

π

∫ ∞

0

dvv

(1 − v2)2

(
1 + v2

1 − v2
log

1

v
− 1

)∫ 2π

0
dφF(v, φ). (3.2)

The third equality follows after substituting ρ0ρ1 = v, and the fourth from evaluating the
integral over ρ0.

To calculate Pjoint
(
A,A′), the two integrals will be eliminated by the two δ-functions

in (3.1). For the φ integration, after using
∫

dxδ (f (x)) δ (g (x)) = ∑
i |f (xi)|−1 δ (gi (x)),

where xi are the zeros of f (x) in the integration range, we get∫ 2π

0
dφF(v, φ) = (1 − v2)

A2

∫ 2π

0
dφδ((A + 1)v2 + 2Av cos φ + A − 1)

× δ(A′(v2 + 2v cos φ + 1) − 2v sin φ)

= (1 − v2)

2A3|sin φc| [δ(A′(v2 + 2v cos φc + 1) − 2v sin φc)

+ δ(A′(v2 + 2v cos φc + 1) + 2v sin φc)]. (3.3)

The second equality results from the δ-function containing A, and involves

cos φc = 1 − A − (A + 1)v2

2Av
, sin φc = A + 1

2Av

√√√√(1 − v2)

(
v2 −

(
A − 1

A + 1

)2
)

, (3.4)

in which the square root is positive and there are two terms because for each value of cosφc

there are two values of sin φc.
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After noting that the v integration depends only on v2 = u, the joint probability distribution
becomes

Pjoint(A,A′) = 1

πA(A + 1)

∫ 1

( A−1
A+1 )2

du

1 − u

(
1
2 (1 + u) log 1

u
− (1 − u)

)
√

(1 − u)
(
u − (

A−1
A+1

)2)

×δ

⎛
⎝A′(1 − u) −

√√√√(1 − u)

(
u −

(
A − 1

A + 1

)2
)⎞

⎠ , (3.5)

in which the restriction of the limits of the integral arise from the condition |sin φc|�1. The
argument of the remaining δ-function vanishes for u = uc1 and u = uc2, where

uc1 = 1 − 4A

(1 + A2)(1 + A′2)
, uc2 = 1. (3.6)

The value uc2 does not contribute, because the prefactor in (3.5) vanishes for u = 1, leading to
the final result for the joint distribution: reinstating the absolute value,

Pjoint(A,A′) = (1 + |A|)
2πA2

(
(1 + uc1)

2(1 − uc1)
log

1

uc1
− 1

)
. (3.7)

Figure 2 shows the distribution. It is clear that A and A′ are strongly correlated. At the
eigenvalues A = ±1, A′ = 0, Pjoint has a logarithmic singularity, whose form is

Pjoint(1 + ε, 0) ≈ 1

π
log

(
2

e|ε|
)

, Pjoint(1, ε) ≈ 1

π
log

(
1

eε

)
, ε 
 1. (3.8)

Away fom the eigenvalues, Pjoint decays rapidly.

4. Real and imaginary weak value distributions

For the real part of the weak value, (3.1), (3.6) and (3.7) give

PRe(A) = 2
∫ ∞

0
dA′Pjoint(A,A′) =1

3

(
	(1 − |A|) +

1

|A3|	(|A| − 1)

)
, (4.1)

in which 	 denotes the unit step. (Actually, we found it simpler to obtain this result by
integrating over A′ first and evaluating the u integral by a contour deformation around a
branch cut, thereby eliminating the logarithm in (3.2).)

The distribution PRe(A) (figure 3) is uniform for |A|<1, i.e. between the eigenvalues, and
decays in the superweak region outside. The power-law decay is similar to those previously
found [5–7] for statistics of quotients of random variables (here Y/X in (2.4)). The probability
of finding a superweak value is

Psuperweak = 2
∫ ∞

1
dAPRe(A) = 1

3
. (4.2)

In [8], it was envisaged that a weak measurement of a spin component could yield a
value exceeding 100h̄. The probability that this would occur with a random choice of pre- and
postselected states can now be calculated:

PSz>100h̄ = 2

3

∫ ∞

200

dA

A3
= 1

120 000
. (4.3)
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Figure 2. Joint probability distribution Pjoint(A, A′) of real and imaginary parts of Aweak
(equation (3.7)): (a) 3D plot, as a surface; (b) contour plot.
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Figure 3. Probability distribution PRe(A) for A = ReAweak. Full curve: spin 1/2 (equation (4.1));
dashed curve: universal result for many states, from [5].
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Figure 4. Probability distribution PIm(A′) for A′=ImAweak (equation (4.4)).

Similarly, the distribution of the imaginary part is

PIm(A′) = 1

π(1 + A′2)

×
[

2 − 3A′2 − 6|A′|(1 + A′2) tan−1 1

|A′| + (1 + 4A′2 + 3A′4)
(

tan−1 1

|A′|
)2

]
.

(4.4)

As illustrated in figure 4 (and not obvious from the formula), this is a rapidly decaying function,
with asymptotic behaviour

PIm(A′) ≈
π

4
+

2

π
− 4|A′ (|A′| 
 1)

2

3π |A′|4 (|A′| � 1).

(4.5)

5. Concluding remarks

The weak value probability distributions (4.1) and (4.2) for this simplest case of just N = 2
eigenvalues differ in two respects from the previously found distribution [5] that emerges as N
increases and that is universal (as a consequence of the central limit theorem for the eigenvalue
sums implicit in (1.1)). The first difference concerns PRe(A). The universal distribution PRe(A)
is a smooth function, in which the only indication of the extent of the spectrum of the observable
Â is a scaling variable quantifying the way in which the N eigenvalues are distributed within
the spectral range. By contrast, for N = 2 there is a discontinuity of slope at the eigenvalues
A = ±1.

The second difference concerns PIm(A′). For large N, this is the same as PRe(A) [5], but
for N = 2 the forms of PIm(A′) and PRe(A) are very different.

Nevertheless, the distributions for N = 2 and for large N decay in the same way for
large |A|: as 1/|A|3. Moreover, the superweak probabilities are not very different: for large
N, Psuperweak can be as large as 1 − 1/

√
2 = 0.293 . . ., whereas for N = 2, Psuperweak =

1/3 – intriguingly, the same as the superoscillation probability [6] for gaussian random
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monochromatic waves in two dimensions. These similarities are compatible with our previous
observation [5] that the N>>1 distribution fits those computed numerically even down to
N = 5.

Finally, we emphasize that the distribution of superweak values is very different from
that of the expectation values in a conventional measurement. For the observable (1.2), the
expectation value (which of course is real) is

Aexp = 〈ψ |Â|ψ〉 = cos θ, (5.1)

whose probabilty distribution is

Pexp(Aexp) = 1
2

∫ π

0
dθ sin θ δ(Aexp − cos θ) = 1

2	(1 − |Aexp|). (5.2)

This is restricted to the interval |A|�1 and uniform within it.
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