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Abstract

Recent insights into the time development of quantum states driven by non-Hermitian matrices,
and an exactly solvable model, can be applied to the evolution of optical polarization in a
stratified nontransparent dielectric medium twisted cyclically along the propagation direction.
The twist is chosen to encircle a degeneracy (branch-point) in the plane of parameters
describing the medium. Polarization evolutions are determined analytically and illustrated as
tracks on the Poincaré sphere and the stereographic plane. Even when the twist is slow, the
exact evolutions differ sharply from those of the local eigenpolarizations and can display
extreme sensitivity to initial conditions. Underlying these dramatic violations of adiabatic
intuition are the disparity of exponentials and the Stokes phenomenon of asymptotics.
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1. Introduction

It is now widely recognized that the mathematical differences
between Hermitian and non-Hermitian operators, especially
near degeneracies, have implications in several areas of
physics [1, 2]. My purpose here is to show how the recently
discovered dramatic violation of adiabatic intuition in quantum
states driven by a changing non-Hermitian operator [3] has
equally striking consequences for the propagation of the
polarization state of light.

We envisage polarized light in a stratified nontransparent
biaxially anisotropic dielectric medium (‘crystal’) whose
properties vary cyclically along the beam path. The
cyclic variation constitutes a loop, in the space of crystal
parameters, that encloses a degeneracy where the two local
polarization states (eigenvectors of the dielectric matrix: the
eigenpolarizations) coincide. Because the medium is not
transparent, the dielectric matrix is non-Hermitian, and the
degeneracy is a branch-point, often called an ‘exceptional
point’ [4], or, in crystal optics, a ‘singular axis’ [5, 6].
By analogy with the adiabatic theorem for Hermitian
evolution [7, 8], it might be thought that when the medium’s
variation is slow the polarization of the light should follow
the eigenpolarizations of the medium. In particular, at the end
of the cycle the original polarization of each of the two states
should return to that of the other (adiabatic‘flip’ [3]), reflecting
the branch-point nature of the degeneracy.
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Although one of the states does flip in this way, its
evolution during the cycle departs wildly from the naively
expected adiabatic clinging, and the other state does not flip
at all. Recent progress [3] in understanding of analogous
quantum problems implies that the polarization evolution is
strongly dependent on the geometry (e.g. the radius) of the
loop, even for very slow variations. This paper explores these
variations.

Section 2 sets up the optical formalism. A major
simplification is to study the evolving polarization state
alone, ignoring the changes in the intensity of the light.
This means that instead of solving the linear equation for
the two transverse electric field components (analogous to
the Schrodinger equation for a two-state quantum system),
we study the nonlinear equation governing the ratio of the
two components. This complex number w has a simple
interpretation: w is the stereographic projection of the unit
Stokes 3-vector r representing polarization on the Poincaré
sphere [9, 10]. Throughout this paper we make extensive
use of both the w plane and the r sphere to display the
polarization evolutions. It is interesting to note that Poincaré
employed w in most of his studies of polarization optics, and
only discovered his now-familiar sphere much later (see [11],
especially p277ff).

Section 3 introduces a local model for crystal optics
near an isolated non-Hermitian degeneracy (for background,
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see [6]), and a family of loops for which the evolution
can be solved exactly. This is a special case of recently
discovered solutions [12] for the evolving two-component
vector, here adapted to give an exact explicit formula for
the evolution of the polarization for arbitrary initial state.
There is a special periodic solution for which the final and
initial polarizations are related by a Mobius transformation.
Appendix A shows how the model can be interpreted as a
nontransparent perturbation of a Hermitian operator describing
a transparent anisotropic crystal that is twisted along the
propagation direction. The known exact solution for evolution
in this Hermitian model is briefly recapitulated in appendix B;
it is the same as the Rabi solution for a cycled spin [13] and
resembles the precession and nutation of a heavy symmetrical
top [14-16].

In section 4 the case of slow evolution is examined, by
studying the exact evolution of the polarizations that start
in each of the two eigenpolarizations along the propagation
direction. The wild fluctuations in the final polarization of
one of these states, persisting into the adiabatic limit, are
described, and the dramatic discrepancies during the evolution
of the other are illustrated by tracks in the stereographic
plane and on the Poincaré sphere. These departures from
adiabatic intuition are consequences of the Stokes phenomenon
of asymptotics [17, 18]—an unanticipated connection between
two areas in which Stokes made seminal contributions.

Section 5 compares the exact evolution with successively
higher ‘superadiabatic’ [19, 20] approximations. For
sufficiently high orders, the exact evolving polarizations do, as
expected, cling closer to the higher approximations for most of
the cycle. But they do not eliminate the final-state fluctuations
in one of the polarizations. And in the other they leave
oscillations near the middle of the cycle, with the polarization
coiling and looping in a way that can be described precisely
as discussed in appendix C; the coils persist far into the
adiabatic regime. The exact evolutions starting in successive
superadiabatic orders close to one of the two eigenpolarizations
are very different, showing that the polarization evolutions near
a non-Hermitian degeneracy can be astonishingly sensitive to
initial conditions.

The concluding section 6 includes an assessment of
the possibilities for observing these and related recently
predicted polarization phenomena associated with non-
Hermitian degeneracies.

2. Optical formalism

For a dielectric medium varying only along the propagation
direction z, the electric D vector is transverse, that is

Dy (z)
D(z) = ,
@ ( Dy (2) )
and for free-space wavenumber k Maxwell’s equations reduce
exactly to

@2.1)

32(n(z) - D(2)) + k*D(z) = 0. (2.2)

Here 7 is the transverse part of the reciprocal dielectric tensor
e, that is

ﬂ(Z) — ( 77xx (Z)

Nyx (2) @3)

ny(Z) _ —1
Wyy(Z)> = (g0€(2) )l.

It will suffice to consider weak and gentle anisotropy, so
we write

D(z) = exp(ikz)d(z), n(z) = I + én(2)),

1 2.4)
Trén(z) =0, E@IIM(Z)II L 8l < 1.
Then propagation is paraxial (back reflections are negligible),
and (2.2) can be approximated by

N
29.d() = sn(2)d(2). 2.5)

"

Paraxiality is more subtle than this brief and customary
argument suggests. The neglect of reflections requires that
the effect of a term 9..d/k> be negligible. This is only true
for solutions of (2.2) with initial conditions corresponding
to waves travelling forwards—i.e. not a superposition of
forward and backward waves. I have confirmed by numerical
computation that all the solutions of (2.5) studied in the rest
of this paper are close to the corresponding solutions of (2.2);
the deviations take the form of weak fast oscillations that get
smaller as k (suitably scaled with z to leave (2.5) invariant)
increases.

The stipulation in (2.4) that the dielectric variations are
traceless is made only to simplify later formulae; any non-zero
trace, even if it is z dependent, simply contributes an overall
scalar factor to d(z) and affects the evolution of intensity but
not the polarization.

Let L be the cycle length (pitch) of the medium variation.
Then it is convenient to change the evolution variable from z to
an angle 6. Also, to conform to common optics convention, it
is convenient to transform from the Cartesian basis d to a basis
[4r) of circular polarizations. Thus we define

Lo kL
= —, K = T >
2 2
_ _ (1)
d(z) = Uy (0)), [ (0)) = <¢2 (9)> ; (2.6)

I /1 1
= . -1 = —

Sn(z) =U0Q@0) -aU ", U ﬁ(l —i)’
in which o is the vector operator whose components are the
three Pauli matrices, and the stratified medium is represented
by the vector 2(#). In the adiabatic regime kL > 1 that we
will be interested in, the new parameter K is large. With all
these transformations, (2.4) becomes

2i

7 el¥(©0)) = Q(0) - o |y (©6)). 2.7
This form of writing deliberately evokes the formal

equivalence with two-state quantum physics, in which the 6
dependent vector

Q) = (€21(0), 22(0), 23(0)) (2.8)
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Figure 1. Stereographic projection from the unit Stokes vector r on
the Poincaré sphere to the complex w plane.

represents the driving Hamiltonian: for an evolving spin in
NMR, € is the time-dependent magnetic driving field. For a
transparent medium, the components of €2 are real, reflecting
the hermiticity of the Hamiltonian; but our emphasis will be on
the non-Hermitian situation, in which €2 is a complex vector.
The final transformation is to eliminate any scalar
multipliers in the state, by defining the complex quantity

_ %0
V10’

representing the polarization. Thus, the two orthogonal
circular polarizations [y) = col(1,0) and |) = col(0, 1)
correspond to w = 0 and w = oo respectively, and linear
polarizations correspond to the unit circle |w| = 1. The
more familiar representation of polarization as a unit Stokes
vector on the Poincaré sphere, whose north and south poles
correspond to the circular polarizations and whose equator
represents linear polarizations, can be expressed in terms of
w by

w(B) (2.9)

r(0) = W(ZRew(@), 2Imw(@), 1 — [w®)?)

= (r1, 12, 13). (2.10)

(In quantum physics, r represents the state on the Bloch
sphere; mathematically, it is called the Riemann sphere.)
As figure 1 illustrates, w is the south-pole stereographic
projection of . The evolution of states of polarization can
thus be represented as tracks on the w plane or on the r
sphere. Although, as we will see, some care must be taken
when interpreting pictures of w(8), this representation is very
convenient for calculation, and has proved useful not only in
crystal optics [6, 21] but also the polarization of daylight in the
sky [22].

In terms of w, the vector evolution equation (2.7), for
the two complex components of |¢), becomes the following
significantly simpler (albeit nonlinear) equation (of Riccati
type) for the single complex polarization scalar w:

dpw = LK (Q — iQ)w? +2Qw — (2 +i)). (2.11)

In what follows, the components of €2 will be 6-dependent
(as well as complex). If they are not #-dependent—that is,
if the medium is uniform—the polarizations that propagate
unchanged correspond to zeros of the right-hand side of (2.11).

These are the eigenpolarizations of the operator €2 - o in the
Schrodinger representation (2.7), namely

—Q3+,/QF+ Q3 + Q2

Q) —i2

1
= exp(iiﬂ)[tan o, —cota],

w4+ =

(2.12)

where « and B are the polar angles of €2 (complex in the non-
Hermitian cases we are interested in here.)

In this paper our interest will focus on the polarization
state of the light, rather than its intensity

1) = (WO ©®) = [Y 1O + [v2@)*.  (2.13)

Nevertheless, it is worth noting how the evolution of the
intensity depends on that of the polarization. The intensity also
depends on the imaginary part 7' (6) = Im Tr 65 (6) of the trace
of the dielectric tensor; for a lossy material, 7 < 0, and for
gain T > 0. Including T (0), the intensity is given by

0
1(0) =1(0) exp(K/ d9’(%T(9’) +7(@®) -Im 9(9’)))
0

d 1
= I(O)exp{K/O do <§T(9)+W

x [(1+ [w(@)]*) Im Q3(0") + 2(Re w(®') Im 2, (0")

+ Imw(6") Im 92(9’))])}. (2.14)

For completeness, here is the evolution equation for the
Poincaré sphere polarization vector r:

ogr = K(ReQ xr+r xImQ x r). (2.15)

3. Model and exact solution

For the matrix representing the varying medium, we choose

Q0) -0 =m( 3.1)

0 1
pexp@igd) 0)°
with ;& < 1 to ensure the dielectric variations are weak. This is
obviously non-Hermitian and, regarded as a family of matrices
in the plane

7z = pexp(if) =& +in, (3.2)

possesses a degeneracy at the origin p = 0, whose influence
on the evolution is the focus of our interest. The variation
of the medium along the propagation direction corresponds
to a loop of radius p, centred on the degeneracy. In
appendix A it is shown how (3.1) can be embedded in a wider
family of dielectric matrices, representing initially transparent
materials that are nontransparently perturbed (see [6] for
more background on the relevant crystal optics). Polarization
evolution for the more familiar transparent (Hermitian) case is
summarized in appendix B.

The evolution generated by (3.1) has been extensively
studied recently [12], using a slightly more general model in
which the degeneracy need not lie at the centre of the loop and
can even be outside it. But (3.1) will suffice for our purpose
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here, of illustrating the sensitivity and non-adiabaticity of the
evolution of the polarization. To get the simplest form of the
evolution equation (2.11), we use the scaling

2

Thus (2.11) becomes
dpw = pexp(if) — w. (3.4)

With the scaling (3.3), the adiabatic regime K > 1 corres-
ponds to loops with p > 1.

As can be confirmed by direct substitution using standard
formulae [23], or from the solution in [12], this can be solved
exactly in terms of Bessel functions J and Y. With initial
condition wy = w(0), the solution is

w(@) = dg log A(O)

— (lg) @ 3.5)

= —i/pexp | 5i A0 3.
in which, with the definitions

S = 2/p, ¢(0) =2/pexp(5i6),  (3.6)
A(0) and B(0) are given by
A(0) = (iwoYo(50) — v/PY1(£0))Jo(£(0))

— (1wo Ji - J Yo(¢ (@
(iwoJo(50) — /P J1(0)) Yo (£ (6)) a7

B(0) = ({woYo(%0) — «/pY1(£0)J1(£(6))
— (1w Jo(%0) — /P J1(C0))Y1(£(0)).

To get a compact representation for the final polarization
state, we use the continuation formulae (section 10.11 of [23])

Jo(uexp(im)) = Jo(u), Ji(uexp(in)) = —Ji(u)
Yo(uexp(imr)) = Yo(u) + 2iJo(u),

Yi(uexp(in)) = =Y (u) — 2iJ,(u),

(3.8)
in which the second terms in the third and fourth formulae will
play a significant role later. With use of the Wronskian relation
(10.5.2 of [23]) between the Bessel functions, we obtain

wy =w2mr) = wo
(1 = 271 /P 1 (£0) (Jo(Z0) +i%L J1 (20)))
X

(1 + 2mwoJo(60) (Jo(Go) + 12 11 (20)))

The formulae (3.5)-(3.9) enable easy evaluation of the
polarization evolution and final state corresponding to any
initial condition wy. As we will see, the evolutions depend
interestingly and sometimes very sensitively on the loop
radius p.

For each loop, there is one important special solution,
in which the polarization returns exactly, that is wy = wy.
It corresponds to the known (and in this model degenerate)
Floquet solution [12], with initial condition and evolution

(3.9)

J
wo = w; = —i/p 1(§o),
Jo (o) (3.10)
o 1\ i) '
w(@) = —i/pexp 510 m.

From this it is clear that whenever ¢, corresponds to a zero of
Jo or J; the corresponding initial polarization is purely circular,
and these situations alternate as p increases.

Figure 2(a) shows this periodic evolution on the Poincaré
sphere, for the sample value p = 12. The two rapid changes
of direction in the southern hemisphere indicate a nearby value
of p (close to 10.2 in this case) at which the polarization track
acquires self-intersections. These turns are not immediately
evident in the stereographic plot of figure 2(b), and it is
also difficult to discern them in the graphs of Rw and Jw
of figure 2(c). But in the antipodal stereographic plot, of
—1/w*(@) rather than w(#), corresponding to —r(0) rather
than 7(0), the turns are obvious. This indicates that care must
be taken when interpreting the stereographic plots to follow,
especially near the south pole |w| > 1.

Regarded as a map from wy to w(8), the solution (3.5)—
(3.7) can be interpreted as an evolving Mobius transforma-
tion [24]. The solution (3.9), from wy to w is a parabolic
Mobius transformation, with the special property that it has
a single fixed point; for more general cycles, such as the
excentric loops considered in [12], the corresponding Mobius
transformation has a pair of fixed points. The known structure
of such maps under iteration [24] therefore has a physical
interpretation: it describes the changes in polarization during
propagation through many repetitions of the medium (3.1).

4. Slowly changing medium

The local eigenpolarizations of our model (3.1) (special cases
of 2.12) are the zeros of the right-hand side of (3.4), that is

Wt (0) = £/p exp(3i0). 4.1)

As 6 increases from 0 to 27, these trace out complementary
semicircles, corresponding to half parallels of latitude on the
Poincaré sphere, with each ending where the other begins; this
is the ‘flip’ reflecting the branch-point at the degeneracy [1, 3].
As the loop radius p increases from zero to infinity, the
semicircles migrate from the north pole to the south pole on
the Poincaré sphere. The angle on the Poincaré sphere between
the two eigenpolarizations is 4 arctan(,/p) for p < 1 and
darctan(1/,/p) for p > 1. Only for p = 1 are the states
orthogonal. For all other values, the states are nonorthogonal,
reflecting the non-Hermiticity of (3.1); and at the degeneracies,
that is p = 0 or oo, the states coincide, both being circularly
polarized.

In this section we will study the exact evolutions w (6)
(solutions of (3.4)) that start in these eigenpolarizations, that
is, the evolutions (3.5)—(3.7) with initial conditions

W (0) = Woaar = waax(0) = £/p. (4.2)
In the adiabatic regime p >> 0, it might be expected that the
tracks of these exact evolutions will closely approximate the
semicircles represented by (4.1).

However, as figure 3 illustrates, the exact and adiabatic
polarization tracks are wildly discordant, and in different ways
for the evolutions w, () and w_(0). For w (0), the exact and
adiabatic tracks are similar for most of the cycle but diverge
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Figure 2. Representations of periodic polarization evolution w(6) (equation (3.10)) for p = 12. (a) Track on Poincaré sphere, with filled
circle indicating the north pole and lines indicating the positive r; and r3 axes; (b) as stereographic projection in the complex w plane; (c) as
graphs of Re w(6) (full curve) and Im w(6) (dotted curve); (d) antipodal stereographic projection —1/w*.

as 6 approaches 2. For w_(6), the opposite happens: as
0 increases from 0, the exact solution immediately separates
from the adiabatic semicircle, on a complicated track, but they
both come close together at 6 = 2.

As a first step towards explaining these tracks, we calcu-
late the large p asymptotic behaviour of the final polarizations
for the initial states (4.2), using the exact formula (3.9) and
standard large-argument asymptotic formulae for the Bessel
functions (see section 10.17(i) of [23]). This leads to

w_(2m) & /p — H(1 + exp(8iy/p))

(1 — 2iexp(—4i/p)) -
(1 + 2iexp(—4i/p))

4.3)
wy (1) & —/p

These formulae show that as p increases the polarization track
for w_(6) approaches the south pole on the sphere, and with
Rew_ > 0, in accordance with adiabatic intuition based on
the flip (cf (4.1)); the approach is accompanied by diminishing
oscillations. But for w,(f) the approach, although again
towards the south pole as expected, also has Rew, > 0,
whereas flip intuition (cf (4.1)) would predict Rew; < O0;
moreover the approach is accompanied by larger oscillations.
As figures 4 and 5 illustrate, these predictions based on (4.3)
are accurate, even when p is not large.

The reason for the failure of naive adiabatic intuition
is the Stokes phenomenon of asymptotics. This is the

rapid appearance in a function, as a parameter varies, of an
exponentially small contribution while this is hidden behind a
large one [17, 25, 26]. The detailed mechanism of the birth
of the small exponential (switching on according to an error
function) is well understood in general [27, 28] and has been
described for the non-Hermitian evolution of the model we
are exploring [12]. But the mechanism is less important for
polarization evolution and we do not consider it further.

For the polarization states considered here, the expo-
nentials occur in the components ¥;(0) and v,(6), whose
quotient, according to (2.9), is w(f). As explained fully
elsewhere [12], for the model (3.1) the exponential in the
components of the adiabatic state waq4+(0) in (4.1) is dominant
during the cycle 0 < 6 < 2, and that of the state w,q—(0) is
subdominant. The two exponentials, involving ¢ (6) as defined
in (3.6), are [12]

for wi,q(0).

4.4)
Maximal dominance of w,qy over w,q_ occurs in the middle
of the cycle, i.e. 6 = 7.

Consider now the exact state wy(f), with initial
polarization wg,q+. This will evolve into a linear combination
of the wy+(0) and w,—(0) eigenpolarizations, whose
multipliers (considered in detail in [12]), will be almost
constant except near & = m. There, the multiplier of w,q—(6)
will change rapidly from zero to 2i, in which 2i is the Stokes

exp(Fi¢(8)) = exp(F2i/p exp(5i0))
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Figure 3. Poincaré sphere tracks of polarization evolutions starting from adiabatic initial conditions (4.2), for (a) p = 4, +state; (b) p = 4,
—state; (c) p = 20, +state; (d) p = 20, —state. The full curves show the exact evolutions calculated from (3.5) to (3.7) and the dotted curves
show the evolving local eigenpolarizations (4.1). Filled circles mark the initial polarizations and the north pole, and straight lines indicate the
positive r; and r3 axes. In this and subsequent figures, the spheres are oriented to give the clearest views of the polarization tracks.

/

b

Figure 4. Final polarization states on Poincaré sphere as functions of loop radius, for 1 < p < 50 and adiabatic initial states (4.2), for
(a) w4+ (2m); (b) w_(2m). Full curves: exact final states from (3.9); dotted curves: asymptotic approximation (4.3). Filled circles indicate the

north and south poles.

constant for the zero-order Bessel functions [29], as embodied
in the continuation formula for Y in (3.8).

The simplest formula for the component (6) that
incorporates this insight is

Y1(0) ~ exp(—ig(6)) + 2i0(0 — ) exp(ig (0)),

in which the smooth switching-on [27] of wyg_(0) is
approximated by the step function ®. For our model,

(4.5)

the component v,(0) is simply the derivative of ;(6)
(cf (2.7), (3.1) and (3.5)). Thus, ignoring the derivative of
the smooth switching caricatured by the step function, which
occurs where this contribution is exponentially small, we find

V2(0) = 991 (0)
~ /P exp(5i0)[exp(—i¢ (0)) — 2i0(0 — 7) exp(iL (6))].
(4.6)
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Table 1. Coefficients a, determined by (5.2). ‘
n 0O 1 23 4 5 6 7 8 100 a 1
an 1 —5i 55 sl —50 7ol s553 o061 e
L Ot Re ]
For the polarization, this gives
0 ]
w+(9) ~ wStokes(G) V \\/’ |
7 (1 ,9) (1 — 210 (0 — 7) exp(di/p exp(Li))) J Im
= exp| =i . 51 ]
PP 2" ) (121060 — 1) expiypexp(Lio))) [ ‘ ‘ ‘ | |
0 5 10 15 20 25
(47) 5 T T T L S B B p
This approximation explains the polarization evolution of b J
w4 (0): clinging to wag+(0) not only up to & = m but also 4L Re d
considerably beyond. The reason is that the exponentials W(2TC)
involving p, which switch on at the middle of the cycle, are 3t ]
negligible except very close to the end of the cycle, where of ]
they dominate (reproducing the first formula in (4.3)). And [ ]
the formula is quite accurate, as figure 6 illustrates. (For 1E ]
the p values shown, the exponentially small discontinuities at ; ]
¢ = m are invisible; even for p = 1 the jump is only of 0: Im v’:

order exp(—4).) Again the different representations convey
different information. In particular, the very large polarization
excursions at the end of the cycle are more evident on the
Poincaré sphere pictures than on the graphs of Re w(6) and
Imwy(0).

For the state w_(0), with initial polarization wgaq—, the
situation is more subtle. Since wy_(0) is subdominant,
there is no Stokes phenomenon at the lowest order of
approximation. But a small admixture of wga4(0) soon
enters, and its exponential quickly dominates as 6 increases
from zero, causing the large deviations from adiabaticity
observed in figures 3(b) and (d). This dominance fades as
0 approaches 2w and the exponentials become pure phase
factors, so the final polarization state is close to that expected
adiabatically, i.e. +,/p. (There will be a weak Stokes jump
in the subdominant state, arising from the small admixture of
Woad+ (0), but its coefficient will be O(1/,/p) so it does not
spoil the flip.)

5. Superadiabatic polarization clinging

Some of the dramatic violations of adiabaticity can be
tamed, and insight gained, by comparing the exact evolution
with ‘superadiabatic’ [27] approximations, incorporating
corrections to the local eigenpolarizations (4.1). These can be
obtained using known Bessel asymptotics as was done in [12],
but here, where we are interested only in the polarization,
it is simpler and more transparent to solve the governing
equation (3.4) directly, as a series in descending powers of p
(this amounts to studying the logarithm of the usual Bessel or
WKB series). The Nth superadiabatic polarization evolution is
the truncation of the series to N terms.
The required form of the series is easily found to be

waax (0, N) = ./p exp(3i6)

N n
+1 1
X Za,, (—) exp(——in@),
n=0 ﬁ 2

G

Figure 5. Graphs of real and imaginary parts of final polarization
states as functions of loop radius, for (a) w, (27); (b) w_(2m). Full
curves: exact final states from (3.9); dashed curves: asymptotic
approximations (4.3).

with the coefficients determined by the following recursion
relation, obtained by substitution into (3.2):

n—1
a, = %(1(%7’! — 1)(1”—1 - Zaman—m)c (52)
m=1

Table 1 shows the first few coefficients.

The infinite series corresponding to (5.1) without
truncation is divergent—a fact which, as is well known [18],
lies at the heart of the Stokes phenomenon. The precise form
of the divergence is described by the following ‘asymptotics
of the asymptotics’ [28], which approximates the coefficients
very accurately for large n:

ap =1,

2(n—1)!

f 1.
7 (—4i)" orm >

a, ~ — (5.3)
The powers of —i determine the value of 6 for which all terms
in the superadiabatic series have the same sign—a specification
of the Stokes phenomenon equivalent to maximal exponential
dominance [18]. Inspection of (5.1) shows that, as expected,
this occurs at & = 1 for wye (A, N), and not at all for
Wyqa— (8, N). And the factorials in (5.3) determine the order
N* at which the series (5.1) has its least term, corresponding
to optimal truncation. From Stirling’s formula,

N* =int(4/p + 3). (5.4)

With this machinery, we can investigate how closely
the exact evolving polarizations cling to the Nth order
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Figure 6. Polarization evolutions for w (0) for ((a), (c)) p = 4; ((b), (d)) p = 10.5. The full curves show the exact evolutions calculated
from (3.5) to (3.7) and the dotted curves show the approximation wgkes(f) given by (4.7). (a), (b) Show tracks on the Poincaré sphere, with
filled circles marking the initial polarizations and the north and south poles, and straight lines indicating the positive r; and r; axes, and

((c), (d)) are corresponding graphs of Re w, (8) and Im w (f) as indicated.

superadiabatic polarizations (5.1). To do this, we study the
exact evolutions w (6, N) with initial conditions

wx(0, N) = woaa+(N) = waax(0, N)
N n
+1
= +.p a,,(—) .
2\
For wy(@, N), in which the Stokes phenomenon is

invisible except near the end of the cycle, this suggests the
following simplest modification of (4.7)

wi (0, N) = wsiokes(0, N) = [(waar (0, N) + 2100 — 1)
x waa— (0, N) exp(4i/p exp(3i0)))]
x [(142i0©(0 — ) exp(4i/p exp(3iH)N] "

The effect of this modification, for the first superadiabatic
order N = 1, is illustrated in figure 7; this should be
compared with figure 6 which corresponds to N = 0. For
most of the cycle—that is before the subdominant exponential
contributes significantly, and well beyond 6 = 7—the N =
1 approximation is almost indistinguishable from the exact.
Close to the end of the cycle, the two evolutions still follow
each other; the deviations are smaller than for N = 0 but
distinguishable, an effect that appears more clearly in the
Poincaré tracks of figures 7(a) and (b) than the graphs of
figures 7(c) and (d).

The evolution of w_(6#, N), in which there is no Stokes
phenomenon to lowest order, is illustrated for two values
of p and increasing superadiabatic order N in figures 8(a),

(5.5)

(5.6)

(b) and 9(a), (b). Three features are immediately apparent.
First, the evolutions change wildly from one order to the
next, illustrating that the polarization evolution for w_ () is
exquisitely sensitive to initial conditions. Between successive
orders of approximation, the initial conditions change by an
amount corresponding to the following angle on the Poincaré
sphere:

apt1

87| = |ro(0,n + 1) —70(0, )| ~ pIEIVER

(5.7)

An illustrative example is the utterly different evolutions
between orders 6 and 9 on figures 8(b) and 9(b): the
initial conditions are separated by an angle of order 2.71 x
1077 rad = 0.056 arcsec (to be compared with the angle
4 arctan(1/4/20) ~ 50.4° between the two eigenpolarizations).
This sensitivity is very state-selective: by contrast, w.(6, N)
is relatively robust against perturbation of the initial condition.

Second, as the optimal truncation order N* is approached,
the exact evolutions approach the superadiabatic ones, clinging
closely to them for all 8 except for an interval near 6 = 7 that
gets smaller as p increases. Within this interval, the deviations
between the exact and superadiabatic evolutions take the form
of a series of coils on the Poincaré sphere, and these also get
smaller as p increases. To describe these coils for optimal
truncation N*, it is necessary to incorporate the contamination
of w_(#, N) by the dominant eigenpolarization w,g+ (6, N).
As explained in appendix C, this is a delicate matter, requiring
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Figure 7. As figure 6, for the first superadiabatically improved approximation, i.e. (5.5) and (5.6) for N = 1.

the high-order approximation (5.3) of the coefficients in (5.1).
The result is

w_(0, N) = wypp(0, N*)
1 51

ﬁpl/“ exp(—Sﬁ sin’ Z(G — n))

x (=)™ expli(3m + 16 + 8 /psin” 10)}.

Figure 10 illustrates how well this captures the form of the
optimal-order polarization coils. Away from 6 = m, that
is away from the loops, the correction term is exponentially
smaller than the w,q_ term, which is of order \/ p. Near =,
it is of order p!/*, showing how the amplitude of the loops
slowly fades as p increases.

Third, as the order is increased beyond N = N*, the
exact and superadiabatic evolutions separate again, reflecting
the divergence of the series (5.1).

= ww-(0, N*) +

(5.8)

6. Concluding remarks

The polarization behaviour described here characterizes
propagation in a stratified nontransparent medium whose
dielectric properties twist around those of a medium with
a singular axis. Mathematically, this is equivalent to the
evolution of a vector driven by a non-Hermitian matrix that
is cycled, in the space of parameters on which it depends,
around a matrix with a branch-point degeneracy (exceptional
point). As the polarization tracks illustrate, some aspects
of the evolution depend delicately on initial conditions and
on other aspects of the medium variation. They join a
class of recently predicted qualitatively new polarization
phenomena associated with non-Hermitian degeneracies,
including interference figures in thin anisotropic [6] and

bianisotropic [30] crystal plates, and conical refraction in
absorbing biaxial crystals [31, 32].

The loops for which the polarization has been studied here
are all centred on the isolated degeneracy at r = 0. This
is the simplest case. I have not discussed the polarization
effects associated with more general loops that are not centred
on the degeneracy and may even not enclose it, such as
those for which a more general exact solution exists [12]. It
would be interesting to do so, in particular to explore the
dependence of the state-selective sensitivity on the proximity
of the degeneracy to the loop. But to elucidate these effects
thoroughly would be a substantial undertaking that would
make the paper unreasonably long.

In principle, these effects could be explored experimen-
tally, using a material with the dielectric tensor (A.6). A
simplifying feature is the absence of chirality (the dielectric
matrix is symmetric). But in practice it might not be easy
to identify a corresponding specific material, in which both
the transparent and nontransparent anisotropies vary separately
along the propagation direction. However, the increasing
facility in manufacturing metamaterials with precisely defined
properties [33, 34] might make possible the engineering of
stratified media such as those in the model studied here,
either optically or for microwaves. In any experiment, the
intensity must not be so weak as to render the polarization
unobservable. According to (2.14), the intensity involves not
only the traceless part of the dielectric tensor, represented by
2(0), which influences the polarization, but also the imaginary
part 7(0) of the trace of the tensor, which does not. In
principle, any intensity variations associated with €2(0), that
could threaten the observability of the polarization, might be
compensated by 7 (0) in a suitably designed metamaterial.
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Figure 8. Comparison of exact polarization evolution on the Poincaré sphere for w_(6, N) (full curves), for superadiabatic initial
conditions (5.5), with the superadiabatic approximations w,q— (6, N) (equation (5.1)), (dashed curves) for the indicated values of N,
illustrating the sensitivity of these evolutions to changing order. The optimal superadiabatic order N* (equation (5.4)) is highlighted.

(@) p =4;(b) p =20.
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Figure 9. As figure 8, with polarization evolution represented by w_ (0, N) in the stereographic plane.
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Figure 10. As figures 8 and 9, with the optimal-order exact loops (full curves) compared with the improved approximation (5.8) (dashed

curves). (a), (¢) p =4, N* = 8; (b), (d) p =20, N* = 18.

The principal phenomena that are reported here, of
evolving states departing from the medium’s local eigenpo-
larizations, even when the stratification is slow, represent
extreme violations of adiabatic intuition. As we have seen,
the underlying mathematical feature is that of the Stokes
phenomenon. This too was discovered [25] in an optical
context, namely understanding Airy’s integral [35] describing
light intensity across a rainbow, and it is worth describing the
analogy in more detail.

In the rainbow, light on the dark side is described
by a single subdominant exponential—an evanescent wave.
Continuing this to the bright side, round a semicircle in the
complex plane of a rainbow-crossing variable, this exponential
becomes dominant, and at maximal dominance (two-thirds of
the way round) the Stokes phenomenon occurs: a second,
subdominant, exponential is born. Thereafter one exponential
waxes and one wanes, until on the dark side their magnitudes
are equal, giving rise to interference in the waves that they
represent, visible as the intensity oscillations in supernumerary
rainbows [36]. Likewise, in our polarization evolutions of
the dominant state w, (6), illustrated in figure 6, the second
exponential appears at & = m, where it is subdominant, but it
is insignificant until the end of the cycle; there, its interference
with the dominant exponential gives rise to the final-state
polarization oscillations in figures 4 and 5.
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Appendix A. Non-Hermitian model as perturbation
of Hermitian dielectric medium

In the optics of transparent anisotropic crystals, a degeneracy
of the 2 x 2 Hermitian propagation matrix (2.3) corresponds
to illumination along an optic axis. When this is perturbed
to incorporate dissipation, the matrix becomes non-Hermitian
and each optic axis splits into a pair of singular axes [5, 30].
We can mimic this physical behaviour by separating the
matrix (3.1) into its Hermitian and anti-Hermitian parts, and
then introducing a perturbation parameter ¢ to make the purely
Hermitian part and our non-Hermitian part (3.1) correspond
to e = 0 and ¢ = 1 respectively. This suggests (using the
notation (3.2)) the extended model

im 0 -7+ e+ 27"
QO)-0 = —
©)-0=7 <(1 t )z 0
0O<e<), (A1)
in which the components of the vector €2(0) are
Qi = 1u(—psind +ie(1 + pcosh)),
(A.2)

Q) = %u(pcos@—8+ispsin9), Q3 =0.

To understand the reason for the particular choice (A.1)
from the many possible model perturbations, note that the
eigenvalues of €2(0) - o are

r=Flin /(A +e)E+inQe — ¢ —in(l—e). (A3)
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The degeneracies—zeros of this function—are at
£§=0, n=0,
2¢e
C1—¢
At ¢ = 0, these coincide, and the origin of the z plane is a
diabolical point [37], that is, a degeneracy of the unperturbed
Hermitian matrix. As ¢ increases from zero, this splits into
two branch-points: as ¢ — 1, one recedes towards infinity,
while the other remains at the origin where it can be encircled
separately, to generate the polarization evolutions studied in
this paper.
Transforming back to the Cartesian representation
using (2.6), we find that (A.l1) corresponds to a medium

with the following variation of the transverse dielectric tensor
(cf (2.3)):

and

(A4)
3

n=0.

5n(0) = no(6) + £(n, +189,(0)),

where, with Pauli matrices o}, o3 and rotation matrices R,

(A.5)

—sinf cos6
819(6) = 31 R(36)01 R(=36) = %M)( cos 0 Sin9>
0 1
89y = —3u0 =—lu< )
g SR Y (A.6)

81,(0) = (03 + pR(560)03R(—36))

Z%M( )

This represents a biaxial medium with a transparent part whose
dielectric tensor is proportional to o and a nontransparent part
whose dielectric tensor is proportional to o3. Each of the parts
consists of a non-twisted constituent with constant strength and
a twisted constituent whose strength is proportional to the loop
radius p. Because the tensor (A.5) is a symmetric matrix, the
polarization explored here could be engineered with a twisted
medium that is non-chiral.

14 pcosf
psin@

psinf
—1 —pcosé

Appendix B. Hermitian limit

The Hermitian limit ¢ = 0 of (A.1) is

0
ip exp(if)

—ip exp(—if)

0 (B.1)

Q-0 — %u < ) .
The corresponding dielectric tensor 81,(6) in (A.6) could
represent a nematic liquid crystal twisted along the beam
direction, or, equivalently, an untwisted cholesteric liquid
crystal [38]. In quantum physics, it could represent the
evolution of a spin driven by a rotating magnetic field [13].
The polarization evolution equation (2.11) is, after the scaling
Kpp — p,

dw = 1p(exp(—i®)w* + exp(ih)). (B.2)
As can easily be confirmed, the solution corresponding to

initial polarization wy is

w(p, 6, wo) = wo exp(if)

(VP2 + 4+ (& —2D) tan(36y/p? + 4))
X .
(VP> + 4+ (2i — pwp) tan(30+/p + 4))

(B.3)
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Figure B.1. Hermitian polarization evolution (B.3) on the Poincaré
sphere, for wy = —1.086i (indicated by a dot). wy is chosen to be 1.2
times wy in (B.4) for p = 20.

Figure B.1 illustrates the evolution for a typical case. It
shows that on average the polarization has constant ellipticity
(parallels of latitude on the Poincaré sphere), with the direction
of the major axis rotating along the beam path. Superimposed
on this average evolution are rapid oscillations in the ellipticity.
This looks very different from the non-Hermitian evolutions
considered in the main body of this paper.

The special periodic (Floquet) solutions,
to (3.10), are

i
wo=—Q2+p2+4),

Cp

analogous

w(p, 6) = - exp(i6)wo.
o

B.4)
For these solutions, the polarizations evolve exactly on
parallels of latitude, without the oscillations of the typical
solutions.
Figure B.1 clearly resembles the precession and nutation
of the axis of a spinning top. The periodic solutions (B.4)
correspond to the non-nutating ‘slow manifold’ of dynamics,
studied elsewhere [16].

Appendix C. Optimal superadiabatic polarization
loops: derivation of (5.8)

From the exact solution in [12], we can write the most general
evolving polarization state in a form equivalent to (3.5) but
suitable for a perturbation of a state close to the optimal-order
subdominant eigenpolarization w,q— (6, N*) in (5.1):

w(®) = 3 loglHy" (2 /p exp(1i0)) + e Hy” (2/p exp(1i6))]

= 9 log[Hél)(Zﬁexp(%iQ))

) 1

(et
Hy"(2,/pexp(3i0))

Here Hél) is the subdominant Bessel function and Héz) is the
dominant state that is contaminating it, with ¢ representing

(C.1)
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the strength of contamination, which arises from the fact that
the superadiabatic initial conditions (5.5) are not exactly those
corresponding to HO(I).

The main term can be written, formally, as the infinite
superadiabatic series correcting waq— (6, N*), thatis,

3 log Hy" (2/p exp(1i6))
(Z5) on(-z)
— | exp| —<inf
NG 2

1 o0
— Zi0
pexp<21 >

D an
e (0, N*) — /p exp(Lif)

n=0
> <_1 )n ( l' >
a,| — | exp| —=<inf
NG 2

>
n=Nx+1
in which the optimal-order superadiabatic series has been
separated from its associated formally divergent tail. For the
correction term in & we have, to lowest order, using standard
Bessel asymptotics,

o, ' ypexp(5i0)
0 .
Hy" (2 /p exp(i))
~ 2ie/p exp(3i0 — 4i/p exp(3i0)).

At 0 = 0 this term must cancel the tail of the series in (C.2),
leaving the optimal superadiabatic initial condition (5.5) for the
evolution w_ (@, N) that we are studying. Thus ¢ is determined
by

(C2)

(C.3)

00 n
die/pexp(—4iy/p) = /p Y a<—1) . (C4
n=Nx+1 \/ﬁ

Roughly, the tail of the series is of the same order as its
first term (that is, n N* 4+ 1), but to get the form of the
polarization loops we need a more precise estimate. This is
based on the formula (5.3) for the high-order coefficients, and
the observation that at & = 0 all the terms do not have the
same phase, so there is no Stokes phenomenon. Then we can
use Borel summation [18], in the form applicable to optimal
truncation, that is

(n—D! (N9 exp(—iim)
(ix)" ~ (ix)N*+1 V2

[e¢]

n=Nx+1

for N* ~ intx. (C.5)

Applying this to (C.4) we find ¢, and then we get (5.8) after
substituting into w(#) in (C.1) for general 6, using (C.2) (with
the tail neglected because it is insignificant compared with
the & term except near 6 = 0), and (C.3), and finally using
Stirling’s formula for N*!.
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