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Abstract
For Klein–Gordon and Dirac waves representing massive quantum particles,
the local group velocity v (weak value of the velocity operator) can exceed
c. If the waves consist of superpositions of many plane waves, with different
(but subluminal) group velocities u, the superluminal probability Psuper, i.e. that
|v| > c for a randomly selected state, can be calculated explicitly. Psuper depends
on two parameters describing the distribution (power spectrum) of u in the
superpositions, and lies between 0 and 1/2 for Klein–Gordon waves and
1–1/

√
2 and 1/2 for Dirac waves. Numerical simulations display the

superluminal intervals in space and regions in spacetime, and support the
theoretical predictions for Psuper.

PACS numbers: 02.50.Ey, 03.65.Pm, 03.65.Ta

1. Introduction

Several phenomena are known in which features of physical systems can travel faster than
the light speed c without violating relativistic causality [1, 2]. Well-known examples are the
bright patch made by a laser beam illuminating a cloud, which could travel superluminally if
the laser is rotated fast enough, and Moiré fringes between gratings being rotated relatively
to each other. The phase velocity of light and matter waves can exceed c. And in the early
days of relativity it was realized that for light traversing a medium with frequencies close
to an absorption band the group velocity can also exceed c, leading to detailed studies
[3, 4] of the corresponding superluminal reshaping of the light pulse while its front travels
at c. The effect of absorption can be mimicked by post-selecting the polarization states of light
in an optical fibre, leading to another superluminal effect that has been observed [5]—this and
other phenomena being interpreted in terms of weak measurements [6–9]. Analogous apparent
superluminal reshaping can occur in relativistic massive particle waves propagating causally
in free space [10].

The aim here is to add to this growing list by exploring the local group velocity v(x, t)
of waves satisfying the one-dimensional Klein–Gordon and Dirac equations in empty space.
The waves to be considered are superpositions of propagating plane waves with a range of
wavenumbers, each corresponding to a subluminal group velocity. With a natural definition,
v(x, t) can exceed c in substantial intervals of x and t.

1751-8113/12/185308+14$33.00 © 2012 IOP Publishing Ltd Printed in the UK & the USA 1

http://dx.doi.org/10.1088/1751-8113/45/18/185308
mailto:asymptotico@physics.bristol.ac.uk
http://stacks.iop.org/JPhysA/45/185308


J. Phys. A: Math. Theor. 45 (2012) 185308 M V Berry

A convenient theoretical framework is the weak measurement/weak value formalism,
involving a state |ψ〉—the wave—and a velocity operator v̂ which is measured after post-
selection with a state |post〉 incorporating the position where the measurement is made. The
‘weak value’ to be studied, which as will be explained later is the local group velocity, is
[6, 11–13]

v = Re
〈post|v̂|ψ〉
〈post|ψ〉

. (1.1)

(The corresponding imaginary part is interesting [14, 15] but will not be discussed here.)
When the superposition contains many waves, it is possible to calculate the measure of

these intervals, namely the superluminal probability that v > c for a randomly-sampled event.
These calculations comprise the main results of this paper. They complement and extend other
recent statistical calculations of ‘superweak’ probabilities [16–20], that is, probabilities that
weak values lie outside the spectrum of the operator being measured.

The plan of the paper is as follows. In section 2 the local group velocity formalism is
developed for Klein–Gordon waves, and the connection with the weak value is confirmed
by an separate argument. The corresponding formalism for Dirac waves is developed in
section 3. Section 4 contains the statistical calculation of the superluminal probability for
Klein–Gordon waves, and section 5 gives the more elaborate corresponding calculation
for Dirac waves. Section 6 contains numerical simulations illustrating these superluminal
phenomena, and section 7 suggests directions for further study.

In what follows, we use units such that Planck’s constant h = 1, c = 1, and the particle
mass m = 1, so that the superluminal group velocities in which we are interested correspond
to |v| > 1. And we will denote probabilities and probability densities by the generic symbol
P, using arguments and subscripts to avoid ambiguity. If the probability density for finding a
local group velocity is P(v), then the required superluminal probability is

Psuper =
∫ −1

−∞
dvP(v) +

∫ ∞

1
dvP(v). (1.2)

P(v) will be calculated over ensembles to be defined later.

2. Klein–Gordon waves: group velocity formalism

The one-dimensional Klein–Gordon equation is

∂2
x ψ − ∂2

t ψ = ψ, (2.1)

and a class of solutions can be written as a sum over plane waves:

ψ (x, t) =
∑

k

ck exp{iγk(x, t)}, (2.2)

where the phases are

γk (x, t) = µk + kx − t
√

k2 + 1. (2.3)

To define a given superposition of this type, it is necessary to specify the set of contributing
wavevectors (signed wavenumbers) k, their real excitation amplitudes ck and the phases µk; in
later sections, we will regard the power spectrum |ck|2 as determined, and the µk as random. We
consider only real wavevectors k (positive or negative), corresponding to propagating waves;
interactions with boundaries can generate evanescent waves, for which k is complex, but in
the present context this is an unnecessary complication.

Corresponding to (2.2) is the dispersion relation (Hamiltonian)

ω (k) =
√

k2 + 1. (2.4)
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This leads to a natural definition of the velocity operator in terms of the wavenumber operator
k̂ = −i∂x: from the first Hamilton equation,

v̂ = ∂k̂ω(k̂) = k̂
√

k̂2 + 1
. (2.5)

For the post-selected state in (1.1) we choose the position eigenstate corresponding to the point
x being considered:

〈post| = 〈x|, (2.6)

leading to the weak value

v(x, t) = Re

∑
k ck

k√
k2+1

exp{iγk(x, t)}
∑

k ck exp{iγk(x, t)}
. (2.7)

The same result follows from a more intuitive argument. The natural definition of a local
velocity operator is the symmetrized product

v̂(x) = 1
2 (δ(x − x̂)v̂ + v̂δ(x − x̂)). (2.8)

Its normalized local expectation value is

v(x, t) = 〈ψ |v̂(x)|ψ〉
〈ψ |δ(x − x̂)|ψ〉

=
∑

k

∑
k′ ckck′ 1

2

( k√
k2+1

+ k′
√

k′2+1

)
exp{i(γk(x, t) − γk′ (x, t))}

∑
k

∑
k′ ckck′ exp{i(γk(x, t) − γk′ (x, t))}

, (2.9)

after which a short calculation reproduces (2.7) exactly. (The analogue of (2.8) with v̂

replaced by the local wavevector (momentum) k̂ = −i∂x reproduces the local phase gradient
k (x, t) = ∂xIm log ψ (x, t).)

We now write (2.7) in a form that is more convenient for later development, by introducing
the group velocity u of the plane-wave contribution with wavenumber k. Defining

u ≡ k√
k2 + 1

(|u| < 1),

ck ≡ du, γk(x, t) ≡ δu(x, t) = µk + ux − t√
1 − u2

, (2.10)

the local group velocity becomes

v(x, t) = Re
∑

u duu exp{iδu(x, t)}∑
u du exp{iδu(x, t)}

. (2.11)

This expresses v(x, t) as a weighted sum over the contributing group velocities, according
to the weak value prescription. And although the contributing values lie in the range
− 1 < u < + 1, corresponding to the bounded spectrum of the velocity operator (2.5),
the denominator in (2.11) allows v(x, t) to take values outside this range: in the present
context, superweak = superluminal.

3. Dirac waves: group velocity formalism

For one-dimensional waves, the Dirac equation can be written in terms of a two-component
spinor [21], and the following form is convenient:

i∂t |ψ〉 = Ĥ|ψ〉 = (σ3k̂ + σ1)|ψ〉, i.e.(
i∂tψ+
i∂tψ−

)
=

(
1 0
0 −1

) (
−i∂xψ+
−i∂xψ−

)
+

(
0 1
1 0

)(
ψ+
ψ−

)
. (3.1)

3



J. Phys. A: Math. Theor. 45 (2012) 185308 M V Berry

As can be confirmed by substitution, solutions in the form of plane-wave superpositions, now
expressed directly in terms of contributing group velocities u (cf (2.10) and (2.11)), are

ψ±(x, t) =
∑

u

du
√

1 ± u exp{iδu(x, t)}. (3.2)

The velocity operator, analogous to (2.5), is the matrix

v̂ = ∂k̂Ĥ = σ3. (3.3)

As is well known [21], this has only the two eigenvalues ± 1, and values lying between these
limits correspond to superpositions of the corresponding eigenstates. Values outside the limits,
that is, the superluminal group velocities of interest here, require post-selection. As well as
position x, it is necessary to specify a vector, which we define as

〈post| =
(
cos 1

2θ , exp(−iφ) sin 1
2θ

)
. (3.4)

The angles θ , φ represent position on the Bloch sphere ( = Poincaré polarization sphere in
optics = Riemann sphere in mathematics). Then (1.1) defines the local post-selected group
velocity

v (x, t) = Re
ψ+ cos 1

2θ − ψ− exp (−iφ) sin 1
2θ

ψ+ cos 1
2θ + ψ− exp (−iφ) sin 1

2θ

= Re
1 − tan 1

2θ exp(−iφ′)r

1 + tan 1
2θ exp(−iφ′)r

=
1 − tan2 1

2θ r2

1 + tan2 1
2θ r2 + 2 tan 1

2θ r cos (φ′)
, (3.5)

in which

r = r(x, t) ≡
∣∣∣∣
ψ−(x, t)
ψ+(x, t)

∣∣∣∣ , φ′ ≡ φ − arg
ψ−(x, t)
ψ+(x, t)

. (3.6)

The formula (3.5) reveals a natural Bloch-sphere anisotropy. For post-selection with one of
the eigenstates of v̂, the local group velocity is either v(x, t) = +1 (for the choice θ = 0, i.e.
〈post| = (1, 0)), or v(x, t) = −1 (for the choice θ = π , i.e. 〈post| = (0, 1)). This implies
that superluminal local group velocities require post-selection to be a superposition of the two
eigenstates of v̂.

4. Klein–Gordon equation group velocity statistics

To calculate the superluminal probability according to (1.2), we need the probability density
of the local group velocity v(x, t). We can write this as

P(v) = 〈〈δ(v − v(x, t))〉〉µu , (4.1)

using the notation 〈〈· · ·〉〉 to distinguish ensemble averages from quantum expectation values,
and where for Klein–Gordon waves the average is over the random phases µk in (2.10) and
(2.11). If the number N of contributing waves is large, we anticipate ergodicity, in which this
ensemble average, in which x, t are held fixed, will give the same result as for almost all choices
of fixed µk and with averaging over x or t; numerical experiments support this expectation.

To calculate the average, we use another consequence of N ( 1: by the central limit
theorem, the two sums in the numerator and denominator of (2.11) are Gauss-distributed.
Thus the quotient in (2.11) can be written as

v(x, t) = Re
G1 + iG2

G3 + iG4
= G1G3 + G2G4

G2
3 + G2

4

, (4.2)

4



J. Phys. A: Math. Theor. 45 (2012) 185308 M V Berry

in which the Gi are Gaussian random functions. The relevant averages and correlations are

〈〈Gi〉〉 = 0 (i = 1, 2, 3, 4) ,

〈〈G1G2〉〉 = 〈〈G3G4〉〉 = 〈〈G1G4〉〉 = 〈〈G2G3〉〉 = 0
〈〈

G2
3

〉〉
=

〈〈
G2

4

〉〉
= 2

∑

u

d2
u ≡ 1, (4.3)

〈〈G1G3〉〉 = 〈〈G2G4〉〉 = 2
∑

u

d2
uu = 〈〈u〉〉 ≡ ū

〈〈
G2

1

〉〉
=

〈〈
G2

2

〉〉
= 2

∑

u

d2
uu2 = 〈〈u2〉〉 ≡ u2 ≡ (ū)2 + *2,

indicating that the only relevant properties of the plane-wave superposition are the mean ū and
variance *2 of the contributing group velocities. Because |u| < 1, these satisfy

|ū| < 1, (ū)2 + *2 < 1. (4.4)

Thus the distribution of the Gi is a product of two bivariate Gaussians, so the probability
distribution (4.1) can be calculated explicitly:

P(v) =
∫ ∞

−∞
dG1

∫ ∞

−∞
dG2

∫ ∞

−∞
dG3

∫ ∞

−∞
dG4

× P (G1, G3) P (G2, G4) δ

(
v − G1G3 + G2G4

G2
3 + G2

4

)
. (4.5)

These integrals have been previously evaluated in a calculation [18] of the weak-value
probability for a general operator with N ( 1 eigenstates over the ensemble of all pre- and
post-selected states. Therefore we can use that result directly, after an easy generalization
to eliminate the restriction that in [18] only symmetric eigenvalue distributions were
considered.

Thus we obtain

P(v) = *2

2((v − ū)2 + *2)3/2
, (4.6)

and hence, from (1.2), the Klein–Gordon superluminal probability which is the main result of
this section (and generalizing equation (2.14) of [18]):

Psuper (ū,*) = 1 − 1 + ū

2
√

(1 + ū)2 + *2
− 1 − ū

2
√

(1 − ū)2 + *2
. (4.7)

The surface representing Psuper (ū,*) is shown in figure 1(a). The restrictions (4.4) imply

0 ! Psuper(ū,*) ! 1
2 . (4.8)

The largest value Psuper = 1/2 is approached as ū → ±1, i.e. * → 0, corresponding to a
superposition in which all plane waves are travelling in the same direction with group velocities
u close to the speed of light (e.g. photons). For symmetric distributions, in which equally many
plane waves are travelling forwards as backwards, i.e. ū = 0, the largest value, corresponding
to * = 1, that is with group velocities u again close to the speed of light, is Psuper = 1 − 1/

√
2 =

0.293 (as in [18]). This is the same as the ‘superweak’ probability calculated earlier [17], for
the local wavenumber k(x) of almost-monochromatic nonrelativistic one-dimensional waves
with component wavevectors ± k0 to satisfy k(x) > k0 (mathematically this is exactly the same
problem, though the physics is different). In the nonrelativistic limit ū → 0, * → 0, in which
all plane waves in the superposition travel slowly, Psuper → 0, as might be anticipated.

5
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(a)

(b)

Figure 1. Theoretical superluminal probabilities (a) for Klein–Gordon waves (equation (4.7)), as
functions of parameters ū and * in (4.3); (b) for Dirac waves (equation (5.16)), as functions of
parameters α and β in (5.6).

5. Dirac equation group velocity statistics

For Dirac wave superpositions (3.2), the post-selected group velocity is given by (3.5),
involving the angles θ , φ and the ratio r in (3.6). Obtaining the probability distribution of
the group velocities v is subtly different from a previous calculation [19] of the weak value
probablility for general two-state systems, which involved averaging with both pre- and post-
selected states uniformly distributed over the Bloch sphere, because in the present case it is
only the post-selected states that are so distributed, with the pre-selected states being Gauss-
distributed. Thus we must evaluate

P(v) = 1
4π

∫ 2π

0
dφ′

∫ π

0
dθ sinθ〈〈δ(v − v(x, t))〉〉µk . (5.1)

The average over phases µk involves the ratio of two complex Gaussians, that we write in
the form

r =
∣∣∣∣
-1 + i-2

-3 + i-4

∣∣∣∣ . (5.2)

6
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By an analogous argument to that in the previous section, we can calculate the distribution of
r as

P(r) =
∫ ∞

−∞
d-1

∫ ∞

−∞
d-2

∫ ∞

−∞
d-3

∫ ∞

−∞
d-4P (-1,-3) P (-2,-4) δ

(

r −

√
-2

1 + -2
2

-2
3 + -2

4

)

=
2
(
V 2

+V 2
− − V 2

+−
)
r
(
V 2

− + r2V 2
+
)

((
V 2

− − r2V 2
+
)2 + 4r2

(
V 2

+V 2
− − V 2

+−
))3/2 , (5.3)

in which the relevant variances, associated with the superpositions (3.2), are now

V 2
+ =

〈〈
-2

3

〉〉
=

〈〈
-2

4

〉〉
= 〈〈1 + u〉〉

V 2
− =

〈〈
-2

1

〉〉
=

〈〈
-2

1

〉〉
= 〈〈1 − u〉〉 (5.4)

V+− = 〈〈-1-3〉〉 = 〈〈-2-4〉〉 = 〈〈
√

1 − u2〉〉.

The Bloch sphere average in (5.1) can now be evaluated. It is convenient to define the
following new variables τ and x, replacing θ and r:

τ ≡ r tan
1
2
θ , r ≡ V−

V+
x2. (5.5)

It is also convenient to define new parameters α and β describing the spectrum of contributing
group velocities u:

α ≡
V 2

+−
V 2

+V 2
−

= 〈〈
√

1 − u2〉〉2

〈〈1 + u〉〉 〈〈1 − u〉〉 , β ≡ V−

V+
=

√
〈〈1 − u〉〉
〈〈1 + u〉〉 . (5.6)

Now (5.1) becomes, after incorporating (5.3)

P(v) = (1 − α)

πβ2

∫ 2π

0
dφ

∫ ∞

0
dττδ

(
v − 1 − τ 2

1 + τ 2 + 2τ cos φ

)
g
(

α,
τ 2

β2

)
, (5.7)

in which

g(α, b) ≡
∫ ∞

0
dx

x(1 + x)

(x + b)2((1 + x)2 − 4αx)3/2

= 1
R5

[
R

1 − α
(α(3 − 2b + 3b2) − 2(b − 1)2)

+(1 + b)((1 − b)2 − 2αb) log
(

1 − b + 2αb + R
b(1 − b − 2α + R)

)]
, (5.8)

where

R ≡
√

(1 − b)2 + 4αb. (5.9)

The function g satisfies the reciprocity relation

g (α, b) = 1
b2

g
(

α,
1
b

)
, (5.10)

implying the following reflection relation for P(v):

P (−v,β) = P
(

v,
1
β

)
. (5.11)

Thus we can reduce the ranges of the integrals in (5.7):

P(v) = 2(1 − α)

πβ2

∫ π

0
dφ

∫ 1

0
dττδ

(
v − 1 − τ 2

1 + τ 2 + 2τ cos φ

)
g
(

α,
τ 2

β2

)
(v " 0) .

(5.12)
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Now defining τ 2 ≡ u we can eliminate the δ function, to obtain the final form of the local
group velocity distribution function:

P(v) = (1 − α)

πvβ2

∫ 1

uc

du

√
1 − u

√
u (v + 1)2 − (v − 1)2

g
(

α,
u
β2

)
(v " 0) , (5.13)

in which

uc =
∣∣∣∣
v − 1
v + 1

∣∣∣∣
2

. (5.14)

The superweak probability (1.2) now involves a double integral, over u and v. Exchanging
these variables, and using

∫ (1−
√

u)/(1+
√

u)

1

dv

v
√

u (v + 1)2 − (v − 1)2
=

arctan
√

1
u − 1

√
1 − u

, (5.15)

leads to the superluminal probability for Dirac waves:

Psuper(α,β) = Psuper(α,β−1)

= (1 − α)

π

∫ 1

0
du arctan

(√
1
u

− 1

) (
1
β2

g
(

α,
u
β2

)
+ β2g(α, uβ2)

)
. (5.16)

This is the main result of this section. I cannot see a way to evaluate the integral in closed
form, but it is easy to compute numerically for any values of the parameters α and β defined
by (5.6). The surface representing Psuper (α, β) is shown in figure 1(b). The following special
values can be evaluated analytically:

Psuper(0, 1) = 1
3
, Psuper (1, 1) = 1 − 1√

2
, Psuper (α, 0) = 1

2
. (5.17)

The superluminal probability ranges from 1 − 1/
√

2 = 0.293 to 1/2. The smallest value
1 − 1/

√
2, for α = β = 1, corresponds (cf (5.6)) to contributing group velocities symmetrically

distributed (i.e. ū = 0) and concentrated near u = 0; this is the nonrelativistic limit, so in contrast
to Klein–Gordon waves the superluminal probability is not zero in this case. This is the same
as the value obtained before [18] for the largest superweak probability for generic many-state
systems. The value 1/3, for α = 0, β = 1, corresponds to symmetrically distributed group
velocities but now concentrated near the limiting speed |u| = 1. The largest value 1/2, for
β = 0 (or β = ∞), represents the extreme relativistic limit, with all plane waves travelling in
the same direction with speeds close to that of light.

By contrast with the nonzero values of Psuper, the mean value of the local group velocity
always lies between −1 and +1: it is always subuminal. A calculation based on (5.13)
leads to

v̄(α,β) =
∫ ∞

−∞
dv vP(v)

= 1 − β4

R2
+ 2(1 − α)(1 − β2)β2

R3
log

(
((1 + β2)(1 + β2 − R) − 2β2(1 − α))

2β2(1 − α)

)
,

(5.18)

with R as defined in (5.8) with b = β2. Special cases are

v̄ (0,β) = 1 + β2

1 − β2
+ 2β2

(1 − β2)2
log β

v̄(1,β) = 1 − β2

1 + β2
, v̄(0, 0) = v̄(1, 0) = 1, v̄(0, 1) = v̄(1, 1) = 0.

(5.19)

Figure 2 shows the surface corresponding to v̄ (α,β).

8
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Figure 2. Theoretical mean group velocity v̄ (5.18) for Dirac waves, as functions of parameters α
and β in (5.6) (only values v̄ ! 0 are shown; from (5.11), negative v̄ correspond to β > 1).

Figure 3. Two-parameter spectrum (6.1) of contributing plane-wave group velocities u, used in all
the simulations.

6. Simulations

To illustrate the superluminal phenomena studied here, it is necessary to choose the distribution
of group velocities in the superpositions contributing to the local group velocity formulas
(2.11), (3.2) and (3.5). The theoretical interpretation of the computations that follow use the
distribution

P(u) =






sin2 a
b

(−1 < u ! −1 + b)

0 (−1 + b < u < 1 − b)

cos2 a
b

(1 − b ! u < 1).

(6.1)

This involves two parameters as illustrated in figure 3: the angle a giving the symmetry-
breaking between right- and left-moving plane waves, and b, giving the width of the ranges of
contributing group velocities below light speed |u| = 1. It will be sufficiently general to choose
the ranges 0 ! a ! π/4, 0 ! b ! 1. For the corresponding numerics, this is sampled discretely

9
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(a)

(b)

Figure 4. Sample local group velocity (2.11) for Klein–Gordon wave with a = π/4, b = 0.5 in
the spectrum (6.1) and a choice of random phases, with the superluminal intervals |v| > 1 shaded;
(a) t = 0, (b) in spacetime.

with an even number N of plane waves, with the following choices of group velocities and
coefficients:

un =






1 − 2nb
N

(
1 ! n ! 1

2
N

)

−1 + 2nb
N

− b
(

1
2

N + 1 ! n ! N
)

dn =






√
2
N

cos a
(

1 ! n ! 1
2

N
)

√
2
N

sin a
(

1
2

N + 1 ! n ! N
)

.

(6.2)

(Note the limits n = 1 and n = N/2 + 1, deliberately excluding light-speed group velocities
u = ± 1, which according to (2.10) would give infinitely fast spatial oscillations in the
wavefunctions ψ .) In all the numerical illustrations to follow, N = 200, so the superpositions

10
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(a)

(b)

Figure 5. Sample local group velocity (3.5) for Dirac wave with a = π/4, b = 0.5 in the spectrum
(6.1) and a choice of random phases and post-selected polarization parameters θ = π/4, φ = 0 in
(3.4), with the superluminal intervals |v| > 1 shaded; (a) t = 0, (b) in spacetime.

have 100 right-moving plane waves, with strengths cos2a, and 100 left-moving plane waves,
with strengths sin2a.

For Klein–Gordon waves, figure 4(a) shows a typical position-dependence of v(x, t)
for fixed t. ‘Typical’ means that the 200 phases µk were chosen randomly on 0 ! µk !
2π . The local group velocity is mostly confined to the subluminal interval −1 < v <

+1 but occasionally strays out into the superluminal regions (shaded) in which we are
interested. Similar pictures appeared in calculations of the local wavenumber k(x, t), illustrating
‘superweak’ values for which |k(x, t)| exceeds the wavenumber k0 of contributing plane waves
in one dimension [17], and for ‘backflow’ [22], in which k(x, t) can be negative although
all contributing plane waves have positive wavenumbers. Over time, these superluminal
intervals persist and then disappear and reappear elsewhere, as illustrated in spacetime in
figure 4(b).

The same phenomena are illustrated for Dirac waves in figures 5(a) and (b). In this case
it is necessary to specify not only the random phases but also the post-selection angles on the
Poincaré sphere; the choice θ = π/2 gives a democratic distribution of up- and down-spins
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(a)

(b)

Figure 6. Dots: superluminal probability for Klein–Gordon waves with the spectrum (6.1), averaged
over 10 000 sets of random phases, for b = [0 (0.1) 1], compared with the theoretical value (4.7)
(a) as curves, (b) as a surface.

and maximizes the superluminal excursions. (Choices close to θ = 0 or θ = π correspond to
post-selection close to eigenvectors of the velocity operator (3.3), so v(x, t) remains close to
the light speed ± 1.)

From figures 4(a) and 5(a) it appears that the spatial dependence of the local group
velocity is similar for Klein–Gordon and Dirac waves. But figures 4(b) and 5(b) indicate
that the spacetime behaviour is different in the two cases. For Klein–Gordon waves, the
superluminal regions are concentrated and with more erratic boundaries, while for Dirac
waves these regions are more sinuous: the superluminality persists longer. But the nature of
the superluminal regions depends on the spectrum chosen, so the comparison between Klein–
Gordon and Dirac might look different with a spectrum other than (6.1). Our emphasis here is
on superluminal statistics, but exploring the morphology of superluminal regions for different
spectra would be an interesting and worthwhile project.

For the statistics, v was computed for Klein–Gordon and Dirac waves at x = t = 0, for a
range of parameters a and b in the distribution (6.1). For each a and b, 10 000 sets of random
phases were chosen, and, for Dirac waves, 10 000 sets of the post-selection angles θ and φ

were chosen, uniformly distributed on the Bloch sphere. Those choices for which |v| > 1 were
selected, and the superluminal fraction calculated, representing the superluminal probability
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(a)

(b)

Figure 7. Dots: superluminal probability for Dirac waves with the spectrum (6.1), averaged over
10 000 sets of random phases and 10 000 random post-selection parameters (3.4), compared with
the theoretical formula (5.16) (a) as curves, with b = [0 (0.2) 1], (b) as a surface, with b =
[0 (0.1) 1].

over the ensemble. Comparison with theory requires the following averages (cf (4.3) and
(5.6)):

ū =
(

1 − 1
2

b
)

cos 2a, * =

√

(1 − b) sin2 2a + 1
3

b2

(
1 − 3

4
cos2 2a

)

〈〈
√

1 − u2〉〉 = 1
2b

(cos−1(1 − b) − (1 − b)
√

b(2 − b)). (6.3)

Figures 6 and 7 show the results of the calculations. It is clear that the theory captures the
subtle dependence of the superluminal probability on the spectrum parameters a and b. For
Klein–Gordon waves, theory and numerics agree to visual accuracy. For Dirac waves there
are some small deviations, but these are probably sampling errors, because further numerical
experiments (not shown) indicate that these are approximately symmetrically distributed about
the theoretical curves.

7. Concluding remarks

The above calculations indicate that local group velocities for quantum waves representing
relativistic massive particles have a significant chance of exceeding c: superluminal
probabilities for Klein–Gordon and Dirac waves can be as large as 1/2. Moreover, the
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interpretation as the weak value of a quantum observable suggests that these superluminal
speeds, while not violating relativistic causality, could be experimentally detectable.

The technical calculations are different in the two cases. For Klein–Gordon waves, the
result (4.7) is an application of the previously obtained superweak probability [18] for many-
state observables, in which the ensemble is over all pre- and post-selected states. For Dirac
waves, the calculation is an amalgam of the superweak probability for two-state systems [19]
and many-state systems [18], but the result (5.16) differs from both because of the lack of
symmetry between the pre-selected state (solution of the Dirac equation with Gaussian random
waves) and the post-selected state (uniformly distributed on the Bloch sphere). However, both
calculations share a technical feature with other weak value probability calculations [16–19]:
they involve averaging over quotients of Gaussian random variables.

There are several natural directions for further study. In the spacetime pictures (figures 4(b)
and 5(b)), the superluminal regions show complicated morphologies, associated with the way
in which spatial superluminal intervals develop in time. The dependence of these morphologies
on the spectrum of group velocities of the component plane waves is not understood in any
systematic way; nor are the differences between the Klein–Gordon and Dirac waves. And here
only one space dimension has been considered. In two or more dimensions additional richness
is likely to arise, because the superluminal regions will have non-trivial morphology even for
fixed time; moreover, the spectrum of component group velocities u can depend on direction
(anisotropic Gaussian random waves) as well as on the magnitude |u|.
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