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Abstract
Propagation into the far field changes initial waves into their Fourier transforms.
This implies that the Riemann zeros could be observed experimentally in
the radiation pattern generated by an initial wave whose Fourier transform
is proportional to the Riemann zeta function on the critical line. Two such
waves are examined, generating the Riemann �(t) function (pattern 1) and the
function ζ (1/2 + it)/(1/2 + it) (pattern 2). For pattern 1, the radiation side
lobes are probably too weak to allow detection of the zeros, but for pattern 2
the lobes are stronger, suggesting a feasible experiment.

PACS numbers: 02.10.De, 02.30.Gp, 02.30.Nw, 42.30.Kq, 42.25.Bs

(Some figures may appear in colour only in the online journal)

1. Introduction

As is well known, propagation of a wave from the near to the far field transforms an initial
state into its Fourier transform. Explicitly, consider the transform pair

f (u) = 1

2π

∫ ∞

−∞
dtg(t) exp(itu), (1.1)

and a wave ψ(x,z) propagating in the plane according to the Helmholtz equation, with initial
state

ψ(x, 0) = f

(
x

x0

)
, (1.2)

where x0 is a length, specifying the spatial scale. Then, if the wavenumber (2π/wavelength)
is k, the wave at x, z can be written, exactly, as a superposition of plane waves:

ψ(x, z) = 1

2π

∫ ∞

−∞
dtg(t) exp

(
i

(
t

x

x0
+ z

√
k2 − t2

x2
0

))
. (1.3)
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(The sign of the square root is chosen so that contributions |t| > kx0 represent evanescent
waves.) In the far field r = √

x2 + z2 → ∞, standard stationary-phase arguments give

ψ(r sin θ, r cos θ ) →
r→∞ x0

√
k

2π ir
exp(ikr) cos θg(kx0 sin θ ), (1.4)

and hence the radiation intensity pattern

I(θ ) = |g(kx0 sin θ )|2 cos2 θ. (1.5)

We will be dealing with functions for which f (t) is real, so g(t)∗ = g(−t), i.e. |g(t)| = |g(−t)|.
Here the emphasis will be on the zeros ± tn, that is g( ± tn) = 0. These separate the side

lobes of the radiation pattern. The zeros occur in directions θn, where

sin θn = ± tn
kx0

. (1.6)

Thus, for given scale kx0 of the initial wave, zeros that appear in the range of physical forward
directions |θ | < 1

2π are ± t1 to ± tN, where

tN ≈ kx0. (1.7)

Several functions f (u) are known whose Fourier transforms vanish at the heights
(imaginary parts) tn of the complex zeros of the Riemann zeta function [1, 2]. Therefore
implementation of any such f (u) as the wave amplitude in an initial plane will lead to a
far-field radiation pattern in which the intensity vanishes in directions (1.6) corresponding to
the Riemann zeros. This raises the possibility of direct observation of the Riemann zeros in a
physical system, for example in optics, where analytically specified waveforms can be sculpted
using a spatial light modulator [3, 4]. In the following, the feasibility of such experiments will
be explored for two Riemann-related functions f (u), giving two different predicted radiation
patterns.

Four preliminary remarks. First, we note that there is an alternative possibility for
physically implementing a Fourier transform, as noted by Crandall [5, 6]. Let f (u) be the spatial
dependence of the initial state of a quantum system evolving in a harmonic-oscillator potential.
After a certain time, corresponding to a π/2 rigid rotation in phase space, the state becomes g(t):
position u has evolved into momentum t. Second, the existence of functions f (u) with Fourier
transforms vanishing at the Riemann zeros has led to several mathematical explorations [7–10]
of Fourier transforms with real zeros, motivated by the Riemann hypothesis [1, 2], which states
that all tn are real. Third, I emphasize that this possible connection with physics is not intended
to suggest any strategy for proving or disproving the Riemann hypothesis; indeed, it will be
convenient to assume that all tn are real. Fourth, as a referee has pointed out, a precedent for
using radiation to illustrate a fundamental question is the dispersion that would result if the
photon had non-zero mass [11].

2. Radiation pattern 1

The Riemann � function,

g(t) = �(t) = − 1
2

(
t2 + 1

4

)
π

−
(

1
4 + 1

2 it

)
�

(
1
4 + 1

2 it
)
ζ
(

1
2 + it

)
, (2.1)

is known [1] to be an even entire function, real for real t, vanishing only at the complex
Riemann zeros (the trivial zeros, that is, ζ (−2n) = 0, are cancelled by the poles of the gamma
function, and the pole ζ (1) = ∞ is cancelled by the factor t2+1/4). In terms of the zeros, �(t)
can be written explicitly in terms of the Hadamard product

�(t) = 1
2

∞∏
n=1

t2
n − t2

t2
n + 1

4

, (2.2)
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Figure 1. (a) �(t) (equation (2.2)) with inset showing first Riemann zero; (b) log|�(t)|, showing
position t∗ of maximum between first two zeros.

-1 0 1
0

1

u

f(u)/f(0)
1.0

t

Ξ(t)/Ξ(0)

20 10 0 10 20
0.0

(a) (b)

Figure 2. (a) �(t) and (b) f (u) (equation (2.3)) (full curves) compared with Gaussian
approximations with the same rms widths (dotted curves).

whose convergence is examined in the appendix. As figure 1 illustrates, �(t) decays rapidly
as t increases, and takes very small values between the zeros.

The function f (u), of which �(t) is the Fourier transform, is [1, 6]

f (u) =
∞∑

n=1

(
4π2n4 exp

(
9
2 u

) − 6πn2 exp
(

5
2 u

))
exp(−πn2 exp(2u)). (2.3)

Obviously this is real for real u, and application of the Poisson sum formula shows that, naive
appearance notwithstanding, the function is even: f (u) = f (−u).

Figure 2(b) shows the function f (u). At the resolution shown, it looks similar to �(t) in
figure 2(a). Moreover, both are closely fitted by Gaussians. A measure of the closeness can be
described in terms of the rms widths

wu =
√∫ ∞

0 duu2 f 2(u)∫ ∞
0 du f 2(u)

= 0.156 7804, wt =
√∫ ∞

0 dtt2g2(t)∫ ∞
0 dtg2(t)

= 3.194 9280, (2.4)

giving the uncertainty product

wuwt = 0.500 902. (2.5)

This is very close to the value 1/2 of the minimum-uncertainty Fourier pair in which f (u)
and g(t) would be exactly Gaussian. But of course f (u) and �(t) are not Gaussians, and it
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θ
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Figure 3. Radiation pattern 1, given by (1.5) with �(t) (equation (2.1)), for kx0 = 30, as a polar

plot of I(θ )1/15, showing first three Riemann zeros.

is precisely the deviations, especially the zeros of �(t), that are of interest here. This further
illustrates the known extreme delicacy of analytic behaviour of the zeta function.

Figure 3 shows the radiation pattern corresponding to �(t), for a value kx0 chosen to
display the first three Riemann zeros. These zeros would be invisible on a simple polar plot of
I(θ ), because �(t) decays so rapidly that the polar plot would be dominated by a thin needle
near θ = 0. To see the side lobes, and the zeros separating them, it was necessary to reduce
the variation of �(t) by plotting I(θ )1/15 rather than I(θ ) itself. A measure of the rapid decay is
given by the intensity in the direction θ∗ of the first side lobe, corresponding to the maximum
of |�| between zeros t1 and t2:

I(θ∗)
I(0)

= 2.6 × 10−6. (2.6)

This is small, so observation of the zeros, as envisaged here, could be difficult: even with
dynamic range sufficient to detect the intensity in the side lobes, noise could be a problem.
Therefore we now move to the second function implementing the Riemann zeros, for which
the ratio is much larger.

3. Radiation pattern 2

This is the complex function

g(t) =
ζ
(

1
2 + it

)
1
2 + it

, (3.1)
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Figure 4. (a) |ζ (1/2+it)/ (1/2+it)| and (b) f (u) (equation (3.2)) for van der Pol realization [12]
of the Riemann zeros.

whose modulus—an even function of t—is shown in figure 4(a). As can be seen, it decays
more slowly than �(t) (figure 1), and the Riemann zeros are more evident.

This g(t) is a complex function with |g(t)| even, so the Fourier transform f (u) is real but
not even. It was shown by van der Pol [12] to be

f (u) = exp
(
− 1

2 u
)

floor(exp u) − exp
(

1
2 u

)
. (3.2)

This function is illustrated in figure 4(b). This representation, surprising at first encounter, can
easily be confirmed by evaluating the Fourier transform of f (u) after separating the range of
integration into intervals log n � u � log(n+1). It also follows from

ζ (s) = 1

1 − s

(
−s +

∞∑
n=1

n1−s

(
1 −

(
1 + s

n

)(
1 + 1

n

)−s
))

, (3.3)

which itself reduces to the familiar Dirichlet series ζ (s) =
∞∑

n=1
n−s for Re s>1 and converges

inside the critical strip 0 < Re s < 1.
Figure 5 shows the radiation pattern corresponding to that shown in figure 3 for �(t).

Since the intensity variations are more moderate, the side lobes and zeros can be discerned
with a more modest scaling in the polar plot: I(θ )1/3 rather than I(θ )1/15 as in figure 3.
Correspondingly, the intensity of the first side lobe is much larger than in (2.6):

I
(
θ∗)

I
(
0
) = 0.002 03. (3.4)

This is still small, but has a better chance of being detectable experimentally.
In practice it is impossible to create an initial wave over the entire range − ∞ < x < +∞.

Therefore it is important to estimate whether the inevitable truncation of f (u) will spoil the
detection of the zeros. With a sharp cutoff, that is

fN (u) = f (u)�(log N − |x|) (3.5)

(in which � is the unit step), the radiation pattern will be determined not by g(t) in (3.1) but
by the transform

gN (t) =
∫ ∞

−∞
du fN (u) exp(−itu) =

ζ
(

1
2 − it

)
1
2 − it

− 	N (t) (3.6)
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Figure 5. Radiation pattern 2, given by (1.5) with ζ (1/2+it)/ (1/2+it) (equation (3.1)), for kx0 =
30, as a polar plot of I(θ )1/3, showing first three Riemann zeros.

of fN(u). Simple asymptotics (involving averaging over the sawteeth for u � 1) gives the
truncation error as

	N (t) =
∫ ∞

log N
du exp(−iut) f (u) +

∫ − log N

−∞
du exp(−iut) f (u)

× ≈
N� t

2π
,N�1

− 1√
N

(
exp (it log N)

1
2 − it

+ exp (−it log N)

2
(

1
2 + it

)
)

.

(3.7)

As comparison of the thick and dotted curves in figure 6 illustrates, reasonable truncation
introduces some undulations in the radiation pattern but does not obscure the zeros. And the
thin curve in figure 6, calculated for a more brutal truncation, shows the accuracy of the
approximate tail (3.7).

The functions f (u) and g(t) in this section, defined by (3.1) and (3.2), are very far from a
minimum-uncertainty Fourier pair. The reason is that although the f (u) width, defined similarly
to (2.4), is finite, namely

wu =
√√√√∫ ∞

−∞ duu2 f 2(u)∫ ∞
−∞ d u f 2(u)

= 1.455 . . . , (3.8)
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Figure 6. Truncated zeta function. The full curve shows the exact g(t) from (3.1); the dotted curve
shows the truncation gN(t) given by (3.6), for N = 20 (i.e. the truncation |u| � log20 = 2.996); the
thin curve shows the truncation plus the approximate tail 	N(t) (equation (3.7)) for N = 5 (i.e. the
truncation |u| � log 5 = 1.609).

the corresponding g(t) width, that is, the width of the radiation pattern, diverges like the integral
of

∣∣ζ (
1
2 + it

)∣∣2
. Nevertheless, the total power in the radiation pattern is finite; in fact [6]

∫ ∞

−∞
dt|g(t)|2 =

∫ ∞

−∞
dt

∣∣∣∣∣ζ
(

1
2 + it

)
1
2 + it

∣∣∣∣∣
2

= 2π

∫ ∞

−∞
du f (u)2

= 2π(log 2π − γ ) = 7.921 . . . . (3.9)

4. Concluding remarks

The observation envisaged here would complement a remarkable old experiment by van der
Pol [12]: instead of truncating f (u) as in (3.5), the function (3.2) was periodized by cutting it
round the periphery of a circular disk of paper (radius = r0+ε f (Nθ/2π ), where ε � r0 and
N � 1 are constants), which was then rotated rapidly and illuminated by a narrow beam of
light, whose transmission was detected and the signal Fourier-transformed electronically. In
this way, the lowest 25 Riemann zeros were identified.

If the diffraction experiment proposed here were carried out optically, a simplification
would be to focus the radiation pattern onto a plane with a lens. Another possibility is to
use microwaves or radio, and create the function f (u) with a suitable antenna. With either,
detecting as many as 25 zeros would be a challenge, even when based on the more promising
pattern 2. But it is surely worth trying, if only to explore the intriguing possibility of seeing
the Riemann zeros directly, simply by allowing a suitably sculpted wave to propagate.

Acknowledgment

I thank the Physics and Mathematics Departments of Portland State University for generous
hospitality while the first draft of this paper was written.

7



J. Phys. A: Math. Theor. 45 (2012) 302001 Fast Track Communication

0 10 20 30 40

-20

-10

0

t

log|Ξ(t)|

Figure A.1. Riemann function �(t) (thick curve), compared with Hadamard product truncated at
N = 5 (dotted curve), and truncation at N = 5 with approximate tail (A.4) (thin curve). Note that
the approximations fail beyond t = t5 = 32.94, as expected, because zeros n > 5 are not included.

Appendix. Convergence of the product (2.2)

If we want to represent the first �(t) accurately including the zeros t � tN, using the product
(2.2), it is obviously necessary to include at least the first N factors. To estimate the collective
effect of the remaining factors on �(t) for t � tN, we write the product as

�(t) = 1
2

N∏
n=1

t2
n − t2

t2
n + 1

4

PN (t). (A.1)

Elementary manipulations give the tail as

PN (t) =
∞∏

N+1

t2
n − t2

t2
n + 1

4

= exp

( ∞∑
N+1

(
log

(
1 − t2

t2
N

)
− log

(
1 + 1

4t2
N

)))

= exp

(
−

∞∑
m=1

1

m

(
t2m − (−1)m

4m

) ∞∑
N+1

1

t2m
n

)
. (A.2)

To estimate this for N � 1 we can replace the sums over the zeros by integrals over their
known [1] asymptotic density. Thus

∞∑
N+1

1

t2m
n

≈ 1

2π

∫ ∞

tN+1

dt
log(t/2π)

t2m
=

log

(
e

(
tN+1

2π

)2m−1
)

2π(2m − 1)2t2m−1
N+1

. (A.3)

The sum over m in (A.2) can now be evaluated analytically, but it suffices to consider just the
leading order for the tail, namely

PN (t) ≈ exp

(
−

(
t2 + 1

4

) log
(

tN e
2π

)
2πtN

+ O

(
t4 log tN

t3
N

))
. (A.4)

Figure A.1 shows the dramatic improvement in the truncated product for t < tN when the
leading order tail is included.

8



J. Phys. A: Math. Theor. 45 (2012) 302001 Fast Track Communication

References

[1] Edwards H M 1974 Riemann’s Zeta Function (New York: Academic)
[2] Borwein P, Choi S, Rooney B and Weirathmueller A 2008 The Riemann Hypothesis: A Resource for the

Aficionado and Virtuoso Alike (Berlin: Springer)
[3] Slinger C, Cameron C and Stanley M 2005 Computer-generated holography as a generic display technology

Computer 38 46–53
[4] Savage N 2009 Digital spatial light modulators Nature Photon. 3 170–2
[5] Crandall R E 1991 Mathematica for the Sciences (Redwood City, CA: Addison-Wesley)
[6] Borwein J M, Bradley D M and Crandall R E 2000 Computational strategies for the Riemann zeta function

J. Comput. Appl. Math. 121 247–96
[7] Polya G 1923 On the zeros of an integral function represented by Fourier’s integral Messenger Math. 52 185–8
[8] Polya G 1926 On the zeros of certain trigonometric integrals J. Lond. Math. Soc. 1 98–99
[9] Newman C M 1976 Fourier transforms with only real zeros Proc. Am. Math. Soc. 61 245–51

[10] Cardon D A 2004 Fourier transforms having only real zeros Proc. Am. Math. Soc. 133 1349–56
[11] Crandall R E and Wheeler N A 1984 Klein–Gordon radio and the problem of photon mass

Nuovo Cimento B 80 231–42
[12] van der Pol B 1947 An electro-mechanical investigation of the Riemann zeta function in the critical strip

Bull. Am. Math. Soc. 53 976–81

9

http://dx.doi.org/10.1109/MC.2005.260
http://dx.doi.org/10.1038/nphoton.2009.18
http://dx.doi.org/10.1016/S0377-0427(00)00336-8
http://dx.doi.org/10.1112/jlms/s1-1.2.78
http://dx.doi.org/10.1090/S0002-9939-1976-0434982-5
http://dx.doi.org/10.1090/S0002-9939-04-07677-4
http://dx.doi.org/10.1007/BF02722262
http://dx.doi.org/10.1090/S0002-9904-1947-08920-5

	1. Introduction
	2. Radiation pattern 1
	3. Radiation pattern 2
	4. Concluding remarks
	Acknowledgment
	Appendix. Convergence of the product (2.2)
	References



