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The singularities of light: intensity, phase,
polarisation
Michael V. Berry1✉

Abstract
In modern optics, light can be described at different levels: as rays, as scalar waves, as vector fields, and as quantum
fields. In the first three levels, there are singularities—characteristic features, useful in interpreting phenomena at that
level. In geometrical optics, the singularities are ray caustics; in scalar wave optics, they are phase singularities (=wave
dislocations= wave vortices = nodal manifolds); in vector waves, they are singularities where the polarisation of light
is purely linear or purely circular. The singularities at each level are dissolved at the next level. Similar singularities occur
in all waves, not just light.

Marking 50 years since the discovery, in collaboration
with J.F. Nye, of phase singularities as a general
phenomenon in wave physics.

Introduction
Geometry dominates modern optics, in particular

through understanding light in terms of its singularities.
From this perspective, there are different levels of
description in optics, each characterised by different
singularities. Analogous considerations apply to other
types of wave: quantum, acoustic, elastic, water…. In
this review, three qualitatively different singularities
will be described. The emphasis will be on singularites
that are natural, in the sense that they are stable under
perturbation; equivalent terms for this kind of natur-
alness are typicality, genericity, structural stability, and
universality.
In geometrical optics (see the section ‘Rays’), the

singularities are caustics: envelopes of families of rays.
In scalar wave optics (see the section ‘Phase’), there are
phase singularities, also called wave vortices, wavefront
dislocations, and nodal lines (in 3D). In electromagnetic
(i.e. vector) waves (see the section ‘Polarisation’), there
are singularities of polarisation: lines (in 3D) on which

waves are purely circularly polarised or purely linearly
polarised.
This review includes some personal remarks.

Rays
The coarsest level is geometrical optics, in which light

fields are described by families of rays. Here the singula-
rities are caustics: focal lines and surfaces, that is, the
envelopes of ray families, on which the intensity diverges;
therefore caustics are the singularities of bright light.
These singularities are classified by the mathematics of
catastrophe theory1–4, providing a list of the geometric
forms of caustics that are stable under generic
perturbations.
Many phenomena are described by caustics: rainbows5;

the bright lines of focused sunlight on the bottoms of
swimming-pools; bright-edged shadows of floating
insects6; twinkling starlight7,8 (whose statistics involve a
competition between singularities9); mirages (the subject
of an interesting misunderstanding10); unusual colours
inside prisms11; beams that bend in free space12–14; and
distorted images in curved mirrors15,16 and gravitational
lensing17,18.

Phase
In wave optics, the caustic singularities of families of

rays are smoothed by diffraction, which decorates them
with rich and ubiquitous interference patterns19,20,
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described by a new class of special functions (‘diffraction
catastrophes’21), represented by oscillatory integrals
(chapter 36 of ref. 22 and refs. 23,24). The wave decorations
exhibit interesting scaling laws, with implications for
gravitational lensing25. In white light, caustics display
interesting colours when diffraction is incorporated26,27.
Wave optics, when represented by complex scalar wave-

functions, introduces the additional concept of phase, which
has its own singularities. Equivalent terms for phase singu-
larities are optical vortices, nodal manifolds or wavefront
dislocations28,29. On phase singularities, the light intensity is
zero, so these are the singularities of dark light. Geome-
trically, they are lines in space, or points in the plane, around
which the phase changes by a multiple of 2π (generically ±1)
and the phase gradient vector circulates—hence the term
optical vortices.
Phase singularities are complementary to caustics, not

only because the former are dark (zero intensity) and the
latter are bright (infinite intensity), but also in the sense of
Niels Bohr: caustics are prominent features in the short-
wave asymptotic regime, in which phase singularities are
too close to be clearly resolved—because these are fine-
scale features, clearly discernable only in the opposite case
of high magnification, where caustics are smoothed out
and so are no longer distinct features.
The darkness of a phase singularity can be regarded as

perfect descructive interference30, underlying several
interesting features. In white-light interference, universal
colour patterns inhabit the near-darkness31,32. And
because the phase changes by a multiple of 2π around a
singularity, the local phase gradient vector rises to infi-
nitely large values there. Therefore phase singularities are
powerful sources of superoscillations (band-limited
functions that vary faster than their fastest Fourier com-
ponent)33, with many applications34,35, for example to
sub-wavelength microscopy36–39 and in mathematics40.
The optical applications of superoscillations depend on a
fundamental fact: there is a diffraction limit for bright
light, but there is no such limit for dark light (evoking the
mathematician André Weil’s playful “…principle of anti-
inteference, which would have light burst forth from two
darknesses.”41).
Phase singularities can form intricate patterns, for

example as fine detail in diffraction catastrophes19,20,42

and near spiral phase plates43,44. They can organise the
coloured interference patterns formed by white
light31,32,45. They occur in all types of quantum46–52 or
classical (e.g. acoustic53 and tide54–58) waves and have
been extensively reviewed59–61. In three dimensions,
phase singularity lines can be linked and knotted62–67.
There has been a confusion in which wave vortices are

regarded as inevitably associated with orbital angular
momentum (OAM). The association holds for the sim-
plest cases, e.g. optical beams that are eigenstates of

OAM, but in general the concepts are distinct, as coun-
terexamples demonstrate68. We are celebrating 30 years
since the discovery of OAM as a practical resource in
optics69. I remember L. Allen excitedly explaining OAM
to me during a train journey in the early 1990s70.

Polarisation
Incorporating the vector (electromagnetic) nature of

light brings further singularities, corresponding to the
new physical property thus introduced, namely polarisa-
tion. In electromagnetic waves, the polarisation singula-
rities that are stable under perturbations are lines in three
dimensions. There are two types71–75: C singularities, on
which the polarisation is purely circular, and L singula-
rities, on which the polarisation is purely linear.
In direction space, polarisation singularities play a

central role in crystal optics76–81 (notably conical refrac-
tion82,83), and in the pattern of polarised light in the blue
sky84. The C and L lines are different for the electric and
magnetic fields74, but coincide for paraxial fields85. In the
presence of optical absorption (or gain) important sin-
gularities are the degeneracies of nonhermitian
matrices86–89.
Polarisation singularities were discovered by J.F. Nye

and his student J.V. Hajnal. Nye was an original scientist
in several areas90; he was my only significant senior col-
laborator, with a positive influence on my scientific
development, beginning with our paper on phase singu-
larities28. Nye’s book29 is an excellent account of optical
singularities, and an excellent complementary description
is the book by Gbur91.

Concluding remarks
Historically, all three levels of singularity can be con-

sidered to have originated (in separate discoveries) in the
same decade: the 1830s92.
As well as representing physics at each level, these

optical and wave geometries illustrate the idea of
asymptotically emergent phenomena93,94. The levels form
a hierarchy, with each deeper level of theory eliminating
the earlier singularities and generating new ones. Thus,
the caustic singularities of ray theory are softened by
scalar wave theory, enabling us to see the interference
decorations, in the form of diffraction catastrophes.
Interference fringes near caustics are not only brighter
than elsewhere; they are also more widely separated—for
smooth caustics, O(wavelength2/3) rather than O(wave-
length). That is why our unaided eyes can see the wave
features of light, vastly magnified in the sky, as the Airy
supernumerary fringes decorating rainbows (ref. 5, and see
the section ‘Rays’ of ref. 95). And the phase singularites
introduced into scalar wave theory are themselves dis-
solved by the vector nature of light and replaced by the C
and L polarisation singularities.

Berry Light: Science & Applications          (2023) 12:238 Page 2 of 4



The hierarchy approach has predictive power, pointing
towards the future of optical singularity theory. The phase
singularities of scalar light can be regarded as windows,
through which can be glimpsed the faint glimmering of
the quantum vacuum (or, near acoustic vortices, the
whispering of Brownian motion). Therefore phase singu-
larities will have quantum cores96,97—a connection with
quantum optics and, more fundamentally, quantum field
theory, yet to be explored in detail. Related to this is the
prediction of large momentum transfers to small parti-
cles98 located near phase singularities.
An extension of the hierarchy idea would be to regard

polarisation singularites as windows to the deeper level of
quantum optics; perhaps the counting statistics of pho-
tons emitted by excited atoms would be modified near C
and L singularities. This too is unexplored territory. More
fundamentally, one can speculate about possible new
singularities in the quantum field theory of light; these
would be windows down to a deeper and as yet unim-
agined level of our understanding of light, beyond
quantum.
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