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Abstract. The three words of the title are connected conceptually, sometimes in unexpected 
ways 

1.  Chaos 
The following two statements will be deconstructed: 
Classical physics is not deterministic.  
Classical mathematics is deterministic.  
Consider a finite collection of objects interacting through Newtonian forces. If they are isolated, and 
the forces known, then the future of the system follows inexorably from the starting conditions. This is 
mathematical determinism: uniqueness of solutions of the relevant differential equations.  

The history of the objects may be weakly dependent on the precision with which the initial 
conditions are specified. This is regular motion, exemplified by the orbits of the planets, or a 
pendulum swinging under gravity (figures 1(a,b)), or a ball in a rectangular or circular billiard table. 
Or it may depend sensitively on the initial conditions, as in a pinball machine, or a pendulum whose 
bob is a magnet, swinging while repelled by magnets on the base (figures 1(c,d)), or a ball on a billiard 
table shaped like a stadium. This is chaotic motion. 

 

 
Figure 1. Conical pendulum, swinging (a) under gravity, (c) also with repelling magnets. (b), (d): 

orbits corresponding  to (a), (c). 
 

Mathematical determinism assumes the system is isolated.  This contradicts physics, because there 
is one force that cannot be screened out: gravity. Often, this hardly matters. The moon and the planets 
are affected by gravity from the stars, but it is not necessary to take this into account when predicting 
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eclipses or programming spacecraft. But sometimes it does matter, as exemplified by an old 
calculation [1] of gas molecules inside a box, bouncing off each other (I envisage them as classical 
particles). They are influenced not only by each other and the walls of the box but by gravity outside. 
The weakest such disturbance is the gravity of a single electron at the observable limit of the universe. 
Its force will affect the gas molecules differently, and the effect is unpredictable because we don’t 
know where the electron is. After how long will this make the direction of a molecule uncertain by 
90˚? The answer is: after about 50 collisions -  a few nanoseconds. The time is so short because 
molecules are like convex bodies, whose bounces are unstable, magnifying at each collision. A similar 
calculation shows that the gravity of billiards players makes the motion of billiard balls uncertain after 
about ten collisions. 

The faraway electron, and the proximate billiards players, make Newtonian mechanics 
unpredictable in any realistic manner for these unstable systems. But unpredictability is not the same 
as determinism, as envisaged by Laplace: in principle, the future of the universe could be determined 
by an intelligent being who (which?) knows the state of all its particles.  

But ‘in principle’ are weasel words. Assuming that mathematical determinism holds for a possibly 
infinite universe, and that the intelligent being is embodied – we are considering physics, after all – the 
future of the gas particles or billiard balls would also be sensitive to the gravity of particles in its (his? 
her? their?) head, or in the computers performing the calculation. Laplacian determinism ignores this 
self-reference, which sabotages the calculation. The conclusion is that classical physics – as distinct 
from classical mathematics – is not deterministic in any reasonable sense. 

2.  Quantum 
 
2.1. Discordance [2] 
The physics of the microscopic world could hardly look more different. Instead of Newton’s 
equations, quantum objects (atoms, electrons, nuclei…) 
• possess discrete energy levels; 
• are indeterministic in a different way from classical chaos (there is no evidence that the decay of a 
radioactive nucleus originates in the gravity of objects outside it; 
• are described in terms of waves as well as  particles; 
• cannot evolve chaotically if isolated; this is ‘quantum suppression of chaos’, a mathematical 
consequence of the discreteness of the energy spectrum; 
• are influenced by a nonclassical quantity with the physical dimensions of angular momentum: 
Planck’s constant: h=6.62607014x10-34 joule-seconds.  

The connection with classical physics is commonly expressed by the Correspondence Principle: 
quantum objects become classical when h is zero.  Physically, this means: when h is negligible in 
comparison with classical quantities with the same physical dimensions. Although the principle is 
sometimes useful, and was a historically important guide during the creation of quantum theory, it 
conceals more than it reveals. 

 
2.2. Singular limits [3, 4] 
Quantum-to-classical is an important example of the much more general question of how scientific 
descriptions at different levels [5], whose formulations appear discordant, are related. How does 
statistical mechanics ‘reduce to’ thermodynamics, as the number of particles becomes infinite 
(described by Philip Anderson as ‘More is different’) [6, 7]? How does friction-dominated flow reduce 
to slippery flow as the viscosity vanishes (the obstruction is the unexpected phenomenon of 
turbulence)? How does wave optics reduce to ray optics as the wavelength gets smaller? Are these 
apparently incompatible descriptions ‘Nonoverlapping Magisteria’ (hijacking a phrase used by 
Stephen Jay Gould)? Or can we achieve ‘Consilience’ (adapting the lovely old English word revived 
by E O Wilson)? 



 
 
 
 
 
 

Connections between physical descriptions at different levels involve mathematical limits. A 
central ingredient in understanding the discordance is that in every case the limits are mathematically 
singular. To illustrate the meaning of singular limits in a nontechnincal way [4], imagine biting into an 
apple and seeing a maggot (figure 2). You are unhappy. If you see half a maggot, you are more 
unhappy; a quarter of a maggot, more unhappy still; and so on … If the limit were straightforward,  
encountering no maggot at all should make you infinitely unhappy. Of course it doesn’t: the limit of 
ever-smaller maggot fractions is no unhappiness, not infinite unhappiness. It is a singular limit. 

 
 

 
 

Figure 2. A maggot in the apple 
 

The singular limits perspective enables two distinct insights. The first is reassurance: showing how 
the old theory (classical mechanics) emerges from the deeper one (quantum physics). It must do so – 
we don’t need to solve the Schrödinger equation when programming a spacecraft to reach the Moon. 
But the limit is often not straightforward. The second insight is creative: identifying qualitatively new 
physics inhabiting the borderlands between the theories. 

2.2. Reassurance 1: two beams, and 1+1=2 restored [8]) 
Imagine two beams of particles (low intensity so they don’t collide), or beams  of light, oppositely 
directed towards each other. When they overlap, their intensity, in classical mechanics or ray optics, 
doubles: 1+1=2. But in quantum physics, the particle beams are waves, and the beams of light  are also 
waves. When waves encounter each other, their intensities do not add. Instead, the waves interfere: 
constructively (crests) or destructively (troughs), and analysis shows that the intensity of the combined 
beams takes values between 0 and 4. For intensities, 1+1≠2. Don’t be surprised by this. As pure 
mathematics, 1+1=2 is an undisputed theorem. But here we are dealing with applied mathematics, and 
the theorem may be inapplicable: when two people generate a child, 1+1=3; when two raindrops slide 
down a car windscreen and coalesce, 1+1=1. 

What is the classical, or short-wave, limit of these combined beams? As the wavelength gets 
smaller (equivalent to diminishing h  in the quantum case), the interference oscillations get faster, and 
the strict mathematical limit would be an intensity taking all values between 0 and 4 in any 
infinitesimal interval. We never see this, because eventually our instruments cannot resolve the fine 
oscillations, or they are destroyed by uncontrollable external influences destroying the delicate 
interferences. This is called decoherence. It was understood qualitatively by Thomas Young in the 
early 1800s, as the reason why we don’t see interference oscillations every time light beams cross. For 
our two beams, decoherence replaces the oscillating intensity by its average, which simple 
mathematics reassures us is 2. 
 



 
 
 
 
 
 

2.3. Reassurance 2: Hyperion, and chaos restored [9] 
When there is chaos, quantum states get exquisitely sensitive to decoherence as the classical limit is 
approached. To illustrate this, consider Hyperion, a potato-shaped satellite of Saturn about 300 km 
across. The rotation of Hyperion is chaotic; an  irregular tumbling with initial uncertainty doubling 
about every 20 days – probably the result of competition between the gravitational effects of Saturn 
and its largest moon Titan.  

Now consider Hyperion as a quantum rotator. Its angular momentum is about 1060 h units. How 
long would it take for quantum physics to supervene, and suppress the chaos? A calculation gives the 
unexpectedly short time of 40 years. This effect is never observed, because the Hyperion-Saturn-Titan 
system is not isolated. One of its weakest uncontrolled external influences is a single photon from the 
Sun, whose re-emission enables us to see Hyperion. Its energy, about 10-19 joules, is negligible in 
comparison with the rotational energy of Hyperion, but 1020 times bigger than the separation of its 
quantum energy levels. The patter of these photons from the faint sunlight reaching Hyperion destroys 
the delicate quantum coherence in about 10-50 seconds: the quantum suppression of chaos is itself 
suppressed by decoherence, restoring Hyperion’s chaos. Reassurance again. 
 

2.4. Creative discordance: statistics of energy levels [10]                                                             
Discrete energy levels are intrinsically quantum, and the high-lying levels approach the limit where 
classical physics should apply. The levels get closer for smaller h; if we magnify to make their mean 
spacing unity, the study of their arrangement is one aspect of ‘semiclassical physics’. A remarkable 
universality emerges: the statistics of the levels that lie close to each other depends only on the 
chaology of the system’s classical counterpart, not on its details.  

The simplest statistic is the probability distribution P(S) of the spacings S between neighbouring 
levels. This can be illustrated with ‘billiard’ models: particles moving inside two-dimensional 
enclosures and bouncing of their walls. As described earlier, the classical regularity or chaos depends 
on the shape of the enclosure. In the quantum counterpart, the energies are analogous to the 
frequencies of waves in the enclosure, analogous to vibrations of a drum. 

 

 
 

Figure 3. (a-c) orbits in billiards; (a) circular; (b) stadium; (c) stadium with magnetic flux. (d-f) 
energy-level spacings distributions P(S) corresponding to (a-c).  

 
The first universality class is regular motion. An example is the circular billiard (figure 3a). The 

spacing distribution (figure 3d) decays from its maximum at S=0: the most probable spacing is zero. 
This distribution is the same as for uncorrelated random events – apparently counterintuitively, but 
originating in the fact that the radial and angular quantum aspects give rise to independent overlapping 
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quantum spectra. The second universality class is chaotic motion. An example is the stadium billiard 
(figure 3b). The structure of the spectrum is very different: instead of separate spectra overlapping 
randomly, the levels repel each other. The spacings distribution (figure 3e) rises from zero at S=0 to a 
maximum, and then decays. The third universality class also corresponds to classical orbits that are 
chaotic, but that are not time-reversible. An example is the stadium billiard with a perpendicular 
magnetic flux (figure 3c). Again the levels repel each other, but more strongly than before (figure 3f): 
P(S) rises from zero quadratically, rather than linearly. 

The two chaotic universalities correspond to a mathematical structure called random-matrix theory 
[11]. This was originally developed to understand the energy levels of large atomic nuclei, whose 
many constituent protons and neutrons cause the randomness. (There is a third chaotic universality 
class, with even stronger level repulsion, corresponding to identical particles obeying the Pauli 
exclusion principle.) 

The spectral universality of high-lying levels is limited. It applies to the statistics of levels close to 
each other, for example nearest neighbours, as in the examples above. Correlations between more 
widely spaced energy levels of classically chaotic systems deviate strikingly from those predicted by 
random-matrix theory. The deviations are associated with the short self-retracing (periodic) classical 
orbit embedded in the chaos; these are not universal: they vary from system to system. 

The quantum chaology of energy-level correlations is an example of rich physics inhabiting the 
borderland between the classical and quantum worlds. It is a consequence of the singular limit 
connecting the two theories. 

3.  Number [12] 
F C Frank (unpublished, 1976) stated: “Physics is not just Concerning the Nature of Things, but 
Concerning the Interconnectedness of all the Natures of Things.” An ‘interconnectedness’ apparently 
completely unrelated to quantum chaology concerns the arrangement of the prime numbers: 
2,3,5,7,11,13,17,19, 23…Represented as a staircase, the number of primes less than x is an erratic 
sequence of steps (figure 4a). On a larger scale, the steps are invisible (figure 4b), and the ‘staircase’ 
appears as a smooth hillside (whose mathematical form is known). But magnification reveals that the 
steps are still there, apparently irregularly located (figure 4c).  

 

 
Figure 4. Staircase of the primes. (a) Showing steps; (b) zooming out, steps invisible;  

(c) magnifying the little box in (b) to see the steps.  
 

 The irregularity of the primes is captured by a different set of numbers, tn, representing 
‘frequencies’ when the fluctuations (staircase minus hillside) are represented as a series of oscillations. 
The first few are t1=14.1347, t2=21.022, t3=25.0109, t4=30.4249… The numbers tn are the Riemann 
zeros. An important unsolved problem in mathematics, with implications in many areas, including the 
statistics of the fluctuations of the primes, is to prove the truth or falsity of the Riemann hypothesis 
(RH). This states that all the tn are real numbers. It is known that the first ten trillion are real, infinitely 
many are real, and at least 40% are real. But this is not a proof, And settling RH has resisted intense 
efforts over more than 150 years. 
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The unexpected ‘interconnection’ is that the  interpretation of the Riemann zeros as frequencies is 
not accidental. A mathematical analogy between quantum chaology (including random-matrix theory), 
and formulas involving the Riemann zeros, hints strongly that these numbers can be interpreted as the 
vibration frequencies, or, equivalently, energy levels, of a quantum system in the third universality 
class of quantum chaology. The nature of this quantum system is unknown, but the analogy enables 
several properties to be identified, such as: the system has a classical counterpart, which is chaotic, 
lacks time-reversal symmetry, and possesses periodic orbits whose periods are multiple of logarithms 
of primes. 

These identifications suffice to predict statistics of the Riemann zeros, assuming they are real. 
When tested against computations of billions of the Riemann zeros tn near n=1023, the analogy is 
spectacularly successful, far beyond random-matrix theory. The distribution of spacings of 
neighbouring zeros is indistinguishable from the random-matrix prediction (figure 3f); and for wider 
separations of zeros the statistics deviate from those of random-matrix theory in precisely the same 
way as their quantum chaology counterparts (the deviations depend on small primes, i.e. short periodic 
orbits. 

Although this seems promising, the persisting failure to prove the RH counsels caution.  The basis 
of the analogy is a ‘known unknown’: the chaotic classical dynamical system. But the possibility 
remains that RH could be false; there are some slight inconsistencies in the analogy, hinting at a 
lurking ‘unknown unknown’ that could ruin it. As Piet Hein declared: “Problems worthy of attack, 
Prove their worth by hitting back” 

4.  Concluding remarks 
•  Classical physics (chaotic or not) is very different from quantum.  
•  The discordance is associated with the fact that the classical limit h→0 is singular.  
•  Singular limits complicate the reassurance that classical physics must emerge when h is negligible.  
• Singular limits also point to new physics inhabiting the borderlands between the classical and 
quantum worlds.  
•  A bonus is the analogy between quantum chaology and the prime numbers.  
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