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Abstract
Classical nonhamiltonian dynamics, driven by external ‘curl forces’ (which
are not the gradient of a potential) is extended to the quantum domain. This
is a generalisation of the two-stage Madelung procedure for the quantum
Hamiltonian case: (i) considering not individual trajectories but families of
them, characterised by their velocity and density fields (both functions of posi-
tion and in general time); and (ii) adding the gradient of the quantum potential
to the external curl force. Curl forces require the velocity field to have nonzero
vorticity, so there is no underlying singlevalued wavefunction. Two explicit
examples are presented. A possible experiment would be the motion of small
particles with complex polarisability, influenced by forces from optical fields.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Newtonian mechanics is more general than Hamiltonian or Lagrangian mechanics. An
example is the dynamics of particles driven by ‘curl forces’ [1]: forces F= F(r), depend-
ing on position r but not velocity u, which are not the gradient of a potential. In the familiar
case where there is a potential V, then F=−∇V and ∇×F= 0. For ‘curl forces’ this is not
the case; the classical dynamics is

dttr= dtu= F, ∇×F ̸= 0 . (1.1)
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Curl forces contrast with forces derivable from a potential in several ways [1]. Although
nonconservative, motion is nondissipative: volume is conserved in the state space r,u; there-
fore there are no attractors. Noether’s theorem does not apply: the link between symmetries
and conservation laws is broken. And there can be dynamical evolutions with no conserved
quantity, even though F is independent of time: for N-dimensional configuration space r, tra-
jectories can explore a 2N-dimensional region in r,u space [2].

Curl forces do not occur in fundamental classical physics, where forces are associated
with potentials. But they are fundamental dynamical mathematics, in the sense that Newton’s
equation (1.1) is more general than the special case for potential forces. To avoid confusion,
we emphasise that the classical curl forces we consider are velocity-independent; as explained
earlier [1], this excludes magnetic forces, where F depends on u as well as r and there is a
familiar Hamiltonian description. Curl forces appear as emergent forces: approximate descrip-
tions, in engineering [3–5], and as a class of forces exerted by optical fields on small dielectric
particles with complex polarisability [6].

Here we explore the natural question: can the concept of curl forces be extended to quantum
mechanics? At first thought, the answer is no, because in its standard formulation quantum
physics is fundamentallyHamiltonian. But wewill propose a natural generalisation of quantum
mechanics that does incorporate curl forces. This is based on theMadelung picture of quantum
mechanics [7] described later, developed from ideas of de Broglie [8], and formally equivalent
to ‘Bohmian mechanics’ [9, 10]. Extending Madelung mechanics to include velocity fields
with vorticity has been considered before [11–14]; our emphasis here is the connection with
curl forces.

The paper is structured as follows. Section 2 contains the quantum curl force formalism,
emphasising its differences from familiar quantum mechanics. Section 3 describes a quantum
curl force where ∇×F is nonzero only at the origin, and suitably adapted techniques from
conventional quantum mechanics can be applied if the origin is excluded. Section 4 describes
a quantum velocity field with streamlines on cylinders. The concluding section 5 includes a
suggestion for possible experiments involving quantum curl forces.

Appendix 1 shows that Madelung quantummechanics, and therefore our curl force general-
isation, also apply where the kinetic energy is an anisotropic function of velocity. Appendix 2
supplies two checks on the calculations in section 3. Appendix 3 elaborates and generalises
an issue arising in section 3, concerning angle variables in the plane and ‘unwrapped’ on a
helicoid. Appendix 4 explores the continuity relation between the flow velocity and its density
for steady flows.

We emphasise that we are not proposing quantum curl force dynamics as a fundamental
alternative to well-established standard quantum physics. Rather, we regard it as a formalism
worth exploring, which could have application as a higher-level approximate (‘effective’, or
‘emergent’) theory, as for classical curl forces [6]. We are also agnostic on questions of inter-
pretation, for example concerning the physical meaning of the trajectories in conventional
quantum mechanics or our generalisation to curl forces; we employ Madelung’s formulation,
and do not discuss the philosophical aspects commonly considered in ‘Bohmian mechanics’
[15]. Nor will we be concerned with themathematical subtleties of the precise relation between
the Madelung and Schrödinger pictures, well explored elsewhere [16–18].
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2. Formulation

We will simplify writing by indicating the arguments of functions only where necessary to
avoid confusion, and will use units where the particle mass, and also ℏ (except in section 3),
are unity.

We need to review theMadelung (hydrodynamic) picture [7, 15] of familiar quantummech-
anics. Waves satisfying the Schrödinger equation are written in the polar form

ψ = ψ (r, t) =
√
ρexp(iχ) , (2.1)

with ρ regarded as a density at position r and time t, and the phase gradient

u=∇χ (2.2)

as a quantum flow velocity. There are two fundamental differences from classical Hamiltonian
particle dynamics. First, the flow describes a family of trajectories: u is a flow field, depending
on r and t, not the velocity of an isolated single trajectory. Second, the dynamics is supple-
mented by the force from a quantum potential. Thus

dtu= ∂tu+u ·∇u= F−∇VQ ,

where F=−∇VandVQ =−
∇2√ρ
2
√
ρ
. (2.3)

Introducing VQ is fundamental because it incorporates nonlocality (holism) into the
Madelung formulation (trajectories in the family represented by the velocity field u(r) are
connected by the underlying Schrödinger equation, in contrast with Newtonian trajectories,
where the velocity can be specified separately at each point). Temporarily reinstating physical
units, VQ = ℏ2

(
∇2√ρ

)
/
(
2m

√
ρ
)
, i.e. proportional to ℏ2.Recently, there has been a revival of

interest in the quantum potential, with applications to thermodynamics and information theory
[19, 20], superoscillations [21, 22], and trajectories in optical beams [23].

The flow u and density ρ are connected by the continuity equation

∇· (ρu) =−∂tρ . (2.4)

The fact that u is a phase gradient implies that the flow is irrotational, i.e. the vorticity ω
vanishes:

ω ≡∇× u= 0, (2.5)

except at zero lines of ψ , around which, to ensure that ψ is singlevalued [11, 16],
˛
u · dr= 2nπ . (2.6)

This completes the reprise of the Madelung formalism.
Our proposed quantum curl force generalisation retains the picture of a flow field ρ, u and

the continuity equation (2.4), which for steady flows is explored further in appendix 4. We
also retain (2.3), with the fundamental difference that now F can be a curl force as in (1.1), i.e.
F ̸=−∇V. We also discard the circulation condition (2.6). This is important: in the Madelung
formulation of conventional quantum (and more generally wave) physics: velocity fields asso-
ciated with singlevalued wavefunctions can possess vorticity in the form of isolated vortex
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lines [13, 24–29], but these are constrained by (2.6); by contrast, although the velocity fields
we consider here can possess isolated vortex lines (as in section 3), their circulation is not so
constrained.

To understand an important implication of quantum curl force dynamics, we use the identity

u ·∇u=−u×ω+
1
2
∇u2. (2.7)

Thus the external force that would generate a given flow is

F=−u×ω+ ∂tu+∇
(
1
2
u2 +VQ

)
, (2.8)

i.e.

∇×F=−∇× (u×ω)+ ∂tω . (2.9)

This involves only the velocity u and its vorticity ω, not the density ρ. If ω = 0, ∇×F= 0.
The important implication is that quantum curl forces cannot generate irrotational flows:
for quantum curl forces, (2.5) is violated. This further implies that u is not a phase gradi-
ent as in (2.2), so there is no phase and therefore no singlevalued wavefunction satisfying a
Schrödinger equation: all that survives is the flow. As in the Madelung picture of standard
quantum mechanics, the field u= u(r, t) determines ‘quantum trajectories’ r(t)by

dtr(t) = u(r(t) , t). (2.10)

For the important class of steady (i.e. time-independent) flows, the underlying particle tra-
jectories are the streamlines of the velocity field u, along which particles move with speed |u|.
In this case, it follows from (2.9) that Beltrami flows [30], in which the vectors u and ω are
parallel, cannot be generated by curl forces.

Quantum curl dynamics can be regarded as the fourth level in a hierarchy:

Level 1. Classical conservative Newtonian dynamics. This is represented by the first of
equation (1.1) with F=−∇V, and quantum potential VQ = 0.

Level 2. Classical curl forces. This is both equations in (1.1), also with VQ = 0.
Level 3. Quantum Madelung dynamics. This is (2.3), i.e. (1.1) with F=−∇V and VQ ̸= 0.
Level 4. Quantum curl dynamics. This is the new level: (2.3) with VQ ̸= 0 and also F ̸=−∇V.

There is a fundamental difference between the quantum trajectories generated by (2.10)
and the corresponding classical trajectories. Classical trajectories in the family representing a
quantum state can cross in spacetime; in the semiclassical description, such crossings underly
quantum interference. But in families of quantum trajectories, including those generated by
curl forces, such crossings are avoided, because the velocity u is uniquely defined for each r, t.
Instead of crossing, quantum trajectories typically represent interference by exhibiting undu-
lations. This will be illustrated in section 3. (To avoid confusion, we note that if the velocity
field is time-dependent the tracks of the quantum orbits can cross in r space; this simply cor-
responds to orbits reaching the same point at different times, at which u is different; this too
will be illustrated in section 3.)

The undulation phenomenon is ubiquitous in the physics of waves, not restricted to quantum
mechanics, and occurring also in quantum curl force dynamics. Undulations were conjec-
tured by Newton [31] in connection with the intensity oscillations associated with optical edge
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diffraction [32], with rays described as having ‘…a motion like that of an eel’ [33, 34] (for
undulations in 2-slit interference, or waves from two sources, see [15], figure 3 of [32], and
section 2 of [12]). In modern terminology, these different interpretations of interference—
semiclassical superposition, and undulations of quantum trajectories—can be expressed in
standard wave physics as follows: phase is a nonlinear function of its wavefunction, so the
phase gradient of a superposition is different from the superposition of phase gradients [32].)

A cautionary remark. The first equality in (2.3), combined with (2.7), can be written

dtu= E+u×B, (2.11)

involving two fields E and B and their potentials, connected by the vector field u:

B=∇×A, with A=−u and E=−∂tA−∇Φ , withΦ =−1
2
u2 . (2.12)

As has been noted [12, 13], this superficially resembles electromagnetism. The analogy is
misleading, for several reasons. First, the pair of equations (2.11) and (2.12) constitutes a tau-
tology: it is satisfied for any u and so cannot determine the (classical or quantum) velocity field
or its dynamics. To determine u, the contribution fromF−∇VQ must be included. Second, the
fields E and B do not satisfy Maxwell’s equations. Third, the seemingly natural Hamiltonian

H=
1
2
(p−A)2 +Φ (2.13)

generates dynamics different from (2.11).

3. Example: azimuthal force with curl nonzero at a single point

3.1. Formulation

This is the two-dimensional force (in plane polar coordinates r,θ)

F=
eθ
r
, (3.1)

in which here and hereafter e will denote unit vectors. (A coefficient modifying the strength
of F can be eliminated by scaling r and t in the Schrödinger equations to follow.) F is a curl
force with circular symmetry (i.e. invariant under rotations). The curl is nonzero only at r= 0;
the circulation around any loop surrounding the origin is constant, so, from Stokes’s theorem,

∇×F= 2πδ (r) . (3.2)

Excluding the origin, F can be written as the minus the gradient of the scalar potential

V(r) =−θ, (3.3)

whose domain is the full line −∞< θ <∞, i.e. including windings, not the plane angle 0⩽
θ < 2π . For this case, in contrast to general curl forces, there is a Hamiltonian; excluding
r= 0, this is

H1 =
1
2
p · p− θ. (3.4)
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Earlier [1], we considered the classical particle dynamics generated by H1, and will return
to this later. Our main concern here is the quantum dynamics. For this particular curl force,
where ∇×F is concentrated at a point, there is an underlying Schrödinger equation, namely
(for particle mass defined as unity)

iℏ∂tψ = −1
2
ℏ2∇2ψ − θψ , (3.5)

in which we now write ℏ explicitly. But the Hamiltonian H1 is not singlevalued in θ, i.e. the
potential violates the circular symmetry of the force, reflecting its nonzero curl. The solutions
of (3.5) are not plane-periodic but are smooth and singlevalued on the helicoid, with windings
specified by the integer (θ− θ (mod2π ))/(2π ); see appendix 3 for more discussion.

Circular symmetry can be restored by the time-dependent gauge transformation

ψ = exp

(
i
θt
ℏ

)
Ψ , (3.6)

where Ψsatisfies

iℏ∂tΨ = H2Ψ =
1
2
(p−A)2Ψ =

1
2

(
−iℏ∇+

teθ
r

)2
Ψ

=−ℏ2

2r
∂rr∂rΨ − ℏ2

2r2
∂θθΨ − iℏt

r2
∂θΨ +

t2

2r2
Ψ . (3.7)

Physically, the time-independent curl force HamiltonianH1, whose solutions are singlevalued
on the helicoid but not the plane, has been replaced by the time-dependent Hamiltonian H2

(3.7); this is periodic in θ and its solutions are singlevalued on the punctured plane.
The Hamiltonian H2 represents an intriguing variant of the Aharonov–Bohm effect: it cor-

responds, as noted earlier [1], to the motion of a charged quantum particle in the presence of
a line of magnetic flux whose strength increases linearly with time, located at the origin. The
relation between solutions of the ‘unwrapped’ Hamiltonion H1 and those of the periodic H2 is
the Poisson sum formula, elaborated and described in a more general context in appendix 3.

With circular symmetry restored and θ eliminated, the HamiltonianH2 is separable in r and
θ, so Ψ can be written as a superposition of partial waves. Reinstating the variables,

Ψ (r,θ, t) =
∑
m

cm exp(imθ)R(r, t+mℏ) , (3.8)

where the radial wavefunction satisfies

iℏ∂tR(r, t) =−ℏ2

2r
∂r (r∂rR(r, t))+

t2

2r2
R(r, t) . (3.9)

In the representation H1, the angular momentum is

ℏ∂θ argψ = mℏ+ t. (3.10)

Thus the circulation condition (2.6) is violated. There is no vector potential, so the kinetic and
canonical angular momenta are equal. In the representation H2, ℏ∂θ argψ = mℏ is the con-
served canonical angular momentum, and by adding −rA · eθ = t the gauge-invariant kinetic
angular momentum (3.10) is regained, and the circulation condition (2.6) restored. The gauge-
invariant angular momentum (3.10) is not conserved; as noted earlier in the classical case,
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this increases linearly in time, illustrating the non-applicability of Noether’s theorem in the
presence of the curl force (3.1) which possesses rotational symmetry.

Since the angular quantum number appears only in the combination t+mℏ, we need con-
sider only m= 0; the amplitudes of the other partial waves in the superposition (3.8) can be
obtained simply by time translation.

The gauge transformation (3.6) has replaced the Hamiltonian H1, whose Schrödinger
equation (3.5) is separable in r, t but not r,θ, by the Hamiltonian H2, whose Schrödinger
equation (3.7) is separable in r,θ but not r, t. This is a simplification because the radial
equation (3.9) is first-order in t, which can be more easily solved numerically for any initial
state R0 (r)≡ R(r,0).

The quantities of interest in our quantum curl theory are the density ρ and the velocity u.
For the partial wave m, these are

ρ= |R(r, t)|2, u= ℏ∇argψ = ℏ∂r argR(r, t)er+
t
r
eθ (3.11)

with t→ t+mℏ. The velocity u is not irrotational; its vorticity ω, reflecting its origin in the
curl force (3.1), is concentrated at the origin:

ω = 2π tδ (r) (3.12)

(cf. the corresponding formula (3.2) for ∇×F). Concentrated vorticity (i.e. vortex lines in
three-dimensional space) has been studied [13] for the special case where its strength is time-
independent, in contrast to (3.12).

3.2. Radial dynamics

To illustrate these results, we invoke separability and consider first the r dynamics, and incor-
porate θ later. As a convenient normalised initial state, we choose a semiclassically narrow
Gaussian at r= r0, approximating δ (r− r0). In the position and momentum (=velocity) rep-
resentation, and with generic constants K,

R0 (r) = Kexp

(
− (r− r0)

2
Π 2

2ℏ2

)
,

R̄0 (v0) = Kexp
(
−i r0v0

ℏ

)
exp

(
− v20

2Π 2

)
. (3.13)

This choice has the advantage that the velocity intensity distribution does not involve ℏ, so the
initial state corresponds classically to a distribution concentrated on the v axis in state space
r,v, with velocity (momentum) width Π . Scaling of (3.9) enables any r0 to be transformed to
r0 = 1.

We will compare the classical and quantum trajectories. We showed [1] that the classical
Newtonian trajectories r(t) are determined by

r(t)3∂ttr(t) = t2,r(0) = 1, ∂tr(0) = v0 . (3.14)

This represents a family of trajectories, parameterised by v0. The quantum radial velocity at
the spacetime point r, t is (cf (3.11))

u(r, t) = ℏ∂rarg R(r, t) = ℏ Im
(
∂rR(r, t)
R(r, t)

)
, (3.15)
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Figure 1. (a), (c): Classical trajectories; (b), (d): quantum trajectories, for ℏ= 1
2 ,Π =

40; (c), (d) are magnifications of (a), (b).

where R(r, t) is determined by (3.9) and the first of (3.13). Then the quantum trajectories r(t)
are the solutions of

dtr(t) = u(r, t) , r(t0) = r0, (0< t0 ≪ 1) (3.16)

for different values of r0. (The choice of small but nonzero t0 reflects the very rapid spread of
the wave away from r= 1; the results are not sensitive to t0.)

Figure 1 illustrates the quantum and classical evolutions. Figure 1(a) shows classical paths,
each calculated from (3.14) for a given value of the parameter v0 . Through each spacetime
point in the wedge-shaped region in figure 1(a), bounded below by a caustic and above by a
cutoff in v0, two classical paths cross. These crossings give rise to the Moiré pattern, whose
details depend on the choice of v0 values; we chose −15⩽ v0 ⩽ 15 with values separated by
1/4. The crossings are clearly visible in the magnification in figure 1(c).

The quantum trajectories are entirely different: as described earlier, they do not cross. As
figure 1(b) shows, they gather into bunches as t increases, reflecting the quantum oscillations of
R(r, t). The magnification (figure 1(d)) shows that the bunching is associated with undulations
of the quantum trajectories (Newton’s eels).

Appendix 3 describes two numerical checks of these calculations.

3.3. Dynamics in the x,y plane

Again invoking separability, we now reinstate θ and look at classical and quantum trajector-
ies in the coordinate plane r= {x,y}= r{cosθ,sinθ}, corresponding to the r trajectories in
figure 1.
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Figure 2. Family of classical trajectories in {x,y} space for 0⩽ t⩽ 2, over (a) a smaller
range, (b) a much larger range.

For the classical trajectories, we choose the family parameterised by v0 as in (3.14) with
r0 = 1, ∂tr(0) = v0, and θ (0) = 0, ∂tθ (0) = 0, i.e. x(0) = 1, y(0) = 0, ∂tx(0) = v0, ∂ty(0) =
0. Thus, from the Hamiltonian (3.4) (conserved energy E), with angular momentum written
as t,

E= 1
2

(
(∂tr)

2
+ t2

r2

)
− θ , (3.17)

we fix E= v20/2 and get

θ (t) =
1
2

(
(∂tr(t))

2 − v20 +
t2

r(t)2

)
. (3.18)

Figure 2 shows this family in r space. Over the smaller range (figure 2(a)), they do not cross,
but over much larger ranges (figure 2(b)) they do (as discussed in section 2). As we showed
earlier [1], for vastly longer times, of order t∼ exp(4π 2n2)∼ (1.4× 1017 )n

2
, the trajectories

will wind n times, with more crossings. The full family of classical trajectories corresponding
to the quantum states we are describing are the patterns in figure 2, rotated, but it is clearer to
show the unrotated family.

The quantum trajectories r(t) are generated by (2.10) with the quantum velocity u(r, t)
in (3.11). Figure 3 shows the intensity, with the instantaneous velocity field superimposed, at
a particular time. The twirl of u near the origin reflects the underlying curl force, even for this
mode with m= 0, for which Ψ is independent of θ.

Figure 4 shows the quantum trajectories corresponding to figure 1, on three different scales.
On the largest scale (figure 4(a)), the undulations (Newton’s eels) are not discernable. Zooming
in (figure 4(b)), the undulations can be glimpsed for positive θ; and the crossing phenomenon
described earlier can be seen: more than one trajectory can wind and reach the same r at
different times, when u is different. Zooming further (figure 4(c)), Newton’s eels are clearer;
they form a hierarchy, with finer-scale undulations closer to the positive x axis.
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Figure 3. Intensity |R(r, t)|2 and quantum velocity field u(r, t), for t= 2, ℏ= 1
2 .

3.4. More general states

The initial state (3.13), concentrated near r= r0, generates only one of the infinitely many
solutions of the radial equation (3.9). Another interesting class of solutions is the set of instant-
aneous eigenstates of the operator in (3.9). These satisfy

−ℏ2

2r
∂r (r∂rRk (r, t))+

t2

2r2
Rk (r, t) = k2Rk (r, t) , (3.19)

with eigenvalue k2, and are the Bessel functions

Rk (r, t) = J|t|/ℏ
(√

2 krℏ

)
, (3.20)

possessing the unusual feature that the order increases linearly with time. These instantaneous
eigenstates (which are not square-integrable, concordant with the unbound nature of the cor-
responding classical curl force dynamics [1]), are the building-blocks of the adiabatic approx-
imation to the time-dependent solutions of (3.9).

4. Quantum curl force with velocity streamlines on cylinders

In this section, we will illustrate several features of quantum curl dynamics by contriving a spe-
cified steady three-dimensional velocity field with nonzero vorticity, and ‘reverse-engineering’
to determine the curl force that would generate it.

10
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Figure 4. Quantum trajectories r(t) for 0⩾ t⩾ 2, ℏ= 1/2, illustrated on three different
scales.

The field is

u= {1,−εzξ (x) ,εyξ (x)} . (4.1)

The parameter ε can be regarded as a perturbation, switching on the vorticity. Figure 5(a)
illustrates one of the streamlines for the case

ξ (x) = cosx,ε = 1. (4.2)

11
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Figure 5. Streamlines of the field (4.1) and (4.2).

The streamlines oscillate on cylinders centred on the x axis, and the complete field of
streamlines consists of copies, translated along x and rotated and expanded about the x axis.
Figure 5(b) shows a few rotated streamlines.

The vorticity is non-zero for finite ε:

ω = ε{2ξ (x) ,−yξ ′ (x) ,−zξ ′ (x)} . (4.3)

The field is not Beltrami:

u×ω = ε

{
−1

2
ε
(
y2 + z2

)(
ξ (x)2

) ′
, 2εyξ (x)2 + zξ ′ (x) , 2εzξ (x)2 − yξ ′ (x)

}
. (4.4)

In addition, the helicity field is nonzero:

u ·ω = 2εξ (x). (4.5)

A simple argument shows that this implies that u cannot rescaled to make F curl-free; such
‘decurling’ would lead to a velocity field with the same pattern of trajectories, differently
traversed.

The particular field u in (4.1) is divergenceless:

∇· u= 0, (4.6)

and so describes an incompressible flow. This is helpful in calculating the density ρ because
the continuity equation (2.4) simplifies to

(∇ρ) ·u= 0, (4.7)

12
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i.e. the gradient of the density is perpendicular to the flow. The calculation of densities com-
patible with velocity fields that are not incompressible is described in appendix 4. For the
field (4.1) and (4.7) is satisfied by any density of the form

ρ= f
(
y2 + z2

)
. (4.8)

A convenient choice is

ρ= exp
(
−
(
y2 + z2

))
, (4.9)

representing a localised quantum beam driven by a curl force centred on the x axis.
The corresponding quantum potential is

VQ =−
∇2√ρ
2
√
ρ

= 1− 1
2

(
y2 + z2

)
. (4.10)

This generates a quantum force repulsive away from the x axis, which might seem puzzling.
But note that, in the ‘reverse-engineered’ total external force (2.8), ∇VQ occurs with a +
sign, attracting the quantum state near the x axis. (A helpful non-curl, i.e. potential force,
example is the ground state of the 1D quantum simple harmonic oscillator. The wavefunction
is real, so the velocity u is zero: the Madelung particles are stationary, so the quantum poten-
tial must be repulsive in order to cancel the attractive external potential.) A similar example,
involving a linear potential, has also been interpreted in terms of the force from the quantum
potential [35].)

The external force (2.8), that would generate particles moving along the streamlines of
(4.1), is

F = ε
{
0,−εyξ (x)2 − zξ ′ (x)− y,−εzξ (x)2 + yξ ′ (x)− z

}
, (4.11)

correctly attracting the waves. And it is a curl force:

∇×F= ε

{
2ξ ′ (x) ,2εz

(
ξ (x)2

) ′
− yξ ′ ′ (x) ,−2εy

(
ξ (x)2

) ′
− zξ ′ ′ (x)

}
. (4.12)

Finally, the explicit form of the streamlines, solving

∂tr= u, (4.13)

for the field (4.1) and the special case (4.2), is (using x= t because ux = 1), is

r= {x, ccos(γ+ sinx) ,csin(γ+ sinx)} , (4.14)

where the amplitude c and phase γ are real.
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The contrived velocity field (4.1) lacks the ‘Newton’s eel’ undulations characteristic of
Madelung streamlines, described in section 2 and illustrated in section 3; this demonstrates
that there are quantum curl forces without these undulations.

5. Concluding remarks

The Madelung picture of quantum mechanics does not explicitly refer to a Schrödinger
equation or a wavefunction. It has been argued [36] that in a counterfactual history, in which
the wave equation had been discovered later, the Madelung representation (with the Bohmian
interpretation) might be today’s default picture. But of course there is a wave underlying the
Madelung picture; its presence is betrayed by the singlevaluedness condition (2.6).

In our proposed generalisation to quantum curl forces, by adding the quantum potential to
classical curl dynamics by analogy with the Madelung procedure for potential forces, there is
in general no underlying singlevalued wavefunction. (The exceptional case studied in section 3
does involve a wavefunction, but before the gauge transformation it is not singlevalued in the
plane.) In our exploration of this generalisation, we gave examples where it was not necessary
to solve the nonlinearly coupled continuity and velocity equations (2.4) and (2.8) for a general
curl force. Instead, in section 3 we were able to adapt standard quantum techniques to the
unusual situation where the curl of the force was concentrated at a point, interpreting this
as an unfamiliar time-dependent Aharonov–Bohm system. And in section 4 we specified the
velocity field and by reverse-engineering determined the curl force that would generate it. The
general case, for which these strategies are unavailable, seems difficult; it deserves further
study.

A possible experimental implication of the quantum generalisation involves the forces exer-
ted by light waves on small dielectric polarisable particles with complex polarisability α.
Classically, these forces are of two kinds [37, 38]. There is the gradient force employed for
trapping the particles; this is proportional to Reα. And there is a curl force (in optical termin-
ology it is the ‘scattering force’), proportional to Imα. As discussed elsewhere [6], there is no
contradiction in the fact that curl force dynamics is nondissipative even though Imα represents
absorption by the particle.

For a monochromatic electric field represented by a complex position-dependent function
E, this curl force is proportional to

Imα Im [E∗ · (∇)E] , (5.1)

so its curl is proportional to

Imα Im [∇E∗ · ×∇E] (5.2)

where the scalar product · links E∗ and E and the vector product × links ∇ and ∇. (We
note that (5.1) and (5.2) have the same forms as the geometric phase one-form and two-form
respectively [39, 40].)

Quantum curl dynamics would correspond not to a single orbit of the polarisable particle
but to a family of trajectories (without a curl force, this would correspond to a wavepacket).
The family would depend on the initial conditions. Where the particles are detected would
depend on which trajectory in the family is selected randomly.
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Appendix A Anisotropic kinetic energy

It suffices to see how the Madelung quantum procedure, and its curl force extension,
work, with slight modification, for the simplest anisotropic Hamiltonian: steady states of a
2D Hamiltonian in free space, with coordinates r= {x,y} and momenta p= {px,py}. The
Hamiltonian is

H=
1
2

(
ap2x + 2bpxpy+ cp2y

)
=

1
2
(pxpy)M

(
px
py

)
, where M=

(
a b
b c

)
. (A1.1)

(We studied this classically in [41].) The Schrödinger equation (which could for example also
describe optics in a uniform anisotropic medium), is conveniently written as

−
(a∂xx+ 2b∂xy+ c∂yy)ψ

2ψ
= E . (A1.2)

The solution can be written in the polar form (2.1). For this anisotropic case, there are two
distinct velocity fields: the phase velocity u, which in this case is the canonical momentum

u= p=∇χ, (A1.3)

and the group velocity v, which is the kinetic momentum—the physical velocity of particles
in the flow field u:

v=∇pH=Mu= {aux+ buy,ux+ cuy} . (A1.4)

The desired Newtonian acceleration involves the kinetic (i.e. physical) v, not the
canonical u:

dtv= (v ·∇)v . (A1.5)

Substituting (2.1) into (A1.2) and evaluating the l.h.s. leads to an expression with a real part
and an imaginary part. The imaginary part must be zero, leading to the continuity equation

∇· (ρv) = 0, (A1.6)
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also involving v rather than the canonical u.
The real part of (A1.2) leads (after some calculation) to

1
2
u · v+VQ = E, (A1.7)

in which the natural anisotropic Madelung quantum potential is

VQ =− 1
2
√
ρ
(a∂xx+ 2b∂xy+ c∂yy)

√
ρ . (A1.8)

The r.h.s. of (A1.7) (energy) is constant, so the derivatives of the l.h.s with respect to x and y
are zero.

A crucial step depends on the identity

(v ·∇)v=M∇
(
1
2
u · v

)
=

(
a∂x+ b∂y
b∂x+ c∂y

)(
1
2
u · v

)
, (A1.9)

whose proof depends on the irrotationality of u (cf (A1.3)). It leads to the main result, that the
Madelung force (acceleration) of particles moving along the streamlines of v is

dtv= F=−M∇VQ. (A1.10)

Explicitly,(
dtvx
dtvy

)
=

1
2
√
ρ

(
a2∂xxx++3ab∂xxy+

(
2b2 + ac

)
∂xyy+ bc∂yyy

ab∂xxx+
(
2b2 + ac

)
∂xxy+ 3bc∂xyy+ c2∂yyy

)
√
ρ . (A1.11)

This result gives theMadelung trajectories for general quantum states governed by an aniso-
tropic Hamiltonian. The quantum curl force version would correspond simply to adding a curl
force to F in (A1.10).

Appendix B Two checks on calculations in section 3

The first check is a comparison of the solution of the radial equation (3.9) with its semiclassical
approximation. For each r, t, the semiclassical contributions are found by evolving points with
initial radial velocity v0 on the line r= 1, for time t, as a curve in the r,v, plane. Figure 6 shows
the curve. The explanation of the hairpin shape is that points on the initial curve with v0 > 0
move towards increasing r, and for points with v0 < 0 r initially decreases before turning and
then increasing (i.e. v(t) is initially negative, then positive).

For each position r and time t, standard semiclassical theory [42, 43] indicates that there
are interfering contributions from the two branches v0 = v0± (r, t) , which are the solutions of

r(t,v0±) = r. (A2.1)

The intensity of each contribution is 1/ |∂v0r(t,v0±)| weighted by the modulus of the initial
momentum distribution in (3.13), and its phase γ± is the time integral of the Lagrangian
(kinetic-potential energy, cf (3.9)), in units of ℏ:

γ± (r, t) =
1
2ℏ

tˆ

0

dτ

(
(∂τ r(τ,v0±))

2 − τ 2

r(τ,v0±)
2

)
. (A2.2)
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Figure 6. Phase space curve at t = 2, evolved from r = 1 at t = 0 for different values
of initial radial velocity v0; the branches meet at the caustic singularity (black square at
r≈ 1.811).

Thus the semiclassical intensity is

Isc (r, t) =
K
r

∣∣∣∣∣∣∣
exp
(
iγ− (r, t)− v20−

2Π 2

)
|∂v0r− (t,v0)|

1
2

+ i
exp
(
iγ+ (r, t)− v20+

2Π 2

)
|∂v0r+ (t,v0)|

1
2

∣∣∣∣∣∣∣
2

, (A2.3)

in which the factor i is the Stokes multiplier [43] between the contributions, and the factor 1/r
arises from the polar coordinates.

Figure 7 illustrates the accuracy of the approximation. As always, the semiclassical approx-
imation fails at the caustic singularity where the branches in figure 6 meet. This is easily
fixed by the uniform approximation [44] in terms of the Airy function [45, 46]—now standard
(section 36.12 in [47]), so it is not necessary to give details.

The second check is the continuity equation (2.4) associated with the one-dimensional r
dynamics (3.9) and (3.15), namely

1
r
∂r

[
r|R(r, t)|2u(r, t)

]
=−∂t|R(r, t)|2 . (A2.4)

Figure 8 shows the two members of this equation as a function of r for fixed t, showing com-
fortable agreement.

Appendix C Wrapped and unwrapped angles

This refers to section 3 and the potential (3.3), in which the domain of θ is the full line−∞<
θ <∞, i.e. including windings, not the plane angle 0⩽ θ < 2π . Solutions of the Schrödinger
equation (3.5) are singlevalued on the helicoid−∞< θ <∞, 0< r<∞, and solutions of the
gauge-transformed Schrödinger equation (3.7) are smooth and periodic on the punctured plane
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Figure 7. Comparison of the exact wave intensity |R(r, t)|2 (solution of (3.9)) (red
curve) with the semiclassical approximation (A2.3) (dashed black curve), for t= 2, ℏ=
1
4 ,Π = 40; (a) shows the caustic singularity of the approximation, at r= 1.811; (b)
magnification of (a).

Figure 8. The two members of the continuity equation (A2.4), for t= 2,ℏ= 1.
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0⩽ θ < 2π , 0< r<∞. Connecting the two interpretations of the angle is the Poisson sum
formula [47, 48]. Any periodic function can be expressed as a superposition of the windings
of an unwrapped (i.e. not periodic) function:

ψ periodic (θ) =
∞∑

m−∞
c(m)exp(imθ)

=
∞∑

n−∞

∞̂

−∞

dµc(µ)exp(iµ(θ+ 2mπ ))

=
∞∑

n=−∞
ψ unwrapped (θ+ 2nπ ) , (A3.1)

where

ψ unwrapped (θ) =
∞́

−∞
dµc(µ)exp(iµθ) (A3.2)

and c(µ) is any reasonable interpolation of c(m).
In physics, Poisson summation describes a general phenomenon: representing a sum over

discrete eigenvalues as a sum over topologies. In the present case, the eigenvalues are angular
momenta and the topologies are windings. Related examples of this association are the ‘many-
whirls’ representation of the Aharonov–Bohm wavefunction [49, 50] and potential scattering
by spheres [43, 51, 52]. In waveguides [53], the eigenvalues are modes, and the topologies are
bouncings of rays at the walls. In electron microscopy of crystals [54], the eigenvalues denote
Blochwaves and the topologies are undulations of classical paths. In the quantummechanics of
classically integrable systems [55], the eigenvalues are energies and the topologies are classical
periodic orbits. In the optical Talbot effect [56, 57], the eigenvalues label diffracted beams and
the topologies are image repetitions.

Appendix D Determining ρ from u for steady flows

For steady flows, the continuity equation (2.4) is

∇· (ρu) = u ·∇ρ+ ρ∇· u= 0 . (A4.1)

For divergenceless flows, ρ can be any function constant along streamlines of u, as in the
example of section 4. The more interesting case is ∇· u ̸= 0. Then (A4.1) describes the vari-
ation of ρ along u but says nothing about the variation of ρ across the streamlines of u. Any
solution of (A4.1) can be multiplied by any solution ρ0 of u ·∇ρ0 = 0. To get the contribution
that depends on ∇· u, we note that

u ·∇= u∂s , (A4.2)

where s is distance along a streamline. Therefore the solution of (A4.1), after writing it in the
form

u ·∇ logρ= u∂s logρ=−∇ · u, (A4.3)

19



J. Phys. A: Math. Theor. 56 (2023) 485206 M V Berry and P Shukla

is

ρ= ρ0 exp

(
−
ˆ r

r0

ds
∇· u
u

)
= ρ0 exp

(
−
ˆ r

r0

dr ·u∇· u
u2

)
, (A4.4)

in which the integration path is along the streamline containing the point r.
Integration along the streamline is important, because the integral depends on the path if

∇×
(
u
∇· u
u2

)
̸= 0 , (A4.5)

which is usually the case. This has an important implication for flows u containing streamlines
in the form of closed loops. Then ρ cannot be singlevalued: around the loop; ρ changes by the
factor

ρfinal
ρinitial

=

(
−
˛

dr ·u∇· u
u2

)
= exp

(
−
˜

dS ·∇×
(
u∇·u

u2
))

(A4.6)

where the final integration is over any surface spanning the closed streamline.
Here are three 2D examples illustrating the formalism.

Example 1. Shear flow. This velocity field (which for general h possesses both divergence and
curl), and the classical curl force that generates it (the quantum potential is not relevant here),
are

u= h(x,y)ex, F= (u ·∇)u=

{
1
2
∂x
(
h2
)
,0

}
, (A4.7)

so

ω =−∂yhez, ∇×F=−(∂xh∂yh− h∂xyh)ez . (A4.8)

In (A4.4), the integration is along x and the integrand is

∇· u
u

=
∂xh
h

= ∂x logh, (A4.9)

so the density is (writing the arguments explicitly)

ρ(x,y) =
ρ0 (y)
h(x,y)

, i.e. ρu= {ρ0 (y) ,0} (A4.10)

whose divergence vanishes, so continuity is satisfied.

Example 2: Radial flow without rotation symmetry. This is (using polar coordinates)

u= g(θ){x,y}= rg(θ)er. (A4.11)

For general g this has both div and curl:

∇· u= 2g(θ) ,∇× u=−g ′ (θ)ez . (A4.12)

It is generated by a classical curl force

F= (u ·∇)u= r(g(θ))2er (A4.13)
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in which

∇×F=−
(
g2
) ′
ez . (A4.14)

In (A4.4), the integration is along r and the integrand is

∇· u
u

=
2
r
, (A4.15)

so the density is (again writing the arguments explicitly)

ρ(r,θ) =
ρ0 (θ)

r2
, i.e ρu=

ρ0 (θ)g(θ)
r2

{x,y}= ρ0 (θ)g(θ)
r

er, (A4.16)

whose divergence vanishes, so continuity is satisfied.

Example 3: The simplest nontrivial azimuthal curl force. This is

F= eθ = ∂ttr=
1
r
{−y,x} (A4.17)

and

∇×F=
ez
r
. (A4.18)

The dynamics is exactly solvable (it is the special case µ= 0 in [1]): in polar coordinates,

r(t) =
t2

3
√
2
, θ (t) =

√
2log t . (A4.19)

Differentiation leads naturally to a velocity field that is a function of position rather than t:

u= 21/4
√
r
3

{√
2er+ eθ

}
=

21/4√
3r

{
x
√
2− y,x+ y

√
2
}
. (A4.20)

This has nonzero curl and divergence

∇× u= ω =

√
3

23/4
ez√
r
, ∇· u=

√
3

21/4
√
r
. (A4.21)

The unexpected feature of this example is that we can calculate the density ρ analytically,
using (A4.1) and (A4.4), involving ρ0 which is any function that is constant along streamlines.
Such a function is

ρ0 =
exp
(√

2θ
)

r
. (A4.22)

For the line integral in (A4.4), we use

dr ·u∇· u
u2

= udt ·u∇· u
u2

= dt∇· u=
3dt
t
, (A4.23)

giving the density

ρ=
ρ0
r3/2

(A4.24)
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where ρ0 is any function of (A4.22). The simplest choice is (A4.22) itself, for which

ρ=
exp
(√

2θ
)

r5/2
. (A4.25)

This density is not singlevalued, and indeed it cannot be made so by any choice of ρ0 for
which ρ is non-negative, because the integral involving∇· u in (A4.4) accumulates in a circuit
of the origin. It is interesting that although ρ is not singlevalued, the quantum potential derived
from it is singlevalued for some choices of ρ0 but not all. In particular, it is singlevalued for
the choice (A4.25):

VQ =
−∇2√ρ
2
√
ρ

=− 33
32r2

. (A4.26)

With the dynamics (A4.17) and (A4.19), the u, ρ pair (A4.20) and (A4.26) describes
two consistent classical fields. But when the quantum force is added to the azimuthal curl
force (A4.17), the resulting trajectories are different and no longer correctly linked to the tra-
jectories by continuity. Making them compatible seems a difficult nonlinear self-consistency
problem. Of course, reverse-engineering the pair (A4.17) and (A4.19) to correctly include the
force from the quantum potential can be achieved by replacing the ‘external’ force (A4.17) by

F= eθ +∇VQ, (A4.27)

but like all quantum curl reverse-engineerings this simply amounts to adding and subtracting
∇VQ. It misses the essential features of quantum curl dynamics when the external force is a
purely classical curl force, and−∇VQ is a kind of internal nonlocal essentially quantum force.
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