
A Geometric-
Phase Timeline
Global change 
without local 
change—a 
connecting idea 
in the physics of 
optical, quantum 
and other waves—
has a multistranded 
history spanning 
two centuries.

Michael Berry



A view near Skreen, in the west of Ireland, 
through a thin crystal sandwiched between 

crossed polarizers. The dark band across 
the interference fringes corresponds  

to a geometric phase of π.
M. Berry
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W aves are central to our understand-
ing of the physical world, and phase 
is the feature that distinguishes 
waves from classical particles. As 
waves evolve, 

their phases change, at rates that 
can themselves change when 
conditions change. In light, 
refracting materials or polarizers 
can change the phase; electro-
magnetic fields can change the 
phase of quantum charged par-
ticles; changing the depth of 
water can change the phase of 
waves on it.

It seems natural to calculate 
the total phase change at the end 
of a process by adding up all the 
local phase changes—calculat-
ing the optical path length or, 
more generally, integrating the 
instantaneous frequency. This “dynamical phase” 
can be regarded as a system’s partial answer to such 

questions as “How far, or for how long, have you trav-
eled?” But in many cases this answer is incomplete. 
There is an additional, geometric contribution to the 
phase—geometric in the sense of depending only on 

the sequence of changed condi-
tions, not on how fast the changes 
are made. It can be regarded as 
the system’s answer to “What 
changes have you experienced?” 
or “Where have you been?”

Elsewhere I have described 
how I found this geometric phase 
in 1983 (reported in a paper pub-
lished 40 years ago this month, 
in 1984), and how I subsequently 
unearthed partial anticipations 
of the idea. Here I will not give a 
detailed exposition of the theory 
underlying geometric phases or 
review the substantial theoreti-
cal and experimental literature 

about geometric phases in optics; others have done 
that. My aim is limited: to give my current, personal 
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A schematic of Fresnel–Arago experiments underlying their fifth law of 
polarized-light interference, with fringes relatively shifted by π.

The geometric 
phase contribution 
can be regarded 
as the system’s 
answer to “What 
changes have you 
experienced?” or 
“Where have you 
been?”

M. Berry / P. Saunders
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perspective by revisiting the history, pre- and post-
1983, including important early discoveries.

Early phases in polarization optics
Following Thomas Young’s discovery of the inter-
ference of light waves, detailed experimental and 
theoretical studies by Augustin-Jean Fresnel and 
Dominique François Jean Arago culminated in 1819 
in their five laws governing the interference of polar-
ized light. As was pointed out recently, the fifth law, 
almost never mentioned in textbooks, can be regarded 
as the first notion of geometric phase.

It can be described by comparing two experi-
ments, following Oriol Arteaga. In both, a beam 
of horizontally polarized light is split into two 
beams, polarized at +45˚ and –45 ,̊ with the –45˚ 
beam phase-shifted by δ. The difference is in the 
interference generated by subsequent analysis to a 
common polarization. In the first experiment, the 
common polarization is horizontal, and the inten-
sity of their interference is proportional to cos2(½δ). 
In the second experiment, the common polarization 
is vertical, and the intensity of their interference is 
proportional to sin2(½δ). There is a relative phase 
shift of 180˚ between the interference fringes in the 
two experiments; as will be explained later, this 
corresponds to a geometric phase of π. 

On to the early 1830s, and William Rowan Ham-
ilton’s prediction of conical refraction: Light, passing 
through a slab of biaxially refracting crystal cut 
perpendicular to one of its optical axes, would 
emerge as a hollow cylinder, visible as a bright ring 
on a screen. Its observation by Humphrey Lloyd 
created a sensation and made Hamilton instantly 
famous. Lloyd noticed that the ring system—soon 
resolved into two rings—is linearly polarized, with 

the polarization direction changing by 180˚ around 
the ring; as will be explained later, this too corre-
sponds to a geometric phase of π. 

Fast-forward to 1926, and the geometer Ettore 
Bortolotti’s identification of a feature that would 
become central to geometric phases. This was that 
Maxwell’s equations imply that the electric and 
magnetic fields of light are parallel-transported as 
its direction changes. The observation was an appli-
cation of mathematics discovered by Carl Friedrich 
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A schematic of a conical-refraction experiment with M. Jeffrey. Laser light passes a circular polarizer, focused by a lens 
onto a biaxial crystal (KGd(WO4)2) and magnified by a second lens onto a screen. The polarization rotation around the 
Hamilton–Lloyd rings exhibits the geometric phase π.
M. Berry / P. Saunders

Vladimirsky predicted that the polarization of a twisted 
light beam would turn by the solid angle through which the 
tangent has rotated—a prediction later verified by A. Tomita 
and R. Chiao with laser light in an optical fiber.
M. Berry / P. Saunders
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Gauss a century earlier, concerning vectors trans-
ported around circuits on curved surfaces: Even 
if the vector is never twisted about the local sur-
face normal, it will return pointing away from its 
starting direction—global change without local 
change. If the surface is a sphere, the direction has 
turned by the solid angle subtended by the circuit 
at the center.

The parallel transport of electromagnetic fields 
was rediscovered in 1938 by Sergei Mikhailovich 
Rytov, prompting his student Vassily Vladimirsky 
to make a prediction in 1941. If a beam of polarized 
light is twisted so that its direction at the end is the 
same as at the start, its polarization direction will 
have turned by the solid angle through which the 
beam’s tangent has turned. In 1986, Vladimirsky’s 
classical-optics phenomenon was observed in laser 
light in a coiled single-mode optical fiber and reinter-
preted as the quantum geometric phase for a stream 
of spin-1 photons (see figure, p. 45).

Pancharatnam’s contribution
It’s 1956. Enter Sivaramakrishna Pancharatnam,  
a brilliant nephew of the optics Nobelist Chan-
drasekhara Venkata Raman. Revisiting the work 
of Fresnel and Arago (though apparently unaware 
of their fifth law), Pancharatnam made a seminal 
contribution, unappreciated for three decades, to 
our understanding of polarized-light interference.

Pancharatnam defined the phase difference 
between two polarization states, A and B, as the 
phase of their overlap (scalar product). It follows 
that A and B are “in phase” if the intensity of their 
superposition A + B is maximal. Importantly, he 
showed that this relation—Pancharatnam’s connec-
tion—is nontransitive: If A is in phase with B and B 
is in phase with C, A need not be in phase with C.

Pancharatnam interpreted polarization states as 
points on the Poincaré sphere. His central result is 
equivalent to the following: In a cycle of polariza-
tions A –› B –› C –› A, where the legs are geodesics on 
the sphere, the phase difference between the final 
and initial states A—the geometric phase—is minus 
half the solid angle of the spherical triangle ABC 
on the Poincaré sphere. Pancharatnam’s solid-angle 
result generalizes immediately to a circuit where 
the polarization changes continuously. His version 
of geometric phase immediately explains the dif-
ference between the Fresnel–Arago experiments 
underlying their fifth law.

Explanation of the Fresnel–Arago π geometric phase by 
Pancharatnam’s half-solid-angle on the Poincaré sphere, 
following O. Arteaga. Top: First experiment, where the 
phase difference is equivalent to the self-retracing 
circuit H/+45 /̊H/–45 /̊H (i.e., 1–2–3–4–5–6–7–8–1 
on the sphere), with solid angle zero. Bottom: Second 
experiment, where the phase difference is equivalent 
to the circuit H/+45 /̊V/–45 /̊H, with solid angle of a 
hemisphere (yellow), i.e., 2π.

Pancharatnam’s law: Polarization transported around 
a circuit on the Poincaré sphere acquires a geometric 
phase of half the circuit’s solid angle (R, L, H and V 
represent right- and left-circular and horizontal- and 
vertical-linear polarizations).
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Quantum chemistry and geometric 
magnetism
At first encounter, the next contribution, in 1958, 
appears unrelated. Christopher Longuet-Higgins, 
Maurice Pryce, Uno Öpik and Robert Sack were study-
ing the quantum chemistry 
of molecules, in part icu-
lar the Born–Oppenheimer 
approximation. In that approx-
imation, the heavy nuclei 
are regarded as frozen while 
the swift electrons solve 
their Schrödinger equation, 
resulting in instantaneous 
electron states and energies 
depending parametrically 
on the nuclear configura-
tion. Longuet- Higgins and 
colleagues discovered that 
around nuclear configurations 
for which the electron energies 
are degenerate, the electron wavefunctions change 
sign. This corresponds to another π geometric phase. 

In a fundamental shift of emphasis, they realized 
that for the total wavefunction of the molecule to 
be single-valued, this π phase of the electrons must 
be incorporated as a continuation condition on the 
Schrödinger equation for the slow nuclei—thereby 
modifying the molecule’s vibration–rotation levels. 
Such “geometric reactions” would become a major 
theme in geometric-phase-related research.

A year later came another apparently unrelated 
development. Yakir Aharonov and David Bohm 
calculated the scattering of electrons from a line of 
magnetic flux from which they are shielded. They 
discovered that even though the electrons feel no 
magnetic or electric field, they experience a phase 
shift from the inaccessible flux. This Aharonov–Bohm 
(AB) effect is now understood as a geometric phase 
of electrons circling the flux.

In a major development in 1979, Chester Alden 
Mead and Donald Truhlar generalized the π phase 
of Longuet-Higgins et al. Mead and Truhlar discov-
ered that the reaction of the geometric phase of the 
fast electrons on the slow nuclei that drive them is 
a velocity-dependent force of magnetic type. They 
described this “geometric magnetism” as the “molec-
ular Aharonov–Bohm effect.” 

The general geometric phase emerges
When I wrote my paper identifying the geometric phase 
in 1983, I was unaware of all previous work except the 
AB effect. My interest was in quantum waves (and by 
implication more general waves) evolving according to 

the time-dependent Schrödinger 
equation while driven by a Ham-
iltonian depending slowly on 
parameters R(t/T) = {X(t/T), Y(t/T) 
…}, with T large, so 1/T is a slow-
ness parameter.

The adiabatic theorem of Max 
Born and Vladimir Fock guar-
antees that a system starting in 
an eigenstate of the initial Ham-
iltonian will cling close to that 
eigenstate as it slowly evolves, 
and at the end of the cycle will 
be in the same state, apart from a 
phase factor. The dominant con-
tribution is the dynamical phase: 

the integral of the instantaneous energy, proportional 
to T. The leading-order correction is independent of 
T, and depends only on the geometry of the circuit 
in R space, not on the rate at which it is traversed; 
that is why I called it the geometric phase.

The simplest expression for the phase was as the 
integral of a quantity, called a connection (mathe-
matically, a 1-form) around the circuit. But more 
fundamental was the representation, obtained from 
Stokes’ theorem, inspired by analogy with Faraday’s 
law: The geometric phase is the flux through the 
circuit of a quantity, later called curvature (mathe-
matically a 2-form), in R space. Most important are 
the points R where the evolving eigenstate is degen-
erate; there, the curvature possesses a singularity of 
monopole type. For a small planar circuit centered 
on a degeneracy, the geometric phase is π.

My emphasis on circuits arose from the fact that 
the overall phase for an eigenstate at R in parameter 
space can be chosen arbitrarily. This “gauge depen-
dence” is present in the geometric-phase connection 
but disappears when integrated around a circuit—the 
geometric phase is gauge-independent. The phase 
curvature is fundamental because unlike the connec-
tion it is gauge-independent everywhere in R space. 
In subsequent studies, particularly in polarization 
optics, gauge-independent geometric phases have 

Pancharatnam’s 
version of geometric 
phase immediately 
explains the differ-
ence between the 
Fresnel–Arago exper-
iments underlying 
their fifth law.
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been defined for open paths. These are equivalent to 
the geometric phases obtained by closing the path, 
with the final state defined as being in-phase, in 
Pancharatnam’s sense, with the state at the endpoint 
of the open path.

A simple example was the 
application to quantum spins S 
(integer or half-odd integer) in a 
state n (that is, n = –S, –S+1, …, S), 
with parameters R(t) representing 
a driving magnetic-field vector. 
The monopole generates a geo-
metric phase of –n times the solid 
angle enclosed by the circuit in 
R space. The analogy between 
the S = ½ case and Pancharat-
nam’s solid-angle formula was 
soon understood and explored 
in detail. Although photons are 
spin-1 particles, transversality 
implies that a beam’s polarization 
is represented by the two-state algebra of spin-½. And 
the Hamilton–Lloyd π phase was later explained as 
a degeneracy—at the center of the conical refraction 
ring in direction space—of a 2×2 matrix originating 
in Maxwell’s equations applied to a biaxial crystal.

From Barry Simon, commenting in 1983 on a 
preprint of my paper, came two insights. First, the 
underlying geometry is a physical application of the 
mathematics of fiber bundle theory, with the phase 
curvature identified as the curvature of the mani-
fold of parameters and the counting of degeneracies 
being related to the Chern class. Second, the phase 
curvature was central to the then-current research on 
the quantum Hall effect for electrons in solids. This 
kick-started an explosion of research in topological 
condensed matter that continues today. 

Extending geometric phase
It gradually emerged that the phase curvature appears 
throughout physics, in many guises. As well as its flux 
generating the phase, it is the Mead–Truhlar geometric 
magnetic field generating quantum reaction forces; 
this reappeared in optics, with geometric magnetism 
referred to as the “optical Magnus effect,” “spin-orbit 
effect of light” or “optical Hall effect.” The reaction of 
the polarization state on the position variables causes 
a shift in, for example, a speckle pattern in a multi-
mode fiber. The curvature also underlies the density 
of optical vortices and polarization singularities; it 

is the vorticity of the Poynting vector; and it deter-
mines nonconservative optical “curl forces” on small 
dielectric particles.

Developments soon followed. In the basic geo-
metric-phase theory, the state 
being cycled is nondegenerate. If 
a cluster of N instantaneous states 
is degenerate for all parameters, 
slowly cycling can generate tran-
sitions between states within the 
cluster. Instead of a phase factor, 
there is a geometric N×N unitary 
matrix. This is the “non-Abelian” 
case described in 1984 by Frank 
Wilczek and Anthony Zee.

In 1985, John Hannay dis-
covered a counterpart of the 
geometric phase in the classical 
dynamics of slowly cycled inte-
grable (that is, nonchaotic) bound 
systems. Such motion is described 

by angle variables. At the end of a cycle, “Hannay’s 
angles” give the geometric (slowness-independent) 
additional contribution to the accumulated angles. 
Semiclassical theory establishes the jth Hannay angle 
as minus the derivative of the geometric phase of the 
associated state with respect to the jth quantum num-
ber. Hannay’s angle provides alternative descriptions 
of the Foucault pendulum and the rotation angle of a 
precessing spinning-top. The counterpart of the quan-
tum geometric phase for chaotic classical dynamics 
was formulated with Jonathan Robbins, but it remains 
to be explored in detail.

Geometric phases are artifacts  
of separation
In an important study in 1987, Yakir Aharonov and 
Jeeva Anandan eliminated the slowness condition 
by calculating the geometric phase for states that 
are cycled exactly in the Hilbert space of states, 
rather than approximately in the space of a slowly 
changed Hamiltonian. I recognized the value of this 
formulation, but noted the absence of a prescription 
to generate exact cycling. Much later, I learned that 
there exist explicit Hamiltonian procedures to drive 
any prescribed sequence of states, including cyclic, 
at any speed.

Deeper consideration of the molecular quantum 
chemistry phase leads to a fundamental general 
insight. What we call parameters are themselves 

As Isaac Newton 
put it: “To explain all 
nature is too difficult 
a task for any one 
man or even for any 
one age. ’Tis better 
to do a little with 
certainty & leave the 
rest for others ...”
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dynamical variables; they cannot act on other parts 
of a system without themselves being acted on. If 
the Schrödinger equation for the complete molecule 
could be solved without parameters being separated, 
all observable quantum phenomena (energy levels, 
for instance, and reaction rates) could be calculated 
holistically, without considering the geometric phase. 
Therefore the geometric phase is an artifact—a conse-
quence of our decision to separate a system into parts.

So “in principle,” geometric phases can be elimi-
nated by including driving parameters when modeling 
a system. This does not mean that geometric phases 
are scientifically redundant, because “in principle” 
obscures scientific realities. In large molecules, exact 
quantum calculation, including electrons and nuclei 
together, is not currently feasible. Even if it became 
so, it would not provide the explanatory picture 
supplied by the Born–Oppenheimer approximation, 
extended to include the geometric phase. Moreover, 
in many experiments, especially in optics, control 
of the parameters involves laboratory equipment 
(such as polarizers and spatial light modulators) on 
which the reaction of light is undetectably weak as 
well as uninteresting.

Taken to extremes, the holistic approach would 
include the entire universe. But science succeeds by 
deciding what is relevant and neglecting what is not. 
As Isaac Newton put it: “To explain all nature is too 
difficult a task for any one man or even for any one 

age. ’Tis better to do a little with certainty & leave 
the rest for others that come after. …”

Nevertheless, in circumstances where geometric 
phases are useful, post-adiabatic approximations can 
be investigated. In 1987 I calculated phase corrections 
beyond geometric (of order 1/T, 1/T2, etc.) for the case 
where the slow driving occurs smoothly over infinite 
time. This revealed that the theory is asymptotic: The 
correction terms initially get smaller, but then diverge, 
reflecting the weak (of order exp[–1/T]) nonadiabatic 
transitions to other states. This has given rise to a 
great deal of physical mathematics. Very recently, I 
explored an exactly solvable case where the driving 
is a cycle of finite duration T; the series in powers of 
1/T converges, but the terms are multiplied by fast 
oscillations (for example, cos T), reflecting oscilla-
tions in the probability of transitions to other states.

Calculating the corresponding series of reac-
tion forces (post-Born–Oppenheimer in the case of 
molecules, and post-geometric magnetism) is much 
more difficult. Detailed exploration of a model, with 
Pragya Shukla, suggests that the series of reaction 
forces also diverges. This is an important unsolved 
problem because it bears on a deep question: How 
strictly can the fast and slow parts of a system be 
separated? OPN

Michael Berry (asymptotico@bristol.ac.uk) is a professor 
of physics (emeritus) at the University of Bristol, UK. 
michaelberryphysics.wordpress.com

References and Resources

c H.C. Longuet-Higgins et al. “Studies of the Jahn-Teller 
effect II.  The dynamical problem,” Proc. R. Soc. Lond. 
A 244, 1 (1958).

c M.V. Berry. “Quantal phase factors accompanying 
adiabatic changes,” Proc. R. Soc. Lond. A 392,45 
(1984). 

c B. Markovski and S.I. Vinitsky (Eds.). Topological 
Phases in Quantum Theory, World Scientific (1989) 
(includes papers by Rytov and Vladimirskii).

c A. Shapere and F. Wilczek (Eds.). Geometric Phases 
in Physics, World Scientific (1989) (includes many 
important early papers).

c M.V. Berry. “Anticipations of the geometric phase,” 
Phys. Today 43(12), 34 (1990). 

c M.V. Berry and M.R. Dennis. “Polarization singularities 
in isotropic random waves,” Proc. R. Soc. Lond. A 457, 
141 (2001).

c M.V. Berry and M.R. Jeffrey. “Conical diffraction: 
Hamilton’s diabolical point at the heart of crystal 
optics,” Prog. Optics 50, 13 (2007). 

c M.V. Berry. “Geometric phase memories,” Nat. Phys. 
6, 148 (2010). 

c M.V. Berry and P. Shukla. “High-order classical 
adiabatic reaction forces: Slow manifold for a spin 
model,” J. Phys. A 43, 045102 (2010). 

c M.V. Berry and P. Shukla. “Physical curl forces: 
Dipole dynamics near optical vortices,” J. Phys. A 46, 
422001 (2013).

c E. Cohen et al. “Geometric phase from Aharonov–
Bohm to Pancharatnam–Berry and beyond,” Nat. Rev. 
Phys. 1, 437 (2019). 

c O. Arteaga. “Fresnel–Arago fifth law of interference: 
The first description of a geometric phase in optics,” 
J. Mod. Opt. 68, 350 (2021).

c M.V. Berry. “Smooth and oscillatory geometric phase 
corrections for driven spins,” Eur. J. Phys. 44, 065402 
(2023). 

c L. Garza-Soto et al. “Deciphering Pancharatnam’s 
discovery of geometric phase: Retrospective,” J. Opt. 
Soc. Am. A 40, 925 (2023). 

49  MARCH 2024  OPTICS & PHOTONICS NEWS


