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Abstract	

A	Hamiltonian	in	two	space	dimensions	whose	kinetic-energy	

contributions	have	opposite	signs	is	studied	in	detail.	Solutions	of	the	time-

independent	Schrödinger	equation	for	Lixed	energy	are	superpositions	of	

plane	waves,	with	wavevectors	on	hyperbolas	rather	than	circles.	The	local	

velocity	(e.g.	in	the	Madelung	representation)	is	proportional	to	the	kinetic	

momentum,	i.e.	local	particle	velocity,	not	the	more	familiar	canonical	

momentum	(phase	gradient).	The	patterns	of	the	associated	streamlines	

are	different,	especially	near	phase	singularities	and	phase	saddles	where	

the	kinetic	and	canonical	streamline	patterns	have	opposite	indices.	

Contrasting	with	the	superLicially	analogous	circular	smooth	solutions	of	

kinetically	isotropic	Hamiltonians	are	wave	modes	that	are	anisotropic	in	

position	and	also	discontinuous.	Pictures	illustrating	these	phenomena	are	

included.	The	occurrence	of	familiar	concepts	in	unfamiliar	guises	could	be	

useful	for	teaching	quantum	or	wave	physics	at	graduate	level.	
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1.	Introduction	

When	learning	and	applying	elementary	quantum	mechanics,	it	is	common	

to	consider	stationary	states	of	free	particles.	In	two	dimensions,	waves	are	

(usually	complex)	functions	of	position	and	are	inLluenced	by	the	

momentum	operator	in	position	representation:	

𝜓 = 𝜓(𝒓), 𝒓 = (𝑥, 𝑦), 𝒑 = −𝑖∇𝒓	, (1.1)	

The	familiar	free-particle	Hamiltonian	is	isotropic	in	the	two	contributions	

to	the	kinetic	energy,	and	the	time-independent	Schrödinger	equation	is	

𝐻"#$%&$'"(𝜓 =
1
2
2𝑝)* + 𝑝+*5𝜓 =

1
2
2−𝜕))𝜓 − 𝜕++𝜓5 = 𝐸𝜓. (1.2)	

This	could	be	written	in	dimensionless	form	by	expressing	distances	𝑥, 𝑦	in	

units	of	𝐸,-/*,	but	it	is	convenient	to	retain	the	eigenvalue	𝐸.		For	a	

quantum	particle	with	mass	𝑚,	we	have	used	units	such	that	ℏ*/𝑚 = 1,	

equivalent	to	measuring	distances	in	units	of	ℏ/;𝑚 × energy.	

The	aim	here	is	to	study	what	might	seem	a	minor	variant,	in	which	

the	kinetic	energies	have	opposite	signs,	namely	

𝐻𝜓 =
1
2
2𝑝)* − 𝑝+*5𝜓 =

1
2
2−𝜕))𝜓 + 𝜕++𝜓5 = 𝐸𝜓. (1.3)	

But	𝐻	is	very	different;	we	will	see	that	concepts	familiar	from	𝐻"#$%&$'"(		

reappear	in	𝐻	strangely	mutated	in	unexpected	forms.	

	 This	study	originated	in	the	discovery	that	kinetically	anisotropic	

Hamiltonians	describe	a	special	class	of	‘curl	forces’,	that	is,	position-

dependent	Newtonian	forces	(accelerations)	that	are	not	the	gradient	of	a	

potential	[1].	The	work	reported	here	describes	how	kinetically	anisotropic		

Hamiltonians	possess	distinctive	features	even	in	the	absence	of	forces,	i.e.	

for	free	particles.	Moreover,	Hamilltonians	like	𝐻	occur	in	several	physical	
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contexts.	In	condensed	matter,	they	describe	the		physics	of	electrons	where	

the	effective	mass	can	have	different	signs	in	different	directions	[2].	In	

optics,	they	describe	hyperbolic	metamaterials	[3],	in	which	the	dielectric	

constants	can	have	different	signs.	And,	as	will	be	discussed	in	section	6,	

the	Schrödinger	equation	(1.3)	can	be	reinterpreted	as	the	Klein-Gordon	

equation	for	a	free	particle.			

	 In	section	2,	plane	wave	solutions	of	(1.3)	are	identiLied,	and	their	

unusual	dispersion	relation	emphasised.	Section	3	describes	the	convenient	

geometrical	representation	of	waves	𝜓(𝒓)	in	terms	of	streamlines	of	

momentum	(proportional	to	the	local	particle	velocity)	in	the	Madelung	

formulation	of	quantum	mechanics	[4,	5],	currently	enjoying	a	revival	[6-8].	

The	distinction	between	canonical	and	kinetic	momenta,	unimportant	for	

𝐻"#$%&$'"(	but	central	to	the	anisotropic	𝐻,	is	emphasised.	Appendix	A	is	a	

reprise	of	the	Madelung	formalism	for	anisotropic	Hamiltonians,	with	

stress	on	how	this	naturally	involves	the	kinetic	rather	than	the	canonical	

momentum.	

	 Section	4	describes	and	illustrates	the	contrasting	geometries	of	

canonical	and	kinetic	streamlines	close	to	phase	singularities	(nodal	points	

of	𝜓)	and	saddle-points	of	phase	arg𝜓,	explaining	how	these	are	

fundamentally	different	for	𝐻	and	𝐻"#$%&$'"(.	Appendix	B	explores	phase	

extrema;	these	cannot	occur	with	𝐻"#$%&$'"(	but	can	for	𝐻,	albeit	rarely.	

Section	5	illustrates	the	rich	streamline	behaviour	that	can	occur	in	

superpositions	of	just	a	few	plane	waves.	

	 Section	6	derives	a	solution	of	the	Schrödinger	equation	(1.3)	that	is	a	

discontinuous	analogue	of	the	smooth	solution	of	its	isotropic	counterpart	

(1.2).	This	phenomenon	is	demystiLied	by	reinterpreting	(1.3)	as	the	Klein-

Gordon	equation.		
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	 The	concluding	section	7	includes	a	list	of	concepts	whose	teaching	

could	be	usefully	illustrated	by	the	present	study.	

	

2.	Plane	waves	

The	simplest	solutions	of	(1.3)	are	momentum	eigenstates,	i.	e.	plane	

waves:	

𝜓𝒌(𝒓) = exp(𝑖𝒌 ∙ 𝒓) , 𝒌 = 2𝑘), 𝑘+5. (2.1)	

These	resemble	the	familiar	plane	wave	solutions	of	(1.2),	but	their	

dispersion	relation	is	fundamentally	different:		

			𝑘)* −	𝑘+* = 2𝐸. (2.2)	

The	constant-energy	contours	in	𝒌	space	are	hyperbolas,	illustrated	in	

Figure	1.	

	
Figure	1.		Constant-energy	contours	corresponding	to	(2.2).	Contours	for	
|𝑘)| > K𝑘+K		correspond	to	positive	energies,	and	|𝑘)| < K𝑘+K	to	negative	
energy;	the	bold	curves	represent	𝐸 = 1/2	.	Dots	indicate	the	plane	waves	

in	the	superposition	illustrated	in	section	5.	
	 A	convenient	representation	of	these	anisotropic	plane	waves,	in	

terms	of	a	parameter	𝛼,	is	
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𝜓±(𝒓; 𝛼) = exp O𝑖√2𝐸(±𝑥 cosh 𝛼 + 𝑦 sinh 𝛼)W , (−∞ < 𝛼 < ∞).	 (2.3)	

The	parameter	𝛼	is	the	counterpart	of	the	plane-wave	direction	parameter	

𝜃	in	the	more	familiar	solutions	of	𝐻"#$%&$'"(,	namely	

𝜓"#$%&$'"((𝒓; 𝜃) = exp O𝑖√2𝐸(𝑥 cos 𝜃 + 𝑦 sin 𝜃)W , (0 ≤ 𝜃 < 2𝜋) . (2.4)	

	

	

3.	Madelung	streamlines:	kinetic	and	canonical	momentum	

In	Madelung’s	‘hydrodynamic’	formulation	of	quantum	theory	[4],	the	

wavefunction	is	expressed	in	polar	form,		

𝜓(𝒓) = 𝜌(𝒓) exp2𝑖𝜒(𝒓)5, 	 (3.1)	

and	the	phase	gradient	

𝒖(𝒓) = ∇𝜒(𝒓) = Imc
∇𝜓(𝒓)
𝜓(𝒓)

d =
Im2𝜓∗(𝒓)∇𝜓(𝒓)5

|𝜓(𝒓)|*
. (3.2)	

is	regarded	as	fundamental.	One	reason	is	that	(after	ℏ	scaling	that	we	do	

not	emphasise	here	–	see	the	discussion	after	(1.2))	𝒖(𝒓)	can	be	interpreted	

as	a	local,	i.e.	𝒓 − dependent,	canonical	momentum,	in	the	following	way.	

Using	(1.1),	and	modifying	the	usual	momentum	expectation	value	by	a	

𝛿	function	restricting	position	to	𝑟,	and	symmetrising	to	preserve	

Hermiticity,	leads	to	the	result		

𝒖(𝒓) =
1

|𝜓(𝒓)|*
	 i 𝑑𝒓2𝜓∗(𝒓2)-*	2𝛿(𝒓

2 − 𝒓)𝒑 + 𝒑𝛿(𝑟2 − 𝑟)5
3

,3

𝜓(𝒓). (3.3)	

A	simple	calculation	shows	that	this	is	equivalent	to	(3.2).	Several	other	

formulations	support	this	interpretation	[9].	Streamlines	are	the	integral	

curves	of	the	vector	Lield	𝒖(𝒓):	tangent	to	the	vector	at	every	point.	In	this	



 6 

sense,	the	hydrodynamic	formulation	provides	a	convenient	picture	of	the	

wave,	complementary	to	the	more	familiar	Schrödinger	represntation.	

	 For	isotropic	Hamiltonians,	𝒖(𝒓)	is	also	the	kinetic	momentum,	

interpretable	(again	after	scaling	with	ℏ	,	and	also	mass)	as	a	local	particle	

velocity.	But	this	is	not	the	case	for	the	anisotropic	𝐻	considered	here.	This	

can	be	anticipated	classically:	from	the	Lirst	Hamilton	equation,	the	velocity	

of	a	particle	is	proportional	not	to	the	canonical	momentum	but	the	kinetic	

momentum:	

𝒗(𝑡) = 𝑑4𝒓(𝑡) = ∇𝒑𝐻 = 2𝑝), −𝑝+5. (3.4)	

(In	waves,	𝒗(𝑡)is	the	group	velocity	of	a	wavepacket.)	It	is	worth	

mentioning	that	even	for	isotropic	Hamiltonians	the	canonical	momentum	

𝒖	is	gauge-dependent,	in	the	following	sense.	Any	free-particle	Hamiltonan	

can	be	modiLied	by	adding	a	vector	potential	𝑨(𝒓),	which	provided	it	is	curl-

free,	i.e.	∇ × 𝑨(𝒓) = 0,	does	not	represent	a	magnetic	Lield	and	so	leads	to	

the	same	physics.	But	𝑨(𝒓)	changes	the	phase	𝜒(𝒓),	and	therefore	the	

canonical	momentum	𝒖(𝑟).	By	contrast,	the	kinetic	momentum	𝒗(𝒓)is	

unaffected	by	adding	a	curl-free	vector	potential.	

	 This	suggests	that	the	quantum	local	kinetic	momentum,	

proportional	to	the	local	velocity,	is	

𝒗(𝒓) = O∂)𝜒(𝑟), − ∂+𝜒(𝑟)W . (3.5)	

This	interpretation	is	supported	by	the	Madelung	formulation,	revisited	in	

Appendix	A,	also	by	the	interpretation	of	local	velocity	in	the	sense	of	(3.3),	

with	𝒑	replaced	by	the	commutator	[𝒓, 𝐻].	Indeed,	for	anisotropic	

Hamiltonians,	it	is	𝒗,	not	𝒖,	that	satisLies	a	continuity	equation:	

∇ ∙ 2𝜌(𝑟)*𝒗(𝑟)5 = 𝜌(𝒓)*∇ ∙ 𝒗(𝒓) + (∇𝜌(𝒓)*) ∙ 𝒗(𝒓) = 0. (3.6)	

	And	if	𝒗(𝒓)	is	regarded	as	a	local	quantum	velocity,	deLined	as	
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𝑑4𝒓(𝑡) ≡ 𝒗2𝒓(𝑡)5	, (3.7)	

its	corresponding	acceleration	satisLies	a	modiLied	Newton	equation,	

𝑑44𝒓(𝑡) = 𝒗2𝒓(𝑡)5 ∙ ∇𝒗2𝒓(𝑡)5 = − O1 0
0 −1W ∙ ∇𝑉62𝒓

(𝑡)5, (3.8)	

involving	the	‘quantum	potential’	

𝑉6(𝒓) =
𝜕++𝜌(𝒓) − 𝜕))𝜌(𝒓)

2𝜌(𝒓)
. (3.9)	

(In	the	Madelung	quantum	potential	for	the	familiar	isotropic	

Hamiltonians,	the	𝜕++	term	is	negative,	so	the	potential	involves	−∇*.)		

	 For	the	time-independent	solutions	considered	here,	the	streamlines	

of	the	vector	Lield	𝒗(𝒓)	are	the	quantum	trajectories	of	the	particles	with	

dynamics	determined	by	(3.8).	In	(3.8)	the	gradient	of	the	quantum	

potential		expresses	how	quantum	trajectories	differ	from	their	classical	

counterparts.	As	in	the	isotropic	case,	this	quantum	potential,	depending	on	

the	wave	intensity	𝜌*(𝒓),	means	that	even	for	propagation	in	free	space	the	

quantum	trajectories	can	be	curved,	unlike	the	classical	paths,	which	are	

straight.	

	 There	is	a	fundamental	difference	between	the	classical	velocity	(3.4)	

and	the	quantum	velocity	(3.5).	Each	classical	trajectory	can	be	considered	

in	isolation,	but	quantum	trajectories	form	families,	determined	by	the	

velocity	Lield	𝒗(𝒓)	associated	with	the	wavefunction	𝜓(𝒓)	and	coupled	to	

the	intensity	Lield	𝜌*(𝒓).	

4.	Streamlines	near	phase	singularities	and	phase	saddles	

For	complex	functions	𝜓(𝒓),	zeros	in	the	𝒓	plane	are	points,	around	wich	

the	phase	typically	increases	by	±2𝜋.	In	the	polar	representation	(3.1),	𝜌 =

0,	and	the	phase	𝜒	is	undeLined:	zeros	are	phase	singularities	[10-17],	

currently	extensively	studied	in	the	optics	of	structured	light	[18].	The	
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constant-phase	contours	-	wavefronts	-	emerge	from	the	singularity	like	

spokes	of	a	wheel	(or	like	time	zone	boundaries	at	the	poles	of	Earth,	where	

all	time	zones	meet).		

Near	such	a	zero,	the	coordinate	dependence	is	linear:			

𝜓(𝒓) = 𝑎𝑥 + 𝑏𝑦 + ⋯ , (4.1)	

involving	complex	constants	𝑎, 𝑏.	From	(3.2)	and	(3.5),	the	canonical	

momentum	and	kinetic	velocity	are	

𝒖(𝒓) =
Im(𝑎∗𝑏)
|𝜓(𝒓)|*

(−𝑦, 𝑥), 𝒗(𝒓) = −
Im(𝑎∗𝑏)
|𝜓(𝒓)|*

(𝑦, 𝑥). (4.2)	

It	follows	that	the	𝒖	streamlines	are	circles	(𝒖 ∙ 𝒓 = 0);	that	is	why	phase	

singularities	are	wave	vortices	[19],	the	subject	of	much	experimental	and	

theoretical	activity	in	optics	[20,	21].	By	contrast,	the	𝒗	streamlines	are	

rectangular	hyperbolas,	with	asymptotes	𝑥* = 𝑦*	(where	𝒗	and	𝒓	are	

parallel,	i.e.	𝒗 × 𝒓 = 0).	

	 The	pattern	of	phase	contours	is	also	singular	at	places	where	𝜌	is	not	

zero,	namely	phase	saddles.	Near	such	points,	𝜒	varies	quadratically:	

𝜒(𝒓) = 𝜒7 +
-
*𝑎𝑥

* + 𝑏𝑥𝑦 + -
*𝑐𝑥

*, (4.3)	

in	which	the	constants	𝑎, 𝑏, 𝑐	are	real.	From	the	continuity	equation	(3.6),	it	

follows	that		∇ ∙ 𝒗(𝒓) = 0	where	𝒗 = 0,	implying	𝑐 = 𝑎.		Therefore	the	𝒖	and	

𝒗	Lields	near	a	saddle	take	the	form	

𝒖(𝒓) = (𝑎𝑥 + 𝑏𝑦, 𝑏𝑥 + 𝑎𝑦), 𝒗(𝒓) = (𝑎𝑥 + 𝑏𝑦,−𝑏𝑥 − 𝑎𝑦). (4.4)	

At	a	saddle,	the	two	principal	curvatures	(eigenvalues	of	the	quadratic	form	

in	(19)	[22])	have	opposite	signs,	so	the	Gaussian	curvature	is	negative:	

det c
𝜕))𝜒 𝜕)+𝜒
𝜕+)𝜒 𝜕++𝜒

d = 𝑎* − 𝑏* < 0	. (4.5)	
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It	follows	that	the	𝒖	streamlines	are	hyperbolas,	generally	not	rectangular,,	

with	asymptotes		𝑥* = 𝑦*,	and	the	𝒗	streamlines	are	ellipses,	generally	not	

circular,	with	principal	axes		𝑥* = 𝑦*.	

	 These	geometrical	features	can	be	understood	in	terms	of	the	indices	

of	the	singularities	of	the	line	patterns	associated	with	the	Lields:	contours	

for	𝜒	and	streamlines	for	𝒖	and	𝒗.	The	index	of	a	singularity	of	a	line	

pattern	is	the	signed	number	of	times	its	lines	rotate	round	a	circuit	of	it	

[22].	Phase	singularities	have	index	+1	and	phase	saddles	have	index	-1.	At	

a	phase	vortex,	the	𝒖	pattern	has	index	+1	and	the	𝒗	pattern	has	index	-1;	at	

a	phase	saddle,	it	is	the	opposite:	the	𝒖	pattern	has	index	-1	and	the	𝒗	

pattern	has	index	+1	

	 These	geometrical	features	are	illustrated	in	Figure	2	for	a	simple	

solution	of	(1.3),	namely	

𝜓(𝑟) = O𝑦* − -
8− 𝑖𝑥W exp(𝑖𝑥), 	 (4.6)	

which	has	phase	vortices	at	(0, ±1/2)	and	phase	saddles	at	20, ±√5/25.		

	
Figure	2.	In	both	(a)	and	(b),	the	phase	of	(4,6)	is	colour-coded	by	HUE;	all	
colours	meet	at	phase	singularities,	where	𝜌 = 0,	denoted	by	circles;	the	

phase	saddles	are	denoted	by	diamonds.	Superimposed	are	the	streamlines	

a b
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of	(a),	canonical	momentum	𝒖(𝒓),	with	vortices	at	the	phase	singularities	
and	saddles	at	the	phase	saddles;	(b)	kinetic	momentum	𝒗(𝒓),	with	saddles	

at	the	phase	singularities	and	vortices	at	the	phase	saddles.	
	

5.	A	three-wave	superposition	

A	superposition	of	three	waves,	namely	

𝜓(𝒓) = 𝑐- exp(𝑖𝒌- ∙ 𝒓) + 𝑐* exp(𝑖𝒌* ∙ 𝒓) + 𝑐9 exp(𝑖𝒌9 ∙ 𝒓), 		 (5.1)	

sufLices	to	illustrate	the	rich	patterns	of	streamlines	that	can	occur.	Figure	3	

shows	𝒖(𝒓)	and	𝒗(𝒓)	for	a	wave	with	𝐸 = 1/2	and	the	following	choice	of	

wavevectors,	𝛼	parameters	in	(6),	and	coefLicients:		

𝒌- = (1, 0), 𝒌* = (−2.5, 2.29129), 𝒌9 = (−2.5, −	2.29129);
𝛼- = 0, 𝛼* = 𝛼9 = −1.5668; |𝒌-| = 1, |𝒌*| = |𝒌9| = 3.39116;

𝑐- = 1, 𝑐* =
-
*, 𝑐9 = 1.

	 (5.2)	

	 In	addition	to	the	contrasting	behaviour	near	phase	singularites	and	

phase	saddles,	both	families	of	streamlines	display	the	undulations	

indicative	of	interference	in	the	Madelung	formulation	[4].		

	 As	well	as	phase	singularities	and	phase	saddles,	the	phase	of	

solutions	of	kinetically	anisotropic	Hamiltonians	can	also	possess	phase	

extrema	(maxima	and	minima);	as	discussed	in	Appendix	B,	these	are	

relatively	rare.	
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Figure	3.	Streamlines	for	(a,	c)	𝒖(𝒓),	and	(b),	d)	𝒗(𝒓),	for	the	three-wave	
superposition	(5.1-5.2).	In	(a,	b)	the	streamlines	(white)	are	superimposed	
on	the	intensity	𝜌*(𝒓)	(grayscale,	with	high	intensities	white	and	zeros	

indicated	by	red	circles	and	phase	saddles	by	red	diamonds);	the	red	arrow	
in	(b)	represents	the	mean	kinetic	momentum;	in	(c,	d)	the	streamlines	
(black)	are	superimposed	on	the	phase	(with	zeros	indicated	by	black	

circles	and	phase	saddles	by	black	diamonds),	as	in	Ligure	2.		
	

6.	Singular	eigenfunctions	

a b

c d
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For	the	isotropic	Hamiltonian	(1.2),	the	continuous	superposition	of	plane	

waves	(2.4)	travelling	in	all	directions	𝜃	leads	to	a	circularly	symmetric	

Bessel	wave;	for	𝐸 = 1/2,	

𝜓"#$%&$'"((𝒓) =
1
2𝜋

i𝑑𝜃
:

,:

exp O𝑖√2𝐸(𝑥 cos 𝜃 + 𝑦 sin 𝜃)W

	= 𝐽7 O;2𝐸(𝑥* + 𝑦*)W

	 (6.1)	

This	wave,	which	has	no	singularities,	can	also	be	regarded	as	the	

superposition	of	outgoing	and	incoming	circular	waves,	is	illustrated	in	

Figure	4a.	The	analogous	exact	solution	for	the	anisotropic	Hamiltonian	

(1.3)	would	appear	to	be	obtained	by	replacing	𝑦	by	−𝑦:	

𝜓(𝒓) = 𝐽7 O;2𝐸(𝑥* − 𝑦*)W . (6.2)	

But	it	is	not	acceptable,	because	for	𝑦* > 𝑥*	the	argument	of	the	Bessel	

function	is	imaginary,	and		

𝜓(𝒓) = 𝐼7 O;𝑦* − 𝑥*W , (6.3)	

where	𝐼7	is	the	modiLied	Bessel	function,	grows	exponentially	as	|𝑦|	

increases.	The	reason	is	that	in	the	superposition	(6.1)	the	replacement	

𝑦 → 𝑖𝑦	involves	exponentials	that	are	real	rather	than	complex,	

corresponding	to	evanescent/growing	waves	rather	than	the	phase	factors	

representing	propagating	waves.		

	 However,	it	is	possible	to	create	a	counterpart	of	(6.2)	that	is	

satisfactory	in	the	sense	that	it	does	not	diverge	in	any	sector	of	the	𝒓	plane.	

An	instructive	way	to	do	this	is	via	the	propagator	for	the	Hamiltonian	

(1.3),	with	the	source	at	𝒓 = 𝟎.	Using	the	momentum	representation,	

𝐺(𝒓, 𝑡) = ⟨𝒓| exp(−𝑖𝐻𝑡) |𝟎⟩ =
1

(2𝜋)*
�𝑑𝒌exp O𝑖𝒌 ∙ 𝒓 − -

*	𝑖2𝑘)
* − 𝑘+*5𝑡	W . (6.4)	
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The	integration	is	over	the	𝒌	plane,	and	the	two	Gaussian	integrals	give	

𝐺(𝒓, 𝑡) =
exp �𝑖 𝑥

* − 𝑦*
2𝑡 �

2𝜋𝑡
	 . (6.5)	

	 The	desired	counterpart	of	(6.2)	is	

𝜓(𝒓) = 2	Imi 𝑑𝑡 exp(𝑖𝐸𝑡)𝐺(𝒓, 𝑡)
3

7

=
1
𝜋
i
𝑑𝑡
𝑡
sin c𝐸𝑡 +

𝑥* − 𝑦*

2𝑡
d .

3

7

	 (6.6)	

(The	real	part	gives	a	singular	solution	representing	a	source	at		𝒓 = 𝟎.)	As	

shown	in	Appendix	C,	the	integral	reduces	a	standard	representation	of	the	

Bessel	function	(6.2),	with	the	difference	that	it	vanishes	in	the	regions	

𝑦* ≷ 𝑥*	for	𝐸 ≷ 0	

𝜓(𝒓) = 𝐽7 O;2𝐸(𝑥* − 𝑦*)W Θ2𝐸(𝑥* − 𝑦*)5, (6.7)	

in	which	Θ	denotes	the	unit	step.	The	wave	is	ilustrated	in	Figure	4b.	

Figure	4.	(a)	Isotropic	Bessel	wave	(6.1);	(b)	anisotropic	Bessel	wave	(6.7).	

	 The	discontinuity	of	(6.7)	across	the	lines	|𝑦| = |𝑥|		is	unfamiliar, and	

threatens	its	validity	as	a	legitimate	solution	of	(1.3).	Demonstrating	that	in	

fact	the	discontinuous	function	is	a	solution	is	an	instructive	exercise	in	the	

manipulation	of	step	and	delta	functions.	DeLine	the	discrepancy	

a b
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Δ𝜓(𝑥, 𝑦) ≡ 2−𝜕)) + 𝜕++ − 2𝐸5𝜓(𝒓)	. (6.8)	

This	should	vanish	everywhere	for	all	𝐸.	An	explicit	calculation,	using	(1.3),	

with	2𝐸 = 1	for	convenience,	gives,	after	using	Θ2(𝑢) = 𝛿(𝑢),	

Δ𝜓(𝑥, 𝑦) =
4𝐽-2;𝑥* − 𝑦*5

;𝑥* − 𝑦*
(𝑥* − 𝑦*)𝛿(𝑥* − 𝑦*)

−4𝐽7 O;𝑥* − 𝑦*W 2𝛿(𝑥* − 𝑦*) + (𝑥* − 𝑦*)𝛿2(𝑥* − 𝑦*)5.
	 (6.9)	

The	Lirst	term	on	the	r.h.s.	vanishes	because	𝑢𝛿(𝑢) = 0.	The	second	term	

vanishes	too,	because	use	of	𝛿2(𝑢*) = 𝛿2(𝑢)/(2𝑢)	and	𝑓(𝑢)𝛿2(𝑢) =

−𝑓2(𝑢)𝛿(𝑢)	leads	to	

(𝑥* − 𝑦*)𝛿2(𝑥* − 𝑦*) = −𝛿(𝑥* − 𝑦*). (6.10)	

Therefore	this	formal	argument	gives		

Δ𝜓(𝑥, 𝑦) = 0	. (6.11)	

A	more	detailed	analysis,	based	on	smoothing	the	step	in	(6.7)	,	evaluating	

the	discrepancy	Δ𝜓(𝑥, 𝑦),	and	then	resharpening,	leads	to	the	same	result.	

	 Worth	noting	is	that	the	propagator	integral	(6.6)	can	be	expressed	as	

a	superposition	of	the	plane	waves	(2.3).	After	transforming	the	integration	

variable	by	

𝑡 =
|𝑥| + 𝑦
√2𝐸

exp 𝑢,	 (6.12)	

(6.6)	becomes,	after	a	short	calculation,	

𝜓(𝒓) =
1
𝜋
i 𝑑𝑢 sin O√2𝐸(|𝑥| cosh 𝑢 + 𝑦 sinh 𝑢)W .
3

,3

	 (6.13)	

This	is	indeed	a	superposition	of	plane	waves.	Moreover,	numerical	

approximation	as	a	discrete	superposition,	replacing	the	integral	as	a	sum,	

with		𝑢 = 𝑛𝛿,−𝑁 ≤ 𝑛 ≤ 𝑁, 𝛿 ≪ 1,𝑁 ≫ 1,𝑁𝛿 ≫ 1,	reproduces	Ligure	4b	to	
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visual	accuracy,	including	its	discontinuities.	I	do	not	give	details,	but	

suggest	𝛿 = 0.02, 𝑁 = 200	for	students	seeking	to	explore	the	

superposition.	

	 To	demystify	the	unexpected	result	that	an	eigenstate	of	the	

Schrödinger	equation	(1.3)	for	a	free	particle	in	2D	can	be	discontinuous,	

note	that	the	replacements	𝑥 → 𝑡, 𝑦 → 𝑥,		2𝐸 → 𝑚*	gives			

(𝜕44 − 𝜕)) +𝑚*)𝜓 = 0. (6.12)	

This	is	the	Klein-Gordon	equation	for	the	evolution	of	the	state	of	a	

relativistic	particle	moving	in	one	space	dimension.	The	step	in	(6.7)	

restricts	the	particle	to	lie	within	the	light	cone	|𝑥| ≤ |𝑡|,	i.e.	the	evolution	is	

causal	(for	further	analysis	of	this	kind	of	causal	evolution,	and	a	related	

discussion	of	discontinuities,	see	[23,	24]).	

	 For	simplicity	of	exposition,	we	have	deliberately	chosen	to	illustrate	

anisotropisation	using	the	simplest	Bessel	wave	(6.1).	But	it	is	easy	to	

extend	the	process	to	the	more	general	wave	

𝜓;,"#$%&$'"((𝒓) = 𝐽|;| O;2𝐸(𝑥* + 𝑦*)W exp(𝑖𝑚𝜃) . (6.13)	

Again	with	the	replacement	𝑦 → 𝑖𝑦,	now	with	the	cutoff	for	𝑦* > 𝑥*,	and	

using		

exp(𝑖𝜃) =
𝑥 + 𝑖𝑦

;𝑥* + 𝑦*
→

𝑥 − 𝑦

;𝑥* − 𝑦*
	 , (6.14)	

gives	the	generalisation	of	(6.7):	

𝜓;(𝒓) =
𝐽|;|2;2𝐸(𝑥* − 𝑦*)5

(𝑥* − 𝑦*)
;
*

(𝑥 − 𝑦);Θ2𝐸(𝑥* − 𝑦*)5. (6.15)	

	 The	argument	around	(6.8)-(6.11),	demonstrating	that	the	cutoff	

does	not	spoil	the	solution,	generalises,	and	then	it	is	easy	to	show	that	the	
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waves	(6.15)	are	exact	solutions	of	(1.3).	The	singlevaluedness	of	(6.13),	

restricting	𝑚	to	be	integer,	no	longer	applies,	so	the	index		𝑚	can	take	any	

real	value.	The	factor	(𝑥 − 𝑦)	means	that	for	𝑚 > 0, 𝐸 > 0, 𝑥 > 0		these	

waves	are	small	at	the	upper	boundary	cutoff		𝑦 = +𝑥	and	large	on	the	

lower	boundary	𝑦 = −𝑥,	with	the	opposite	for	𝑥 < 0.		The	replacement	

𝑚 → −𝑚	replaces	(𝑥 − 𝑦)	by	(𝑥 + 𝑦),	so	for	𝑚 < 0	the	large/small	

behaviour	at	the	cutoffs	is	reversed.	

	

7.	Concluding	remarks	

Emerging	from	this	study	of	the	simplest	kinetically	anisotropic	

Hamiltonian	are	several	examples	of	phenomena	familiar	in	isotropic	

Hamiltonians	appearing	in	unfamilar	guises.	In	previous	work,	tacitly	

restricted	to	isotropic	Hamiltonians,	streamlines	circulate	around	phase	

singularities,	in	the	long-studied	wave	vortices	[10,	11],	and	are	hyperbolic	

close	to	phase	saddles	[25].	For	anisotropic	Hamiltonians,	where	canonical	

and	kinetic	momenta	are	different,	the	association	between	phase	

geometry	and	streamlines	is	the	opposite:	hyperbolic	streamlines	at	the	

phase	singularities	and	circulating	streamlines	around	the	phase	saddles.	

And	instead	of	the	smooth	eigenfunctions	of	isotropic	Hamiltonians,	in	the	

anisotropic	Hamiltonian	studied	here	there	are	eigenstates	that	are	

discontinuous	functions	of	position.	

	 For	simplicity	of	exposition,	only	the	simplest	anisotropic	

Hamiltonian	has	considered.	But	the	unfamilar	phenomena	survive	

generalisation:	for	example,	to	anisotropic	hamiltonians	whose	kinetic	

contributions	have	opposite	signs	but	not	necessarily	the	same	magnitudes;	

or	which	involve	external	forces,	represented	by	a	potential;	or	in	more	

than	two	dimensions.		
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	 Finally,	the	analysis	provides	examples	that	could	be	useful	in	

graduate-level	teaching	of	a	number	of	important	concepts	and	techniques.	

These	include	

•	The	difference	between	canonical	and	kinetic	momenta;	

•	Madelung	streamlines;	

•	Phase;	

•	Geometrical	features,	such	as	index,	associated	with	singularities	of	line	

patterns;	

•	Manipulations	of	step	functions	and	delta	functions.	

Acknowledgments.	I	thank	Professor	John	Hannay	and	Professor	Pragya	

Shukla	for	many	helpful	discussions.	

Appendix	A.	Madelung	formalism	for	anisotropic	Hamiltonian		

This	is	a	reprise	of	the	argument	in	Appendix	A	of	[26],	which	deals	with	a	

slightly	more	general	case.	Substitution	of	the	polar	representation	(3.1)	

into	the	Schrödinger	equation	(1.3)	leads,	after	separating	real	and	

imaginary	parts,	to	two	equations	connecting	𝜌	and	𝜒.		

	 The	imaginary	part	gives	the	continuity	equation	(3.6),	involving	the	

kinetic	𝒗	rather	than	the	canonical	𝒖.	The	real	part	leads,	after	some	

calculation,	to	

1
2
𝒖(𝒓) ∙ 𝒗(𝒓) + 𝑉6(𝒓) = 𝐸, (A. 1)	

involving	the	quantum	potential	(3.9).	The	Newton	equation	(3.8)	is	

obtained	by	taking	the	gradient.	A	crucial	step	involves	the	relation	

(𝑣 ∙ ∇)𝑣 = O1 0
0 −1W ∙ ∇ �

1
2
𝒖 ∙ 𝒗� = �

𝜕)
−𝜕+

� �
1
2
𝒖 ∙ 𝒗� , (A. 2)	
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whose	proof	follows	from	the	fact	that	𝒖	is	irrotational	because	it	a	

gradient.	

Appendix	B.	Phase	extrema	

Consider	a	general	complex	function	in	the	plane:	𝜓(𝒓), 𝒓 = (𝑥, 𝑦).	There	

are	phase	singularities	where	|𝜓| = 0,	and	also	phase	saddles	and	phase	

extrema	(maxima	or	minima)	where	∇ arg𝜓 = ∇𝜒 = 𝒖 = 𝒗 = 0	(the	zeros	

of	𝒖	coincide	with	those	of	𝒗,	cf.	(3.2)	and	(3.5)).	Saddles	and	extrema	are	

stationary	points	of	the	phase,	which	can	be	written	in	the	form	(4.3).	

Saddles	correspond	to	negative	Gaussian	curvature	of	𝜒,	i.e.	𝑎𝑐 − 𝑏* < 0,	

and	extrema	to	positive	Gaussian	curvature,	i.e.	𝑎𝑐 − 𝑏* > 0.		

	 But	the	functions	considered	here	are	not	general:	they	are	

constrained	by	being	solutions	of	wave	equations.	For	the	familiar	

kinetically	isotropic	Hamiltonians,	e.g.	(1.2),		Madelung	continuity	implies	

∇ ∙ 𝒖 = 0,	and	therefore	𝑐 = −𝑎.	The	Gaussian	curvature	is	−𝑎* − 𝑏*	,	

which	can	never	be	positive,	so	there	are	no	phase	extrema	[25].	

For	the	kinetically	anisotropic	Hamiltonians	considered	here,	

continuity	implies	∇ ∙ 𝒗 = 0,	implying	𝑐 = +𝑎	(cf.	the	text	following	(4.3))	

and	the	Gaussian	curvature	(4.5),	which	is	negative	for	phase	saddles,	as	

studied	in	detail.		But	there	is	no	restriction	preventing	𝑎* > 𝑏*,	leaving	

open	the	possibility	of	phase	extrema.		

These	do	occur	but	seem	rare.	I	explored	many	few-wave	

superpositions,	searching	for	places	where	𝒖 = 0	in	regions	with	positive	

Gaussian	curvature.	Usually	these	conditions	were	not	satisLied,	but	I	found	

a	Live-wave	superposition	with	two	very	shallow	phase	extrema:	a	phase	

maximum	and	a	nearby	phase	minimum.		

An	approach	to	a	theory	of	phase	extrema	would	be	to	consider	

random	solutions	of	(1.3),	for	example	superpositions	of	many	plane	waves	
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(2.3)	with	random	phases	and	amplitudes,	and	calculate	the	probability	

that	a	stationary	point	of	phase	would	be	an	extremum	rather	than	a	

saddle.	There	have	been	many	calculations	of	geometrical	statistics	of	

waves	[27-29].	Somewhat	similar	to	the	present	example	is	the	statistics	of	

different	types	of	umbilic	point;	these	are	places	where	the	two	principal	

curvatures	are	equal,	and	there	is	a	threefold	classiLication	[30],	playing	a	

role	in	optics	[11];	it	was	found		that	one	of	the	types	–	‘monstars’	–	is	

rather	rare	(probablility	0.053).		

The	patterns	considered	here	do	not	exhaust	the	possibilities.	For	

approximations	to	solutions	of	the	time-independent	wave	equations,	

streamlines	near	phase	singularities	can	form	spirals	rather	than	closed	

loops	[31],	and	Madelung	streamlines	for	time-dependent	waves	avoid	each	

phase	singularity	in	spacetime,	except	for	one	that	meets	it	in	a	cusp	[31,	

32].	

Appendix	C.	Derivation	of		(6.7)	from	(6.6)	

Replace	the	integration	variable	𝑡	by	𝑠,	where	

𝑡 = ��
𝑥* − 𝑦*

2𝐸
� 𝑠. (C. 1)	

This	brings	(6.6)	to	the	symmetrical	form	

𝜓(𝒓) =
1
𝜋
i
𝑑𝑠
𝑠
sin �

1
2
|𝑋| c𝑠 +

1
𝑠
sign2𝐸(𝑥* − 𝑦*)5d�

3

7

, (C. 2)	

where		

𝑋 = ;2𝐸(𝑥* − 𝑦*)	. (C. 3)	

With	the	negative	sign,	the	argument	of	the	sine	is	𝑠 − 1/𝑠,	and	the	

transformation	𝑠 → 1/𝑠	gives		
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𝐸(𝑥* − 𝑦*) < 0 ⟹ 𝜓(𝒓) = −𝜓(𝒓) = 0. (C. 4)	

With	the	positive	sign,	the	same	transformation	shows	that	the	

contributions	from	0 < 𝑠 ≤ 1	and	1 ≤ 𝑠 < ∞	are	the	same,	so	

𝜓(𝒓) =
2
𝜋
i
𝑑𝑠
𝑠
sin c

1
2
𝑋 �𝑠 +

1
𝑠
�d .

3

-

(C. 5)	

The	Linal	transformation	𝑠 + 1/𝑠 = 2𝑤	leads	to	

𝜓(𝒓) =
2
𝜋
i

𝑑𝑤
√𝑤* − 1

sin(𝑋𝑤),
	

3

-

	 (C. 6)	

which	is	a	standard	integral	representation	of	𝐽7(𝑋)	(e.g.	formula	10.9.11	of	

[33]).	
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